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L:33) VXY |n this paper, we obtain the general solution of a new generalized quadratic functional equation
S+ y)+ f(nx=y) = fx+p)+ f(x=p) +2(n* =1) [(x)

in paranormed spaces for n # *1 , n is an integer. Also we investigate the Hyers - Ulam stability of this functional equation.

INTRODUCTION

The stability problem of functional equation
originated from a question of S.M. Ulam
[17]. In 1940, S. M. Ulam gave the
following question concerning the stability
of homomorphisms: Under what Condition
does there exist a homomorphism near an
approximate homomorphism?. In 1941, D.H.
Hyers [9] answered the problem of Ulam
under the assumption that the groups are
Banach spaces. In 1950 T. Aoki [1]
generalized the Hyers theorem for additive
mappings. In 1978, Th.M. Rassias [12]
provided a generalized version of the
theorem of Hyers which permitted the
Cauchy difference to become unbounded,

where f:X —Y satisfies the inequality

£ e+ = 1= rn|=e(x|"|»]") forall x,
yveX forsome 0 >0and 0 <p < 1. In 1982-
1989, J.M. Rassias [13] gave a further
generalization of the result of D.H. Hyers by

proving the following theorem (1.1) using

weaker conditions controlled by a product of
different powers of norms.

Theorem 1.1. Let [ : E — E' be a mapping

from a normed vector space E in to a

Banach Space E' subject to the inequality
|G+ == r|=e|xl|? [y for all xEE

times where & and p are constants

1
with & > 0 and OSP<E. Then the

limit L(x)=1im% exists for all

n—»o0

xe€ FE and L:E—>E' is the unique

additive mapping which satisfies
|lf 0 — L < #nxn“’ for all x € E.

Moreover, if f(tx) is continuous in t for each
fixed x €X, then the function L is linear.

In 1990, Th.M.Rassias asked whether
such a theorem can also be proved for p > /.
In 1991, Gajda [7] gave an affirmative
solution to this question when p > 7, but it
was proved by Gajda and Rassias and Semrl
that one cannot prove an analogous theorem

when p = 1. In 1994, a generalization was
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obtained by Gavruta [8] who replaced the
bound 8(”)6”p +“pr) by a general control

function ¢(x, y). In 1996, Isac and Th.M.
Rassias were the first to provide applications
of stability theorem of functional equations.
A generalized Hyers-Ulam stability
problem for the quadratic functional
equation was proved by Skof [15] for

mappings f:X —Y where X is a normed

space and Y is a Banach Space. Cholewa [2]
noticed that the theorem of Skof is still true
if the relevant domain X is replaced by an
abelian group. In 1992, Czerwik [5] proved
the generalized Hyers-Ulam stability of the
quadratic functional equation. In 2008, J.M.
Rassias [13] introduced mixed type product-
sum of powers of norms. Recently, Ch. Park
[3] and D.Y. Shin [3] proved the Hyers-
Ulam stability of the Cauchy additive,
quadratic, cubic and the quartic functional
equation in paranormed spaces. C. Park

proved the Hyers-Ulam stability of an
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additive-quadratic-cubic-quartic ~ functional
equation

Sx+20)+ f(x=2y)=4f(x+y)+4f(x-y)
=6f(0)+ f2y)+ f(=2y)-4f(y)-4f(-y)

(1.1) in paranormed spaces using fixed point
method and direct method. K. Ravi, J.M.
Rassias and B.V. Senthil Kumar [11] proved
the Hyers-Ulam stability of the reciprocal

difference functional equation

xy) QW) .,
f( 2 j Tee= e

and adjoint functional equation

3/0fG)

13
S+ f() -

f[“Tyj+f<x+y>:

Now we recall some basic facts concerning
Frechet spaces. The concept of statistical
convergence for sequences of real numbers
was introduced by Fast[6] and Steinhaus[16]
independently and since then several
generalization and  applications of this
notion have been investigated by various

authors. This notion was defined in normed

spaces by E.Kolk.
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Definition 1.1: Let X be a vector space. A
paranorm P:X —[0,00)is a function on X
such that

