Generalized Hyers - Ulam Stability of Quadratic Functional Equation in Paranormed Spaces

KEYWORDS

Prof. Dr. K. Ravi

UG Head and Associate Professor, PG \& Research Department of Mathematics, Sacred Heart College, Tirupattur - 635 601. Vellore District. Tamilnadu.

A. Edwin Raj

Assistant Professor, PG \& Research Department of Mathematics, St.Joseph's College of Arts \& Science, Manjakuppam, Cuddalore - 607 001, Tamilnadu.

ABSTRACT

In this paper, we obtain the general solution of a new generalized quadratic functional equation $f(n x+y)+f(n x-y)=f(x+y)+f(x-y)+2\left(n^{2}-1\right) f(x)$
in paranormed spaces for $n \neq \pm 1, n$ is an integer. Also we investigate the Hyers - Ulam stability of this functional equation.

INTRODUCTION

The stability problem of functional equation originated from a question of S.M. Ulam [17]. In 1940, S. M. Ulam gave the following question concerning the stability of homomorphisms: Under what Condition does there exist a homomorphism near an approximate homomorphism?. In 1941, D.H. Hyers [9] answered the problem of Ulam under the assumption that the groups are Banach spaces. In 1950 T. Aoki [1] generalized the Hyers theorem for additive mappings. In 1978, Th.M. Rassias [12] provided a generalized version of the theorem of Hyers which permitted the Cauchy difference to become unbounded, where $f: X \rightarrow Y$ satisfies the inequality $\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}\|y\|^{p}\right) \quad$ for all x, $y \in X$ for some $\theta \geq 0$ and $0 \leq \mathrm{p}<1$. In 19821989, J.M. Rassias [13] gave a further generalization of the result of D.H. Hyers by proving the following theorem (1.1) using
weaker conditions controlled by a product of different powers of norms.

Theorem 1.1. Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E in to a Banach Space E^{\prime} subject to the inequality $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\|x\|^{p}\|y\|^{p}$ for all $x \in E$ times where ε and p are constants with $\varepsilon>O$ and $0 \leq p<\frac{1}{2}$. Then the limit $L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\|f(\mathrm{x})-\mathrm{L}(\mathrm{x})\| \leq \frac{\varepsilon}{2-2^{2 p}}\|x\|^{2 p} \text { for all } x \in E
$$

Moreover, if $f(t x)$ is continuous in t for each
fixed $x \in X$, then the function L is linear.
In 1990, Th.M.Rassias asked whether such a theorem can also be proved for $p \geq 1$. In 1991, Gajda [7] gave an affirmative solution to this question when $p>1$, but it was proved by Gajda and Rassias and Semrl that one cannot prove an analogous theorem when $p=1$. In 1994, a generalization was
obtained by Gavruta [8] who replaced the bound $\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\varphi(x, y)$. In 1996, Isac and Th.M. Rassias were the first to provide applications of stability theorem of functional equations.

A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [15] for mappings $f: X \rightarrow Y$ where X is a normed space and Y is a Banach Space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an abelian group. In 1992, Czerwik [5] proved the generalized Hyers-Ulam stability of the quadratic functional equation. In 2008, J.M. Rassias [13] introduced mixed type productsum of powers of norms. Recently, Ch. Park [3] and D.Y. Shin [3] proved the HyersUlam stability of the Cauchy additive, quadratic, cubic and the quartic functional equation in paranormed spaces. C. Park proved the Hyers-Ulam stability of an
additive-quadratic-cubic-quartic functional equation

$$
\begin{aligned}
& f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y) \\
& \quad-6 f(x)+f(2 y)+f(-2 y)-4 f(y)-4 f(-y)
\end{aligned}
$$

(1.1) in paranormed spaces using fixed point method and direct method. K. Ravi, J.M. Rassias and B.V. Senthil Kumar [11] proved the Hyers-Ulam stability of the reciprocal difference functional equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)-f(x+y)=\frac{f(x) f(y)}{f(x)+f(y)} \tag{1.2}
\end{equation*}
$$

and adjoint functional equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)+f(x+y)=\frac{3 f(x) f(y)}{f(x)+f(y)} \tag{1.3}
\end{equation*}
$$

Now we recall some basic facts concerning Frechet spaces. The concept of statistical convergence for sequences of real numbers was introduced by Fast[6] and Steinhaus[16] independently and since then several generalization and applications of this notion have been investigated by various authors. This notion was defined in normed spaces by E.Kolk.

