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ABSTRACT In this paper we use He’s Homotopy perturbation method is applied to solve a system of linear ordinary dif-
ferential equations of the first order and some first order non-linear ordinary differential equations like Abelian 

differential equations. The method yields solutions in convergent series form with easily computable terms. The result 
shows that these methods are very convenient and can be applied to a large class of problems. Some numerical examples 
are given to the effectiveness of the method. Our analytical results are compared with the numerical results and a satisfac-
tory agreement is noted.
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1.INTRODUCTION  
 
         A system of ordinary differential equations of 
the first order can be considered as [1-4]: 

( )
( )

( )nnn

n

n

yyxfy

yyxfy

yyxfy

,...,,

.

.

.
,...,

,...,

1
'

12
'

2

11
'

1

=

=

=

                                                   (1) 

where each equation represents the first derivative of 
one of the unknown functions as a mapping 
depending on the independent variable x, and n 
unknown functions nfff ,...,, 11 .Since every 

ordinary differential equation of order n can be 
written as a system consisting of n ordinary 
differential equation of order one, we restrict our 
study to a system of differential equations of the first 
order. 
        Linear and non-linear phenomena are of 
fundamental importance in various fields of science 
and engineering. Most models of real – life problems 
are still very difficult to solve. Therefore, 
approximate analytical solutions such as 
Homotopyperturbation method (HPM) [5-16] were 
introduced. This method is the most effective and 
convenient ones for both linear and non-linear 
equations. Perturbation method is based on assuming 
a small parameter. The majority of non-linear 
problems, especially those having strong non-
linearity, have no small parameters at all and the 
approximate solutions obtained by the perturbation 
methods, in most cases, are valid only for small 
values of the small parameter. Generally, the 
perturbation solutions are uniformly valid as long as a 
scientific system parameter is small. However, we 
cannot rely fully on the approximations, because 
there is no criterion on which the small parameter 
should exists. Thus, it is essential to check the 
validity of the approximations numerically and/or 
experimentally. To overcome these difficulties, HPM 
have been proposed recently. 
          Recently, many authors have applied the 
Homotopy perturbation method (HPM) to solve the 
non-linear boundary value problem in physics and 

engineering sciences [5-8]. Recently this method is 
also used to solve some of the non-linear problem in 
physical sciences [9-11]. This method is a 
combination of Homotopy in topology and classic 
perturbation techniques. Ji-Huan He used to solve the 
Light hill equation [8], the Diffusion equation [9] and 
the Blasius equation [10-11]. The HPM is unique in 
its applicability, accuracy and efficiency. The HPM 
uses the imbedding parameter p as a small parameter, 
and only a few iterations are needed to search for an 
asymptotic solution. 
 
2. Basic concepts of the Homotopy perturbation 
method [5-16] 
     To explain this method, let us consider the 
following function: 

   r      ,0)()( Ω∈=− rfuDo                                (A.1) 
with the boundary conditions of 

   r            ,0) ,( Γ∈=
∂
∂
n
uuBo                               (A.2) 

where oD  is a general differential operator, oB  is a 

boundary operator, )(rf  is a known analytical 
function and  Γ  is the boundary of the domain Ω . In 
general, the operator oD  can be divided into a linear 
part L  and a non-linear part N . Equation (A. 1) can 
therefore be written as 

 0)()()( =−+ rfuNuL                                        (A.3) 
By the Homotopy technique, we construct a 
Homotopy ℜ→×Ω ]1,0[:),( prv  that satisfies 
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where p∈ [0, 1] is an embedding parameter, and 0u   
is an initial approximation of eqn. (A.1) that satisfies 
the boundary conditions. From the eqns. (A.4) and 
(A.5), we have 

  0)()()0,( 0 =−= uLvLvH                                  (A.6) 

0)()()1,( =−= rfvDvH o                                    (A.7) 
When p=0, the eqns. (A. 4) and (A. 5) become linear 
equations. When p =1, they become non-linear 
equations. The process of changing p from zero to 
unity is that of 0)()( 0 =− uLvL  to 0)()( =− rfvDo

. We first use the embedding parameter p  as a 
“small parameter” and assume that the solutions of 
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the eqns. (A. 4) and (A. 5) can be written as a power 
series in p : 

 ...2
2

10 +++= vppvvv                                      (A.8) 
Setting 1=p   results in the approximate solution of 
the eqn. (A.1): 

...lim 2101
+++==

→
vvvvu

p         
(A.9) 

This is the basic idea of the HPM. 
 