(i) P(0)=0;

(it) P(-x)=P(x);

(iii) P(x+y) <P(x)+P(y)(triangle inequality);
(iv) if {t } is a sequence of scalars with
t >t and {x,}cXwithP(x,—x)—>0,

then  P(t x —tx)—>0  (continuity of
multiplication). The pair (X, P) is called a
paranormed space, if P is a paranorm on X.
The paranorm is total if, in addition, we have
(v) P(x)=0 implies x=0. A Frechet space is a

total and complete paranormed space.

Throughout this paper, assume that (X, P) is

|

a Frechet space and that (Y,

) is a Banach

space.

In this paper, we investigate the
generalized Hyers-Ulam stability of the
functional equation

fnx+y)+ fnx-y)

(1.4)
= f(x+ )+ f(x=y)+2n’=1) f(x)

in paranormed spaces.
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2. GENERAL SOLUTION
The following theorem provides the general
solution of the functional equation (1.4) by
establishing a connection with the classical

quadratic functional equation.

Theorem 2.1. Let X and Y be real vector

spaces. A function f : X — Y satisfies the
functional equation

f(nx+y)+ f(nx—y) 20
= f(x+ )+ f(x—p)+2An’=1) f(x)

for all x, y € X if and only if it satisfies the
quadratic functional equation

SO+ +f(x=-y)=2f(0)+2/(y) (2.2)
forallx €X.

Proof. Suppose a function f:X oY
satisfies (2.1). Setting (x, y) = (0, 0) in (2.1),
we obtain f(0)=0. Setting (x, y) = (x, 0) in
(2.1), we obtain 2f{nx) = 2f(x)+ 2n’f(x) -
2f(x) which gives f{nx) = n’f{x) for all x €X
where 7 is a positive integer. Setting (x, y) =

(x, 2x) in (2.1), we get f(x) = f(-x) for all x, y
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€ X. Setting (x, y) = (x, x + y) in (2.1), we
obtain

f(n+Dx+y)+ f((n=T)x~y)

2.3)
=[x+ )+ f(y)+2/(nx) =2 f(x).

. Again, setting (x,y)=(x,-y) in (2.3), we
obtain

J((n+Dx=y)+ f((n=Dx+y)

(2.4)
=fQRx=y)+ f(»)+2f(nx) =2 f(x).

Adding (2.3) and (2.4). we obtain

F e s FO-Dre s F-bren)
f(n=1x-) = fQx+ )+ fQx-y)+27 () (2)
+4f(nx)-4f(x).

. Setting n = n-1 in (2.1), we obtain

f((n+Dx+y)+ f((n-1)x-y)
=f(x+ )+ fx=p)+2f((n-1)x) (2.6)
-2 f(x).

Putting n=21n (2.1), we get

f(@x+y)+f(2x-y) 2.7)
=[x+ )+ f(x=y)+2f(2x) =2 f (x).
Substituting(2.6) and (2.7) in (2.5), we

obtain

f((+Dx+)+ f(n+Dx-y)
=2f(»)+4f(nx)-4f(x)-2f((n-1)x) (2.8)
+21(2x).

Putting y = 0 in (2.8), we get

2f(n+D)x)=4f(nx)-4f(x)-2f((n-1)x) 2.9)
+21(2x). '
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Substituting(2.9) in (2.8), we obtain

f((+Dx+p)+ f((nt+1)x-y) (210)
=2f(y)+2f((n+1)x).

Setting ((n + 1)x, y) = (x, y) in equation
(2.10), we get

ey +f(x=y)=2/()+2/ ().

Conversely, suppose that a function
f:X Y satisfies (2.2). Putting (x, y) =
(0, 0) in equation (2.2), we obtain £{0) = 0.
Setting x = 0 in (2.2) we obtain f(-y) = f{y).
Setting (x, y) = (x, x) in equation (2.2), we
obtain f{2x) = 4f(x). Again setting (x, y) = (x,
2x) 1n equation (2.2), we get f(3x) = 9f(x).
Setting (x, y) = (x, (n-1)x) in equation (2.2),
we obtain f{nx) = n’f(x) for all positive
integer n. Setting (x, y) = (nx +y, nx - y) in
equation (2.2), we get

f(nx+y+nx—-y)+ f(nx+y—-nx+y) @.11)
=2f(nx+y)+2f(nx—-y) .

which gives

Fla+ )+ f(n-y)
=;[f(2nX)+f(2y)]
20 (1) +2/(7)
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=2n" f(x) =2/ (X)+ 2/ (x)+ 21 (»)

=2(n" =) f()+2f () +2f(») (2.12)

Substituting (2.2) in (2.12), we obtain

J(nx+y)+ f(nx=y)
=[x+ )+ f(x=p)+2An’~1) f(x)

3. GENEALIZED  HYERS-ULAM
STABILITY

The following theorem gives a general
condition for which a true quadratic function

exists near an approximately quadratic

function. Let us denote

Df(x,y) = f(nx+y)+ f(nx—y)— f(x+)
- f(x=y)=2@*-1) f(x).

Theorem 3.1. Let r be a positive real

number with r<2,andlet f: X —>Y be

a mapping satisfying f(0)=0 and

Hf(HX+;v)+f(nx—y)—f(x+y)
—flx=y)=2An’ =1) f(x)
<P(x) +P()  (3.0)

for all x, y € X. Then there exists a unique

quadratic mapping Q:X — Y such that

I ,‘
|/ (x)-0)| < WP(X) (3.2)

forall xeX.
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Proof. Setting y = 0 in (3.1), we obtain
[ )= £ ()] < - PG

Dividing the above inequality by n’, we get

‘ / (’jx) P(x) (3.3)
n

for all xeX.
Replacing x by nx and dividing by n’, we

obtain

1/ (” ) f ) " P(x)’. (34)

Adding(3.3) and (3.4), we obtain
Hﬂj’“)— f(x)H s%(u”—;]P(x)f. (3.5)
n 2n n

Generalizing, we get

m—1 Ik

Z —P(x)  (3.6)

Hf D) £yl <
n

for every positive integer n, m and for all
x € X. Replacing x by »* and dividing by

n’s in equation (3.6), we obtain

f (n’"+SX)
I’l

= f(n'x)

"2 3.7)

m-1  rk

n

v(2 r)+2 2k
k=01

P(x).

By condition » < 2, the right hand side of

(3.7) approaches 0 as s —» oo for all x€ X.
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Thus the sequence {M

n2m

} is a cauchy

sequence. Since X is complete, we can

define a mappingQ: X — Y such that

0(x) = 11m{f (n” x)} (3.8)

m—

for all x € X. Now we claim that the
mapping Q: X — Y is a quadratic which

satisfies the equation (2.1). Setting (x, x) =
(n"x, n"'y) in equation (3.1) respectively and

dividing by n”", we obtain

[ D (" x,n" y)|
T (3.9)
< im (P(n’"x)r +P(n'"y)’)

n

It follows that from (3.1) that
Qnx+y) +Q(nx = y) = O(x + y)
~0(x~y)=2n* =1)Q(x)

| J (" (nx+ )+ f(n" (nx = y)
—hmnT = (" (x+ )= f (" (x =)
=2n* =1) f(n" (x))

(P +POY)

< lim

m—o0 n

=0.

which gives

Q(nx + )+ Q(nx - y) = 0(x + y) + O(x - y)
+2(n* =1)Q(x)

Volume : 4 | Issue : 3 | Mar 2014 | ISSN - 2249-555X

for all x, y € X and so the mapping
Q: X — 7Y is quadratic. By taking the limit

as m — oo in equation (3.6), we obtain

1 r
||f(x) - Q(x)" < WP(X)

forall x €X.
Now, let T: X — Y be another quadratic
mapping satisfying the equation (3.2). Then

we have

1 (e - £+
[0 -7 (x)ll— i

|f (") =T (")

1
(n2 _ nr )nm(2—r)

IA

P(xy  (3.10)

By condition (3.1), the right hand side of
equation (3.9) approaches 0 as m — . We
conclude that Q(x) = T(x) for all x € X. This
proves the uniqueness of Q.

Thus the mappingQ:X —»Y is unique

quadratic mapping satisfying (3.2).

Theorem 3.2. Let », € be positive real
numbers with  »>2andlet f:Y—> X bea

mapping satisfying f{0)=0 and
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P[f(nﬁy)+f(nx—y)—f(x+y)J
- flx=y)-2An* =D f(x)
Sﬁ(x

+ y") (G.11)

for all x, y € Y. Then there exists a unique

quadratic mapping Q:Y — X such that

P(f(x)-0Q(x))< ||X|| (3.12)

forall x €Y.

Proof: Letting y = 0 in (3.1), we get
e
P(f(nx)-n’ f(x))SE"x” (3.13)

forall x €Y.

Dividing by n° on both sides,

P(iz £ (nx)— f(x)jﬁiznxur (3.14)
n 2n

forallx €Y.

Replacing x by % and multiply both sides

by n’ in (3.14), we obtain

P(f(x)—nzf(%)JSi (3.15)

forallx €Y.
Again Replacing x by> and multiply both
n

sides by 77 in equation (3.15), we obtain
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P(nzf(%) f(—)j 616

Combining (3.15) and (3.16) we obtain,

x’[uﬁ] (3.17)

which can be extended by mathematical

P(f(x) - M(%))s ;r

induction on m, we obtain

X (3.18)

P(f(x)—n“f<nim>js2%mz_zk,

for every positive integer m >/ and for all x

€ Y . We have to show that the sequence

{—f (’;x) } converges for all x € Y. For every
-

positive integer m and s, replacing x by

isand multiplying by n”* on both sides in
n

(3.18), we obtain

P(f(n%)n” —nf(ni)j

m—1

20D Z

(3.19)

By condition (3.12), the right-hand side

approaches 0 as s — o for all x € X. Thus,

the sequence {nz’” f (i’”j} is a Cauchy
n

sequence for all x € Y, Since X is complete,
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the sequence {n” f (i’”)} converges. So
n

we can define the mapping Q:V — X by

0(x) = hm{ f(nx J}

for all x €Y. Now we claim that the mapping

(3.20)

Q:Y — Xis a quadratic which satisfies the
equation (3.11). Setting (x, y) = (0" x, n" y)
in equation (3.11) respectively and dividing

2 .
by n”™", we obtain

Df(n x,n y) 9(
n2m

.
n"x|| +

"y ) (3.21)

2
n m

it follows from (3.11)that

P[Q(nx + )+ Q(nx—y) = O(x + y)}
~0(x=y)=2An" -DO(x)

f(l’lX‘l'yj f[}’lx—yj_f(X‘l'y
< limn*" P 4
m-—o0 x
( e
n

<limn® 0 Y j

.0 )
Sil_{l;lo nm(rZ)( y )
0,

for all x, y €Y. Hence

O(nx +y) + Q(nx = y) = O(x + y) + O(x — y)
+2(n” =1)Q(x)

for all x, y € Y and so the mapping

|
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Q:Y - X is quadratic. By taking the limit

asm— o in (3.19) and using (3.20), we

obtain

P(f(x)-0(x))< || I

Now let T:Y — X be another quadratic

satisfying  (3.12), then we

mapping

have

<n
A=)
n n
g r
(n" —n*)n
0
(n" —n’)n

which tends to 0 as m — oo forallx €Y. So
we can conclude Q(x) = T(x) for all x € Y.
This proves the uniqueness of Q. Thus the
mapping Q:Y - X is a unique quadratic

mapping satisfies (3.12).
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