Definition 1.1: Let X be a vector space. A paranorm $P: X \rightarrow[0, \infty)$ is a function on X such that
(i) $P(0)=0$;
(ii) $P(-x)=P(x)$;
(iii) $P(x+y) \leq P(x)+P(y)$ (triangle inequality);
(iv) if $\left\{\mathrm{t}_{n}\right\}$ is a sequence of scalars with
$t_{n} \rightarrow t$ and $\left\{\mathrm{x}_{n}\right\} \subset \mathrm{X}$ with $P\left(x_{n}-x\right) \rightarrow 0$, then $\quad P\left(\mathrm{t}_{n} x_{n}-t x\right) \rightarrow 0 \quad$ (continuity of multiplication). The pair (X, P) is called a paranormed space, if P is a paranorm on X . The paranorm is total if, in addition, we have (v) $P(x)=0$ implies $x=0$. A Frechet space is a total and complete paranormed space. Throughout this paper, assume that (X, P) is a Frechet space and that $(\mathrm{Y}, \| \mid)$ is a Banach space.

In this paper, we investigate the generalized Hyers-Ulam stability of the functional equation

$$
\begin{align*}
& f(n x+y)+f(n x-y) \\
& \quad=f(x+y)+f(x-y)+2\left(n^{2}-1\right) f(x) \tag{1.4}
\end{align*}
$$

in paranormed spaces.

2. GENERAL SOLUTION

The following theorem provides the general solution of the functional equation (1.4) by establishing a connection with the classical quadratic functional equation.

Theorem 2.1. Let X and Y be real vector spaces. A function $f: X \rightarrow Y$ satisfies the functional equation

$$
\begin{align*}
& f(n x+y)+f(n x-y) \\
& \quad=f(x+y)+f(x-y)+2\left(\mathrm{n}^{2}-1\right) f(x) \tag{2.1}
\end{align*}
$$

for all $x, y \in X$ if and only if it satisfies the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
Proof. Suppose a function $f: X \rightarrow Y$ satisfies (2.1). Setting $(x, y)=(0,0)$ in (2.1), we obtain $f(0)=0$. Setting $(x, y)=(x, 0)$ in (2.1), we obtain $2 f(n x)=2 f(x)+2 n^{2} f(x)-$ $2 f(x)$ which gives $f(n x)=n^{2} f(x)$ for all $x \in X$ where n is a positive integer. Setting $(x, y)=$ $(x, 2 x)$ in (2.1), we get $f(x)=f(-x)$ for all x, y
$\in X$. Setting $(x, y)=(x, x+y)$ in (2.1), we obtain

$$
\begin{align*}
& f((n+1) x+y)+f((n-1) x-y) \tag{2.3}\\
& \quad=f(2 x+y)+f(y)+2 f(n x)-2 f(x)
\end{align*}
$$

Again, setting $(x, y)=(x,-y)$ in (2.3), we obtain

$$
\begin{align*}
& f((n+1) x-y)+f((n-1) x+y) \tag{2.4}\\
& \quad=f(2 x-y)+f(y)+2 f(n x)-2 f(x) .
\end{align*}
$$

Adding (2.3) and (2.4). we obtain

$$
\begin{align*}
f((n+1) x+y)+ & f((n-1) x+y)+f((n-1) x+y) \\
+f((n-1) x-y)= & f(2 x+y)+f(2 x-y)+2 f(y) \tag{2.5}\\
& +4 f(n x)-4 f(x) .
\end{align*}
$$

$$
\begin{equation*}
-2 f(x) \tag{2.6}
\end{equation*}
$$

Putting $n=2$ in (2.1), we get

$$
\begin{align*}
& f((2 \mathrm{x}+y)+f(2 x-y) \tag{2.7}\\
& \quad=f(x+y)+f(\mathrm{x}-y)+2 f(2 x)-2 f(x)
\end{align*}
$$

Substituting(2.6) and (2.7) in (2.5), we
obtain

$$
\begin{align*}
& f((\mathrm{n}+1) x+y)+f((\mathrm{n}+1) x-y) \\
& =2 f(y)+4 f(\mathrm{n} x)-4 f(x)-2 f((\mathrm{n}-1) x) \tag{2.8}\\
& \quad+2 f(2 x)
\end{align*}
$$

Putting $y=0$ in (2.8), we get

$$
\begin{align*}
2 f((\mathrm{n}+1) \mathrm{x})= & 4 f(\mathrm{n} x)-4 f(x)-2 f((\mathrm{n}-1) \mathrm{x}) \tag{2.9}\\
& +2 f(2 x)
\end{align*}
$$

Substituting(2.9) in (2.8), we obtain

$$
\begin{align*}
f((\mathrm{n}+1) x+y)+ & f((\mathrm{n}+1) x-y) \tag{2.10}\\
& =2 f(y)+2 f((\mathrm{n}+1) x) .
\end{align*}
$$

Setting $((n+1) x, y)=(x, y)$ in equation
(2.10), we get

$$
f(\mathrm{x}+\mathrm{y})+f(x-y)=2 f(x)+2 f(y) .
$$

Conversely, suppose that a function $f: X \rightarrow Y$ satisfies (2.2). Putting (x, y) $=$ $(0,0)$ in equation (2.2), we obtain $f(0)=0$. Setting $x=0$ in (2.2) we obtain $f(-y)=f(y)$.

Setting $(x, y)=(x, x)$ in equation (2.2), we obtain $f(2 x)=4 f(x)$. Again setting $(x, y)=(x$, $2 x)$ in equation (2.2), we get $f(3 x)=9 f(x)$.

Setting $(x, y)=(x,(n-1) x)$ in equation (2.2), we obtain $f(n x)=n^{2} f(x)$ for all positive integer n. Setting $(x, y)=(n x+y, n x-y)$ in equation (2.2), we get

$$
\begin{array}{r}
f(n x+y+n x-y)+f(n x+y-n x+y) \tag{2.11}\\
=2 f(n x+y)+2 f(n x-y)
\end{array}
$$

which gives

$$
\begin{aligned}
f(n x+y)+ & f(n x-y) \\
& =\frac{1}{2}[f(2 n x)+f(2 y)] \\
& =2 n^{2} f(x)+2 f(y)
\end{aligned}
$$

$$
\begin{align*}
& =2 n^{2} f(x)-2 f(x)+2 f(x)+2 f(y) \\
& =2\left(n^{2}-1\right) f(x)+(2 f(x)+2 f(y)) \tag{2.12}
\end{align*}
$$

Substituting (2.2) in (2.12), we obtain

$$
\begin{aligned}
f(n x+y) & +f(n x-y) \\
= & f(x+y)+f(x-y)+2\left(\mathrm{n}^{2}-1\right) f(x)
\end{aligned}
$$

3. GENEALIZED HYERS-ULAM

STABILITY

The following theorem gives a general condition for which a true quadratic function exists near an approximately quadratic function. Let us denote

$$
\begin{aligned}
D f(x, y)= & f(n x+y)+f(n x-y)-f(x+y) \\
& -f(x-y)-2\left(\mathrm{n}^{2}-1\right) f(x) .
\end{aligned}
$$

Theorem 3.1. Let r be a positive real number with $\quad r<2$, and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\|f(n x+y)+f(n x-y)-f(x+y)\| \text { } \begin{array}{r}
-f(x-y)-2\left(n^{2}-1\right) f(x) \\
\leq P(x)^{r}+P(y)^{r}
\end{array}
$$

for all $x, y \in X$. Then there exists a unique quadratic mapping $\mathrm{Q}: X \rightarrow Y$ such that
$\|f(x)-Q(x)\| \leq \frac{1}{2\left(n^{2}-n^{r}\right)} P(x)^{r}$
for all $x \in X$.

