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ABSTRACT In this paper, we obtain the general solution of a new generalized quadratic  functional equation
2( ) ( ) ( ) ( ) 2( 1) ( )f nx y f nx y f x y f x y n f x+ + − = + + − + −

in paranormed spaces for 1n ≠ ±  , n is an integer. Also we investigate the Hyers - Ulam stability of this functional equation. 

INTRODUCTION 

The stability problem of functional equation 

originated from a question of S.M. Ulam 

[17]. In 1940, S. M. Ulam gave the 

following question concerning the stability 

of homomorphisms: Under what Condition 

does there exist a homomorphism near an 

approximate homomorphism?. In 1941, D.H. 

Hyers [9] answered the problem of Ulam 

under the assumption that the groups are 

Banach spaces. In 1950 T. Aoki [1] 

generalized the Hyers theorem for additive

mappings. In 1978, Th.M. Rassias [12] 

provided a generalized version of the 

theorem of Hyers which permitted the 

Cauchy difference to become unbounded, 

where :f X Y→ satisfies the inequality 

( ) ( ) ( ) ( )p pf x y f x f y x yθ+ − − ≤ for all x, 

y∈ X for some θ ≥ 0 and 0 ≤ p < 1. In 1982-

1989, J.M. Rassias [13] gave a further 

generalization of the result of D.H. Hyers by 

proving the following theorem (1.1) using 

weaker conditions controlled by a product of 

different powers of norms.

Theorem 1.1. Let :f E E ′→ be a mapping 

from a normed vector space E in to a 

Banach Space E ′ subject to the inequality 

( ) ( ) ( ) p pf x y f x f y x yε+ − − ≤ for all x∈ E

times where ε and p are constants             

with ε > 0 and 
10
2

p≤ < . Then the       

limit (2 )( ) lim
2

n

nn

f xL x
→∞

= exists for all 

x∈ E and :L E E ′→ is the unique        

additive mapping which satisfies 

2
2(x) L(x)

2 2
p

pf xε
− ≤

−
for all x ∈ E.

Moreover, if f(tx) is continuous in t for each 

fixed  x ∈ X, then the function L is linear.

In 1990, Th.M.Rassias asked whether 

such a theorem can also be proved for p ≥ 1.

In 1991, Gajda [7] gave an affirmative 

solution to this question when p > 1, but it 

was proved by Gajda and Rassias and Semrl 

that one cannot prove an analogous theorem 

when p = 1. In 1994, a generalization was 
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obtained by Gavruta [8] who replaced the 

bound ( )p px yε + by a general control 

function φ(x, y). In 1996, Isac and Th.M. 

Rassias were the first to provide applications 

of stability theorem of functional equations.

A generalized Hyers-Ulam stability 

problem for the quadratic functional 

equation was proved by Skof [15] for 

mappings :f X Y→ where X is a normed 

space and Y is a Banach Space. Cholewa [2] 

noticed that the theorem of Skof is still true 

if the relevant domain X is replaced by an 

abelian group. In 1992, Czerwik [5] proved 

the generalized Hyers-Ulam stability of the 

quadratic functional equation. In 2008, J.M. 

Rassias [13] introduced mixed type product-

sum of powers of norms. Recently, Ch. Park

[3] and D.Y. Shin [3] proved the Hyers-

Ulam stability of the Cauchy additive, 

quadratic, cubic and the quartic functional 

equation in paranormed spaces. C. Park 

proved the Hyers-Ulam stability of an 

additive-quadratic-cubic-quartic functional 

equation

( 2 ) ( 2 ) 4 ( ) 4 ( )
6 ( ) (2 ) ( 2 ) 4 ( ) 4 ( )

f x y f x y f x y f x y
f x f y f y f y f y

+ + − = + + −
− + + − − − −

(1.1) in paranormed spaces using fixed point 

method and direct method. K. Ravi, J.M. 

Rassias and B.V. Senthil Kumar [11] proved 

the Hyers-Ulam stability of the reciprocal 

difference functional equation

( ) ( )( )
2 ( ) ( )

x y f x f yf f x y
f x f y

+  − + =  + 
(1.2)

and adjoint functional equation

3 ( ) ( )( )
2 ( ) ( )

x y f x f yf f x y
f x f y

+  + + =  + 
(1.3)

Now we recall some basic facts concerning 

Frechet spaces. The concept of statistical 

convergence for sequences of real numbers 

was introduced by Fast[6] and Steinhaus[16] 

independently and since then several 

generalization and   applications of this 

notion have been investigated by various 

authors. This notion was defined in normed 

spaces by E.Kolk.
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Definition 1.1: Let X be a vector space. A 

paranorm : [0, )P X → ∞ is a function on X 

such  that

(i) P(0)=0;

(ii) P(-x)=P(x);

(iii) P(x+y) ≤P(x)+P(y)(triangle inequality);

(iv) if {t }n is a sequence of scalars with  

nt t→ and {x } Xn ⊂ with ( ) 0nP x x− → ,

then (t ) 0n nP x tx− → (continuity of 

multiplication). The pair (X, P) is called a 

paranormed space, if P is a paranorm on X. 

The paranorm is total if, in addition, we have 

(v) P(x)=0 implies x=0. A Frechet space is a 

total and complete paranormed space. 

Throughout this paper, assume that (X, P) is 

a Frechet space and that (Y, ) is a Banach 

space.

In this paper, we investigate the 

generalized Hyers-Ulam stability of the 

functional equation

2

( ) ( )
( ) ( ) 2(n 1) ( )

f nx y f nx y
f x y f x y f x
+ + −

= + + − + −
(1.4)

in paranormed spaces.

2. GENERAL SOLUTION

The following theorem provides the general 

solution of the functional equation (1.4) by 

establishing a connection with the classical 

quadratic functional equation.

Theorem 2.1. Let X and Y be real vector 

spaces. A function :f X Y→ satisfies the  

functional equation

2

( ) ( )
( ) ( ) 2(n 1) ( )

f nx y f nx y
f x y f x y f x
+ + −

= + + − + −
(2.1) 

for all x, y ∈ X if and only if it satisfies the 

quadratic functional equation

( ) ( y) 2 ( ) 2 ( )f x y f x f x f y+ + − = + (2.2)

for all x ∈ X.

Proof. Suppose a function :f X Y→

satisfies (2.1). Setting (x, y) = (0, 0) in (2.1), 

we obtain f(0)=0. Setting (x, y) = (x, 0) in 

(2.1), we obtain 2f(nx) = 2f(x)+ 2n2f(x) -

2f(x) which gives f(nx) = n2f(x) for all x ∈ X

where n is a positive integer. Setting (x, y) = 

(x, 2x) in (2.1), we get f(x) = f(-x) for all x, y



288  X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 4 | Issue : 3  | Mar 2014 | ISSN - 2249-555XReseaRch PaPeR

∈ X. Setting (x, y) = (x, x + y) in (2.1), we 

obtain

(( 1) ) (( 1) )
(2 ) ( ) 2 ( ) 2 ( ).

f n x y f n x y
f x y f y f nx f x

+ + + − −
= + + + −

(2.3)

. Again, setting (x,y)=(x,-y) in (2.3), we 

obtain

(( 1) ) (( 1) )
(2 ) ( ) 2 ( ) 2 ( ).

f n x y f n x y
f x y f y f nx f x
+ − + − +

= − + + −
(2.4)

Adding (2.3) and (2.4). we obtain

(( 1) ) (( 1) ) (( 1) )
(( 1) ) (2 ) (2 ) 2 ( )

4 ( ) 4 ( ).

f n x y f n x y f n x y
f n x y f x y f x y f y

f nx f x

+ + + − + + − +
+ − − = + + − +

+ −

(2.5)

.  Setting n = n-1 in (2.1), we obtain

(( 1) ) (( 1) )
( ) (x ) 2 (( 1) )
2 ( ).

f n x y f n x y
f x y f y f n x

f x

+ + + − −
= + + − + −
−

(2.6)

Putting n=2 in (2.1), we get 

((2 x ) (2 )
( ) (x ) 2 (2 ) 2 ( ).

f y f x y
f x y f y f x f x
+ + −

= + + − + −
(2.7)

Substituting(2.6) and (2.7) in (2.5), we 

obtain

((n 1) ) ((n 1) )
2 ( ) 4 (n ) 4 ( ) 2 ((n 1) )

2 (2 ).

f x y f x y
f y f x f x f x

f x

+ + + + −
= + − − −
+

(2.8)

Putting y = 0 in (2.8), we get

2 ((n 1) x) 4 (n ) 4 ( ) 2 ((n 1) x)
2 (2 ).

f f x f x f
f x

+ = − − −
+

(2.9)

Substituting(2.9) in (2.8), we obtain

((n 1) ) ((n 1) )
2 ( ) 2 ((n 1) ).

f x y f x y
f y f x

+ + + + −
= + +

(2.10)

Setting ((n + 1)x, y) = (x, y) in equation 

(2.10), we get  

(x y) ( ) 2 ( ) 2 ( ).f f x y f x f y+ + − = +

Conversely, suppose that a function 

:f X Y→ satisfies (2.2). Putting (x, y) =    

(0, 0) in equation (2.2), we obtain f(0) = 0.