3. Numerical examples 

        In this part we present three examples. The first 
example is considered to illustrate the method for 
solving a system of linear ordinary differential 
equations of orders one. While in the second and the 
third examples, we solve first order non-linear 
differential equations namely the Abelian differential 
equations. 
Example: 1 
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               (1.2)                                  

021
3 =+− yy

dx
dy

          
(1.3) 

with the initial conditions 
( ) 101 =y ( ) 002 =y and ( ) 203 =y            (1.4) 

We construct the Homotopy as follows: 
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The analytical solution of the eqn. (1.4) is 
...12

2
11101 +++= yppyyy          (1.8) 

Similarly the analytical solution of the eqns. (1.5)-
(1.6) as follows 

...22
2

21202 +++= yppyyy          (1.9) 

...32
2

31303 +++= yppyyy   (1.10) 
Substituting the eqn. (1.8) into an eqn. (1.5), we get 
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Substituting the eqn.  (1.9) into an eqn. (1.6), we get 
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Substituting the eqn. (1.10) into the eqn. (1.7), we get 
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Comparing the coefficients of like power p in the 
eqns.  (1.11)-(1.13), we get 
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The initial approximations are as follows 
1)0(10 =y ,  0)0(20 =y and 2)0(30 =y             (1.23) 
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Solving the eqns. (1.14)-(1.22) and using the initial 
conditions eqns. (1.23)-(1.24) we obtain the following 
results: 

1sin10 +−= xy          (1.25) 

xy 211 =          (1.26) 

12sin12 −−+= xexy x
        (1.27) 

120 +−= xey          (1.28) 

xy 221 =          (1.29) 

12sin22 −−+= xexy x
        (1.30) 

230 =y           (1.31) 

2cos31 −+= xexy                      (1.32) 

032 =y          (1.33) 

According to the HPM, we can conclude that 
   yppy)(lim 12

2
1110111 ++==
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yxyy

p       
(1.34) 
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2
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yxyy
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(1.35) 

  yppy)(lim 32
2

3130313 ++==
→

yxyy
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(1.36) 

After putting  the eqns. (1.25)-(1.27) into the eqn. 
(1.34),the eqns. (1.28)-(1.30)into the eqn. (1.35) and 
the eqns. (1.31)- (1.33) into the eqn.  (1.36) 
respectively, we obtain the solutions. 

( ) xexy =1          (1.37) 

( ) xxy sin2 =          (1.38) 

( ) xexxy += cos3         (1.39) 
Example: 2 
     Consider the following system of differential 
equations [3-4] 

01 3 =−+− yy
dx
dy

          
(2.1) 

with the initial condition 
( ) 00 =y              (2.2) 

We construct the Homotopy as follows: 
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The analytical solution of the eqn. (2.3) is 
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Substituting the eqn.(2.4) into the eqn. (2.3), we get 
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Comparing the coefficients of like power p in the eqn. 
(2.5), we get 

01: 00 =−
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0: 311 =−+ yy
dx
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The initial approximations are as follows 
( ) 00 =y            (2.8) 

( ) ,...3,2,1,001 == iy            (2.9) 
Solving the eqns. (2.6) and (2.7) and using the initial 
conditions in the eqns. (2.8)-(2.9) we obtain the 
following results: 
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According to the HPM, we can conclude that 
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After putting  the eqns. (2.10)-(2.11) into the eqn. 
(2.12) respectively, we obtain the solutions. 

( )
42

42 xxxxy +−=                      (2.13) 

Example: 3 
     Consider the following system of differential 
equations [3-4] 

0244 322 =−−−− yxxyxy
dx
dy

        
 (3.1) 

with the initial condition 
( ) 00 =y            (3.2)       

We construct the Homotopy as follows: 
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The analytical solution of the eqn. (3.3) is 
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Substituting the eqn.(3.4) into an eqn. (3.3), we get 
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Comparing the coefficients of like power p  in the 
eqn.  (3.5), we get 
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The initial approximations are as follows: 
( ) 00 =y                                                                 (3.8) 

( ) ,...3,2,1,001 == iy           (3.9)      
Solving the eqns. (3.6) and (3.7) and using the initial 
conditions the eqns. (3.8)-(3.9) we obtain the 
following results: 
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According to the HPM, we can conclude that 
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After putting  the eqns. (3.10)-(3.11) into the eqn. 
(3.12) respectively, we obtain the solutions. 

( ) 643

6
648

3
164 xxxxxy +++=

       
(3.13) 

 
Figure 1 (for example 2) 

 

 
 

Figure 2 (for example 3) 

 
                      
                     
4. Numerical simulation 
       The non-linear differential equations (2.1-2.2) 
and (3.1-3.2) are also solved by numerical methods 
using Matlab/Scilab software. Its numerical solution 
is compared with Homotopy perturbation method in 
Figs. (1) and (2) and it gives satisfactory result for the 
small rage of x. The Matlab/Scilab program is also 
given in Appendix (A). 
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5. Discussion and Conclusion 

       In example 1, we derived the exact solution of 
the system of first order ordinary linear differential 
equations. In example 2 and 3, we derived the 
approximate analytical solutions of the non-linear 
ordinary differential equations namely the Abelian 
differential equations. In this paper, He’s Homotopy 
perturbation method has been successfully applied to 
find the solution of the system of linear and non-
linear differential equations (Abelian differential 
equations) of the first order. The method is reliable 
and easy to use. The main advantage of the method is 
the fact that it provides its user with an analytical 
approximation, in many cases an exact solution, in a 
rapidly convergent sequence with elegantly computed 
term. The HPM is an extremely simple compared to 
other method and it is also a promising method to 
solve other non-linear differential equations. This 
method can be easily extended to find the solution of 
all other strongly non-linear differential equations. 
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