Proof. Setting $y=0$ in (3.1), we obtain

$$
\left\|f(n x)-n^{2} f(x)\right\| \leq \frac{1}{2} P(x)^{r}
$$

Dividing the above inequality by n^{2}, we get

$$
\begin{equation*}
\left\|\frac{f(n x)}{n^{2}}-f(x)\right\| \leq \frac{1}{2 n^{2}} P(x)^{r} \tag{3.3}
\end{equation*}
$$

for all $x \in X$.
Replacing x by $n x$ and dividing by n^{2}, we obtain
$\left\|\frac{f\left(n^{2} x\right)}{n^{4}}-\frac{f(x)}{n^{2}}\right\| \leq \frac{n^{r}}{2 n^{4}} P(x)^{r}$.
Adding(3.3) and (3.4), we obtain
$\left\|\frac{f\left(n^{2} x\right)}{n^{4}}-f(x)\right\| \leq \frac{1}{2 n^{2}}\left(1+\frac{n^{r}}{n^{2}}\right) P(x)^{r}$.

Generalizing, we get
$\left\|\frac{f\left(n^{m} x\right)}{n^{2 m}}-f(x)\right\| \leq \frac{1}{2 n^{2}} \sum_{k=0}^{m-1} \frac{n^{r k}}{n^{2 k}} P(x)^{r}$
for every positive integer n, m and for all $x \in X$. Replacing x by $n^{s x}$ and dividing by $n^{2} s$ in equation (3.6), we obtain

$$
\begin{align*}
& \frac{1}{n^{2 s}}\left\|\frac{f\left(n^{m+s} x\right)}{n^{2 m}}-f\left(n^{s} x\right)\right\| \tag{3.7}\\
& \quad \leq \frac{1}{2 n^{s(2-r)+2}} \sum_{k=0}^{m-1} \frac{n^{r k}}{n^{2 k}} P(x)^{r} .
\end{align*}
$$

By condition $r<2$, the right hand side of
(3.7) approaches 0 as $s \rightarrow \infty$ for all $x \in X$.

Thus the sequence $\left\{\frac{f\left(n^{m} x\right)}{n^{2 m}}\right\}$ is a cauchy sequence. Since X is complete, we can define a mapping $\mathrm{Q}: X \rightarrow Y$ such that

$$
\begin{equation*}
Q(x)=\lim _{m \rightarrow \infty}\left\{\frac{f\left(n^{m} x\right)}{n^{2 m}}\right\} \tag{3.8}
\end{equation*}
$$

for all $x \in X$. Now we claim that the mapping $\mathrm{Q}: X \rightarrow Y$ is a quadratic which satisfies the equation (2.1). Setting $(x, x)=$ ($n^{m} x, n^{m} y$) in equation (3.1) respectively and dividing by $n^{2 m}$, we obtain

$$
\begin{align*}
& \left\|\frac{D\left(f\left(n^{m} x, n^{m} y\right)\right)}{n^{2 m}}\right\| \tag{3.9}\\
& \quad \leq \frac{1}{n^{2 m}}\left(P\left(n^{m} x\right)^{r}+P\left(n^{m} y\right)^{r}\right)
\end{align*}
$$

It follows that from (3.1) that

$$
\left\|\begin{array}{c}
\mathrm{Q}(n x+y)+Q(n x-y)-Q(x+y) \\
-Q(x-y)-2\left(n^{2}-1\right) \mathrm{Q}(x)
\end{array}\right\|
$$

$$
=\lim _{m \rightarrow \infty} \frac{1}{n^{2 m}}\left\|\begin{array}{c}
f\left(n^{m}(n x+y)\right)+f\left(n^{m}(n x-y)\right) \\
-f\left(n^{m}(x+y)\right)-f\left(n^{m}(x-y)\right) \\
-2\left(n^{2}-1\right) f\left(n^{m}(x)\right)
\end{array}\right\|
$$

$$
\leq \lim _{m \rightarrow \infty} \frac{1}{n^{m(2-r)}}\left(P(x)^{r}+P(y)^{r}\right)
$$

$$
=0 \text {. }
$$

which gives

$$
\begin{aligned}
\mathrm{Q}(n x+y)+Q(n x-y) & =Q(x+y)+Q(x-y) \\
& +2\left(n^{2}-1\right) \mathrm{Q}(x)
\end{aligned}
$$

for all $x, y \in X$ and so the mapping $\mathrm{Q}: X \rightarrow Y$ is quadratic. By taking the limit as $m \rightarrow \infty$ in equation (3.6), we obtain

$$
\|f(x)-Q(x)\| \leq \frac{1}{2\left(n^{2}-n^{r}\right)} P(x)^{r}
$$

for all $x \in X$.

Now, let $\mathrm{T}: X \rightarrow Y$ be another quadratic mapping satisfying the equation (3.2). Then we have

$$
\begin{gather*}
\|Q(x)-T(x)\| \leq \frac{1}{n^{2 m}}\binom{\left\|Q\left(n^{m} x\right)-f\left(n^{m} x\right)\right\|+}{\left\|f\left(n^{m} x\right)-T\left(n^{m} x\right)\right\|} \\
\leq \frac{1}{\left(n^{2}-n^{r}\right) n^{m(2-r)}} P(x)^{r} \tag{3.10}
\end{gather*}
$$

By condition (3.1), the right hand side of equation (3.9) approaches 0 as $m \rightarrow \infty$. We conclude that $Q(x)=T(x)$ for all $x \in X$. This proves the uniqueness of Q .

Thus the mapping $\mathrm{Q}: X \rightarrow Y$ is unique quadratic mapping satisfying (3.2).

Theorem 3.2. Let r, θ be positive real numbers with $\quad r>2$ and let $\mathrm{f}: \mathrm{Y} \rightarrow X$ be a mapping satisfying $f(0)=0$ and

$$
P\binom{f(n x+y)+f(n x-y)-f(x+y)}{-f(x-y)-2\left(n^{2}-1\right) f(x)}
$$

for all $x, y \in Y$. Then there exists a unique quadratic mapping $Q: \mathrm{Y} \rightarrow X$ such that

$$
\begin{equation*}
P(f(x)-Q(x)) \leq \frac{\theta}{2\left(n^{r}-n^{2}\right)}\|x\|^{r} \tag{3.12}
\end{equation*}
$$

for all $x \in Y$.

Proof: Letting $y=0$ in (3.1), we get
$P\left(f(n x)-n^{2} f(x)\right) \leq \frac{\theta}{2}\|x\|^{r}$
for all $x \in Y$.
Dividing by n^{2} on both sides,
$P\left(\frac{1}{n^{2}} f(n x)-f(x)\right) \leq \frac{\theta}{2 n^{2}}\|x\|^{r}$
for all $x \in Y$.

Replacing x by $\frac{x}{n}$ and multiply both sides by n^{2} in (3.14), we obtain
$P\left(f(x)-n^{2} f\left(\frac{x}{n}\right)\right) \leq \frac{\theta}{2 n^{r}}\|x\|^{r}$
for all $x \in Y$.

