Effect of Terminal Heat Stress on Yield and Yield Attributes of Wheat

ABSTRACT
High temperature is a major determinant of wheat development and growth and causes yield loss in many regions of the world. This study was conducted to assess heat stress effects on yield and yield related traits of wheat. Three wheat genotypes C 273 (heat tolerant) and PBW 343, PBW 550 (susceptible) under normal and heat stress (late sowing) conditions. Grain yield, no of grain per kernel, plant height, grain filling duration, peduncle length, peduncle weight and 1000 kernels weight were measured. High temperature significantly decreased all traits specially grain yield (26% and 54.2%), 1000-kernel weight (24% and 31%) and grain filling duration (3% and 9%) in tolerant and susceptible genotypes, respectively. Grain yield (54%) was most affected and grain filling duration (9%) was least affected by heat stress. These traits could be used as reliable screening tools for development of heat-tolerant genotypes.

Introduction
Wheat is traditionally grown as a cool-season crop, but with the increased availability of more widely adapted semi-dwarf cultivars, wheat production has expanded into warmer regions of countries, where production had previously been restricted to higher altitudes or cooler latitudes (Badruruddin et al. 1999). Terminal heat stress is a problem in 40% of temperate environments, which cover 36 million ha (Reynolds et al. 2001). Under Mediterranean conditions heat stress after anthesis is the major grain yield limiting factor in winter sown wheat genotypes. High temperatures, above 30ºC, affect final grain weight by reducing the duration of grain filling, due to the suppression of current photosynthesis and by inhibition of starch synthesis in the endosperm. Most of the available information is centered on the post-anthesis effects of temperature, there is ample evidence that temperature during pre-anthesis can modify, not only final grain weight, but also grain number (Wardlaw et al. 1989). Pre-anthesis effects may be related with reduction on grain number due to problems during meiosis and the growth of the ovaries which may, in turn, impose an upper limit for potential grain weight (Calderini et al. 1999). The optimum temperature range for reaching maximum kernel weight is 15-18ºC; higher temperatures reduce the duration of grain filling and this reduction is not balanced by the increase in rate of assimilates accumulation (Stone et al. 1995). To sustain wheat productivity under late sowing, research emphasis has been given to develop heat tolerant genotypes. There is an average yield loss 1.7% per day, when sown beyond optimum time (Mohammadi, 2002). Similarly, Hanchinal et al. (1994) reported the reduction in the duration grain growth phases under late planting. Delayed planting reduced the plant height, days to heading, days to maturity and grain filling duration and ultimately showed the reduction in yield and yield components (Din & Singh, 2005). Assessment of genetic variability has important implications in breeding and conservation of genetic resources. Therefore, it is important to have this information for germplasm collections, to determine the range of diversity in genotypes and during long-term maintenance of collections.

Materials and Methods
Three wheat cultivars C 273 (heat tolerant) and PBW 343, PBW 550 (susceptible) and were evaluated under normal and late sowing conditions. The crop was sown in middle of November (optimum planting date) and middle of December (late planting date). The experiments were carried out through a randomized block design with three replications in Research Field of Punjab Agricultural University, Ludhiana India. Soil type was sandy loam and the experiment was optimally managed to avoid unwanted nutrient or water stress. Materials were seeded with hand (4 rows by 1.0 m long, spaced 25 cm apart and 2 cm intrarow space). Grain dry weight, head length, kernels per spike, spikelets per spike, 1000-kernel weight, plant height and peduncle length were measured. The grain filling duration (GFD) was also calculated as the number of days from anthesis to ripeness (approximately 90% of spikes devoid of green color). Data were analyzed statistically by CPC51 software analysis of variance.

Results and Discussion
Combined analysis of variance for grain yield, peduncle length, peduncle weight, grain filling duration, kernels per spike, 1000 grain weight and plant height are presented in Table about here. Comparison of tolerant and susceptible genotypes on the basis of percent reduction in yield demonstrated that genotypes were significantly different in their response to heat stress. For example, tolerant genotypes had longer grain filling duration than susceptible genotypes under both control and stress conditions. Yield parameters of susceptible genotypes were more affected by high temperature. Greater than 3-fold differences in yield between susceptible and tolerant genotypes were observed similar results have been reported by Zhong-hui & Rajaram, (1994).

It is notable that susceptible genotypes had the highest reduction in grain yield (66.2%). According to Hays et al. (2007) stress occurring after anthesis often has detrimental effects on wheat grain yield by hastening maturity, triggering premature senescence, shortening grain filling duration and reducing net assimilates and 1000 kernels weight. As shown in Table about here, the reduction of yield under stress was due to decline both in number of grain per ear and 1000 grain weight. The results showed that high temperature began in start of grain filling and continued until ripening had a negative impact on yield as measured by kernel weight (39.85% reduction). Similar results have been reported by Modhe et al. (2008). High temperature during grain-filling period decreased grain filling duration significantly. The duration of grain growth in the post-anthesis period is considered the most significant determinant of yield in wheat (Mitra & Bhatia, 2008). Grain filling duration contribute to the final yield of a plant that is a product of rate of grain filling and du-

KEYWORDS
Grain weight, grain filling duration, Yield

| Shashi Bala | * Bavita Asthir | Navtej Singh Bains |
| Department of Biochemistry, Punjab Agricultural University, Ludhiana-141004, Punjab, India | Department of Biochemistry, Punjab Agricultural University, Ludhiana-141004, Punjab, India | Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141004, Punjab, India |

* Corresponding author
Yield and yield characteristics of wheat under normal (NS) and late sowing (LS) conditions.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Yield</th>
<th>1000 Grain weight</th>
<th>Grain no/ spike</th>
<th>Peduncle length</th>
<th>Peduncle weight</th>
<th>Plant height</th>
<th>Grain filling duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS</td>
<td>LS</td>
<td>NS</td>
<td>NS</td>
<td>LS</td>
<td>NS</td>
<td>LS</td>
</tr>
<tr>
<td>C 273</td>
<td>0.27</td>
<td>0.20</td>
<td>40.08</td>
<td>27.4</td>
<td>47.01</td>
<td>37.20</td>
<td>47.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBW 343</td>
<td>0.61</td>
<td>0.28</td>
<td>44.95</td>
<td>33.4</td>
<td>54.5</td>
<td>43.7</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBW 550</td>
<td>0.53</td>
<td>0.26</td>
<td>45.7</td>
<td>34.5</td>
<td>56.5</td>
<td>45.5</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference: