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INTRODUCTION AND PRELIMINARIES 
 
Convergence of fixed points iterative schemes in 

convex metric spaces has been the subject of research 

in fixed point theory for some time now [see [4-6,12] 

and several references therein]. 

        In 1970, Takahashi [12] introduced the concept 

of convexity in metric space ( , )X d  as follows: 

Definition 1.1 A map 2: [0,1]W X X× →  is a 

convex structure in X  if 

( , ( , , )) ( , ) (1 ) ( , )d u W x y d u x d u yλ λ λ≤ + −   

for all , ,x y u X∈  and [0,1].λ∈  A metric space 

( , )X d  together with a convex structure W is known 
as convex metric space and is denoted by 

( , , ).X d W  A nonempty subset C  of a convex 

metric space is convex if ( , , )W x y Cλ ∈  for 

all ,x y C∈  and [0,1]λ∈ . 

          The stability theory of  fixed point iteration 
schemes  has been systematically studied by many 
authors  using various contractive conditions[1-3, 6-
11]. In 2011, Olatinwo [6] defined the concept of T-
stability in convex metric space setting: 

Definition 1.2: Let ( , , )X d W be a convex metric 

space and :T X X→  a self mapping. 

Let 0{ }n nx X∞
= ⊂  be the sequence generated by an 

iterative scheme involving T  which is defined by  

1 , ,n

n

x
n Tx f α+ = 0,1,2....n =  ,                                                        

(1.1) 
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where 0x X∈  is the initial approximation and ,
n

n

x
Tf α  

is some function having convex structure such that 
[0,1].nα ∈  Suppose that { }nx  converges to a fixed 

point p of T. Let 0{ }n ny X∞
= ⊂  and 

set 1 ,( , ), ( 0,1, 2....)n

n

y
n n Td y f nαε += = . Then, the 

iterative scheme (1.1) is said to be T-stable with 
respect to T  if and only if  lim 0,nn

ε
→∞

= implies 

lim .nn
y p

→∞
=  

Now we recapitulate some of the iterative schemes in 
terms of convex structure  as follows: 

Let ( , , )X d W  be a convex metric space and 

:T X X→  be a self map of X. For 0 ,x X∈  

Picard iterative scheme[11]:  

1 ,n nx Tx+ = 0,1,2....n =                      
(1.2)   

Mann iterative scheme[4,13]: 

                         

1 ( , , ),n n n nx W x Tx α+ = 0,1,2....n = (1.3) 

where 0{ }n nα ∞
=  is a real sequence in [0,1]. 

Ishikawa iterative scheme[4,5]: 

                      1 ( , , )n n n nx W x Ty α+ =  

                     ( , , ),n n n ny W x Tx β= 0,1,2....n =     
(1.4) 

where 0{ }n nα ∞
=  and 0{ }n nβ ∞

=  are real sequences in 

[0,1]. 

Osilike and Udomene [9] defined a new general 

definition of quasi contractive operator as follows: 

( , ) ( , ) ( , )d Tx Ty d x y Ld x Txδ≤ +  

,x y X∀ ∈ and some 0, [0,1].L δ≥ ∈                                        

(1.5) 

A more general definition was introduced by Imoru 

and Olatinwo [3] as follows which we will use in our 

results: if there exists a constant 0 1δ≤ <  and a 

monotonically increasing and continuous function 

:[0, ) [0, )ϕ ∞ → ∞  with (0) 0,ϕ =  such that for 

all , ,x y X∈  

( , ) ( , ) ( ( , ))d Tx Ty d x y d x Txδ ϕ≤ +  .                                        

(1.6) 

 

 

 

1. MAIN RESULTS: 

First we give a lemma which is used in our main 
results. 

Lemma 2.1 [11] If δ  is a real number such that 

0 1,δ≤ <  and 0{ }n nε ∞
=  is a sequence of positive 

numbers such that lim 0,nn
ε

→∞
=  then for any 

sequence of positive numbers 0{ }n nu ∞
=  satisfying 

1 ,n n nu uδ ε+ ≤ + 0,1,2.....n = ; we have 

lim 0.nn
u

→∞
=  

Theorem 2.2 Let K  be a nonempty closed convex 

subset of a   convex metric  spaces X  and 

:T K K→  be a mapping satisfying (1.6). Let 

0{ }n nx ∞
=  be defined through the Ishikawa  iterative 

scheme  (1.4) and 0 ,x X∈  where { }nα  and { }nβ   

are sequences of positive numbers in [0,1]  with 
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{ }nα  satisfying 
0