Again Replacing x by $\frac{x}{n}$ and multiply both sides by n^{2} in equation (3.15), we obtain
$P\left(n^{2} f\left(\frac{x}{n}\right)-n^{4} f\left(\frac{x}{n^{2}}\right)\right) \leq \frac{\theta n^{2}}{2 n^{2 r}}\|x\|^{r}$
Combining (3.15) and (3.16) we obtain,
$P\left(f(x)-n^{4} f\left(\frac{x}{n^{2}}\right)\right) \leq \frac{\theta}{2 n^{r}}\|x\|^{r}\left(1+\frac{n^{2}}{n^{r}}\right)$
which can be extended by mathematical induction on m, we obtain
$P\left(f(x)-n^{2 m} f\left(\frac{x}{n^{m}}\right)\right) \leq \frac{\theta}{2 n^{r}} \sum_{k=0}^{m-1} \frac{n^{2 k}}{n^{k r}}\|x\|^{r}$
for every positive integer $m \geq 1$ and for all x $\in Y$. We have to show that the sequence
$\left\{\frac{f\left(n^{s} x\right)}{n^{2 s}}\right\}$ converges for all $x \in Y$. For every positive integer m and s, replacing x by $\frac{x}{n^{s}}$ and multiplying by $n^{2 s}$ on both sides in (3.18), we obtain

$$
\begin{align*}
P\left(f\left(\frac{x}{n^{s}}\right) n^{2 s}\right. & \left.-n^{2 m+2 s} f\left(\frac{x}{n^{m+s}}\right)\right) \\
& \leq \frac{\theta}{2 n^{s(r-2)}} \sum_{k=0}^{m-1} \frac{n^{2 k}}{n^{r(k+1)}}\|x\|^{r} . \tag{3.19}
\end{align*}
$$

By condition (3.12), the right-hand side approaches 0 as $s \rightarrow \infty$ for all $x \in X$. Thus, the sequence $\left\{n^{2 m} f\left(\frac{x}{n^{m}}\right)\right\}$ is a Cauchy sequence for all $x \in Y$, Since X is complete,
the sequence $\left\{n^{2 m} f\left(\frac{x}{n^{m}}\right)\right\}$ converges. So we can define the mapping $Q: Y \rightarrow X$ by $Q(x)=\lim _{m \rightarrow \infty}\left\{n^{2 m} f\left(\frac{x}{n^{m}}\right)\right\}$
for all $x \in Y$. Now we claim that the mapping $Q: Y \rightarrow X$ is a quadratic which satisfies the equation (3.11). Setting $(x, y)=\left(n^{m} x, n^{m} y\right)$ in equation (3.11) respectively and dividing by $n^{2 m}$, we obtain
$P\left(\frac{D f\left(n^{m} x, n^{m} y\right)}{n^{2 m}}\right) \leq \frac{1}{n^{2 m}} \theta\left(\left\|n^{m} x\right\|^{r}+\left\|n^{m} y\right\|^{r}\right)$
it follows from (3.11)that
$P\binom{Q(n x+y)+Q(n x-y)-Q(x+y)}{-Q(x-y)-2\left(n^{2}-1\right) Q(x)}$
$\leq \lim _{m \rightarrow \infty} n^{2 m} P\binom{f\left(\frac{n x+y}{n^{m}}\right)+f\left(\frac{n x-y}{n^{m}}\right)-f\left(\frac{x+y}{n^{m}}\right)}{-f\left(\frac{x-y}{n^{m}}\right)-2\left(n^{2}-1\right) f\left(\frac{x}{n^{m}}\right)}$
$\leq \lim _{m \rightarrow \infty} n^{2 m} \theta\left(\left\|\frac{x}{n^{m}}\right\|^{r}+\left\|\frac{y}{n^{m}}\right\|^{r}\right)$
$\leq \lim _{m \rightarrow \infty} \frac{\theta}{n^{m(r-2)}}\left(\|x\|^{r}+\|y\|^{r}\right)$
$=0$.
for all $x, y \in Y$. Hence
$Q(n x+y)+Q(n x-y)=Q(x+y)+Q(x-y)$

$$
+2\left(n^{2}-1\right) Q(x)
$$

for all $x, y \in Y$ and so the mapping
$Q: Y \rightarrow X$ is quadratic. By taking the limit as $m \rightarrow \infty$ in (3.19) and using (3.20), we obtain

$$
P(f(x)-Q(x)) \leq \frac{\theta}{2\left(n^{r}-n^{2}\right)}\|x\|^{r} .
$$

Now let $\mathrm{T}: Y \rightarrow X$ be another quadratic mapping satisfying (3.12), then we have

$$
\left.\begin{array}{l}
P(Q(x)-T(x))=P\left(n^{2 m}\left(Q\left(\frac{x}{n^{m}}\right)-T\left(\frac{x}{n^{m}}\right)\right)\right) \\
\quad \leq n^{2 m} P\left(Q\left(\frac{x}{n^{m}}\right)-T\left(\frac{x}{n^{m}}\right)\right) \\
\quad \leq n^{2 m}\left(P\left(Q\left(\frac{x}{n^{m}}\right)-f\left(\frac{x}{n^{m}}\right)\right)+\right) \\
P\left(T\left(\frac{x}{n^{m}}\right)-f\left(\frac{x}{n^{m}}\right)\right)
\end{array}\right)
$$

which tends to 0 as $m \rightarrow \infty$ for all $x \in Y$. So we can conclude $Q(x)=T(x)$ for all $x \in Y$. This proves the uniqueness of Q . Thus the mapping $Q: Y \rightarrow X$ is a unique quadratic mapping satisfies (3.12).
[1] Aoki, T, on the stability of the linear | transformation in Banach spaces. J. | Math. Soc. Japan 2, 6466 (1950). | [2] P.W. Cholewa, Remarks on the stability | of functional equations, Aequationes | Math., 27 (1984), 76-86. | [3] Ch. Park and D.Y. Shin, Functional| equations in paranormed spaces, Adv. | Differences equations, 2012, 2012:123 | (23 pages). | [4] Ch. Park, Stability of an AQCQ-| functional equation in paranormed | space, Adv. Differences equations, | 2012, 2012:148 (19 pages). | [5] Czerwik. P, Functional Equations and | Inequalities in Several Variables. World | Scientific Publishing Company, New Jersey, Hong Kong, Singapore and | London (2002). | [6] Fast, H, Sur la convergence statistique. | Colloq. Math. 2, 241244 (1951). | [7] Z. Gajda, On the stability of additive | mapping, Inter. J. Math. Math. Sci., 14 (1991), 431-434. | [8] P. Gavruta, A generalization of the | Hyers-Ulam-Rassias Stability of | approximately additive mapping, J. | Math. Anal. Appl., 184 (1994), $431-\mid 436$. | [9] D.H. Hyers, On the stability of the linear | functional equation, Proc. Natl. Acad. | Sci. U.S.A., 27 (1941), 222-224. | [10] D.H. Hyers, G. Isac and Th.M. Rassias, | Stability of Functional Equations in | Several Variables, Birkhauser, Basel, | 1998. | [11] K. Ravi, J.M. Rassias and B.V. Senthil | Kumar, Ulam stability of Reciprocal | Difference and Adjoint Funtional | Equations, The Australian J. Math. | Anal. Appl. 8(1), Art.13 (2011), 1-18. [12] Th.M. Rassias, On the stability of the | linear mapping in Banach spaces, Proc. | Amer. Math. Soc., 72 (1978), 297-300. | [13] J.M. Rassias, On approximately of | approximately linear mappings by linear | mappings, J. Funct. Anal. USA, | 46 (1982) 126-130. | [14] Th.M. Rassias and Semrl, P, On the | behaviour of mappings which do not | satisfy Hyers- Ulam stability. Proc. | Amer. Math. Soc. 114, 989993 (1992). | [15] F. Skof, Proprieta locali e | approssimazione di operatori, Rend. | Sem. Mat. Fis. Milano, 53 (1983), 113|-129. |[16] Steinhaus, H, Sur la convergence | ordinaire et la convergence | asymptotique. Colloq. Math. 2, 7334| (1951). | [17] S.M. Ulam, A Collection of the | Mathematical Problems. Interscience | Publ. New York (1960). |