.n
n
α

∞

=

= ∞∑  Then 0{ }n nx ∞
=  

converges strongly to the fixed point of .T  

Proof: Let p be the fixed point of T. Then, from (1.4), 

we have   

1( , ) ( (x , , ), )n n n nd x p d W Ty pα+ =  

                     (1 ) (x , ) ( , )n n n nd p d Ty pα α≤ − +    

                      (1 ) (x , ) ( , )n n n nd p d y pα α δ≤ − +                              

(2.1)                                    

Similarly from (1.4), we have the following 

estimates: 

( , ) ( (x , , ), )n n n nd y p d W Tx pβ=  

                  (1 ) (x , ) ( , )n n n nd p d Tx pβ β≤ − +  

                 
(1 ) (x , ) ( , )
(1 (1 )) (x , )

n n n n

n n

d p d x p
d p

β β δ
β δ

≤ − +
= − −

                                  

(2.2) 

Using (2.1) and (2.2) , we have 

                  

1

0
0

( , ) [1 (1 )] ( , )

[1 (1 )] ( , )

n n n

n

k
k

d x p d x p

d x p

α δ

α δ

+

=

≤ − −
− − − − − −

≤ − −∏

 

                                  
(1 )

0( , ).
k

k oe d x p
δ α

∞

=

− − ∑
≤                                       

(2.3) 

Since 0 1,δ≤ < [0,1]kα ∈  and 
0

,n
n
α

∞

=

= ∞∑  so 

0

(1 )

0
k

ke
δ α

∞

=

− − ∑
→  as .n →∞  Hence, it follows from 

(2.3) that 1lim ( , ) 0.nn
d x p+→∞

=  Therefore 0{ }n nx ∞
=  

converges strongly to .p  Hence the result. 

Theorem 2.3. Let ( , , )X d W  be a complete  convex 

metric  space  and :T X X→  a mapping satisfying 

contractive condition (1.6). Suppose that T has a 

fixed point p. For 0 ,x X∈  let Ishikawa iterative 

scheme  0{ }n nx ∞
=  be defined by (1.4), where 

, [0,1]n nα β ∈  such that 0 .nα α< ≤  Then the 

Ishikawa iterative scheme is T-stable. 

Proof. Suppose that 0{ }n ny X∞
= ⊂  is an arbitrary 

sequence in X and define 

1( , (y , , ))n n n n nd y W Tqε α+=  where   

( , , ).n n n nq W y Ty γ=  

   Let lim 0.nn
ε

→∞
=  Then by using contractive 

condition (1.6), we shall prove that lim .nn
y p

→∞
=    

Using triangle inequality we have  

1 1( , ) ( , (y , , )) ( (y , , ), )n n n n n n n nd y p d y W Tq d W Tq pα α+ +≤ +
 

                      

(1 ) (y , ) ( , )n n n n nd p d Tq Tpε α α≤ + − +  

                     

(1 ) (y , ) (q , )n n n n nd p d pε α α δ≤ + − +                                           

(2.4) 

For the estimate of (q , )nd p  in (2.4), we get  

(q , ) ( (y , , ), )n n n nd p d W Ty pβ=  

                  (1 ) (y , ) ( , )n n n nd p d Ty Tpβ β≤ − +  
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+
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                  (1 ) (y , ) ( , )n n n nd p d y pβ β δ≤ − +                                                         

(2.5)                                                                                              

Substituting (2.5) into (2.4), we get 

1( , ) (1 )d(y ,p)
[(1 )d(y ,p) ( , )]

n n n n

n n n n n

d y p
d y p

ε α
α δ β β δ

+ ≤ + −
+ − +

                   

                

[(1 (1 ) (1 )]d(y ,p)n n n n nε δ α α β δ δ= + − − − −                                

(2.6) 

Observe that, 0 (1 (1 )) 1α δ≤ − − <  

Therefore, taking the limit as n →∞  on both sides 

of the inequality (2.6), and using Lemma 2.1, we get  

lim ( , ) 0nn
d y p

→∞
= , that is lim .nn

y p
→∞

=  

Conversely, let lim .nn
y p

→∞
=

 
So, 

1( , (y , , ))n n n n nd y W Tqε α+=  

      1( , ) ( (y , , ), )n n n nd y p d W Tq pα+≤ +  

        

1( , ) (1 ) (y , ) ( , ).n n n n nd y p d p d Tq Tpα α+≤ + − +
 

         

1( , ) (1 (1 ))d(y ,p) 0n nd y p α δ+≤ + − − → as

.n →∞  

Hence the proof. 

Remark 2.4. As   Mann iterative scheme is a special 

case of Ishikawa  iterative scheme, convergence and 

stability results for Mann iterative scheme  in 

convex metric spaces can be proved similar to 

Theorem 2.2 and Theorem 2.3 . 
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