Setting x = 0 in (2.2) we obtain f(-y) = f(y).

Setting (x, y) = (x, x) in equation (2.2), we 

obtain f(2x) = 4f(x). Again setting (x, y) = (x, 

2x) in equation (2.2), we get f(3x) = 9f(x).

Setting  (x, y) = (x, (n-1)x) in equation (2.2), 

we obtain f(nx) = n2f(x) for all positive 

integer n. Setting (x, y) = (nx + y, nx - y) in 

equation (2.2), we get

( ) ( )
2 ( ) 2 ( )

f nx y nx y f nx y nx y
f nx y f nx y

+ + − + + − +
= + + −

(2.11)

which gives

2

( ) ( )
1 [ (2 ) (2 )]
2
2 ( ) 2 ( )

f nx y f nx y

f nx f y

n f x f y

+ + −

= +

= +
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2

2

2 ( ) 2 ( ) 2 ( ) 2 ( )
2( 1) ( ) (2 ( ) 2 ( )) (2.12)

n f x f x f x f y
n f x f x f y

= − + +

= − + +

Substituting (2.2) in (2.12), we obtain

2

( ) ( )
( ) ( ) 2(n 1) ( )

f nx y f nx y
f x y f x y f x

+ + −

= + + − + −

3. GENEALIZED HYERS-ULAM 

STABILITY

The following theorem gives a general 

condition for which a true quadratic function 

exists near an approximately quadratic 

function. Let us denote

2

( , ) ( ) ( ) ( )
( ) 2(n 1) ( ).

Df x y f nx y f nx y f x y
f x y f x

= + + − − +

− − − −

Theorem 3.1. Let r be a positive real 

number with r < 2, and let :f X Y→ be 

a mapping satisfying f(0)=0 and

2

( ) ( ) ( )
( ) 2( 1) ( )

( ) ( ) (3.1)r r

f nx y f nx y f x y
f x y n f x

P x P y

+ + − − +

− − − −

≤ +

for all x, y ∈ X. Then there exists a unique 

quadratic mapping  Q : X Y→ such that

2

1( ) ( ) ( )
2( )

r
rf x Q x P x

n n
− ≤

−
(3.2)

for all x∈ X.

Proof. Setting y = 0 in (3.1), we obtain

2 1( ) ( ) ( ) .
2

rf nx n f x P x− ≤

Dividing the above inequality by n2, we get

2 2

( ) 1( ) ( )
2

rf nx f x P x
n n

− ≤ (3.3)

for all x∈X.

Replacing x by nx and dividing by n2, we 

obtain               

2

4 2 4

( ) ( ) ( ) .
2

r
rf n x f x n P x

n n n
− ≤           (3.4) 

Adding(3.3) and (3.4), we obtain                   

2

4 2 2

( ) 1( ) 1 ( ) .
2

r
rf n x nf x P x

n n n
 

− ≤ + 
 

(3.5)

Generalizing, we get

1

2 2 2
0

( ) 1( ) ( )
2

m rkm
r

m k
k

f n x nf x P x
n n n

−

=

− ≤ ∑ (3.6)

for every positive integer n, m and for all         

x ∈ X. Replacing x by nsx and dividing by 

n2s in equation (3.6), we obtain

2 2

1

(2 ) 2 2
0

1 ( ) ( )

1 ( ) .
2

m s
s

s m

rkm
r

s r k
k

f n x f n x
n n

n P x
n n

+

−

− +
=

−

≤ ∑
(3.7)

By condition r < 2, the right hand side of 

(3.7) approaches 0 as s →∞ for all x∈ X. 
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Thus the sequence 2

( )m

m

f n x
n

 
 
 

is a cauchy 

sequence. Since X is complete, we can 

define a mapping Q : X Y→ such that

2

( )( ) lim
m

mm

f n xQ x
n→∞

 
=  

 
(3.8)

for all x ∈ X.  Now we claim that the 

mapping Q : X Y→ is a quadratic which 

satisfies the equation (2.1). Setting (x, x) = 

(nmx, nmy) in equation (3.1) respectively and 

dividing by n2m, we obtain

( )

2

2

( ( , ))

1 ( ) ( )

m m

m

m r m r
m

D f n x n y
n

P n x P n y
n

≤ +

(3.9)

It follows that from (3.1) that

2

Q( ) ( ) ( )
( ) 2( 1)Q( )

nx y Q nx y Q x y
Q x y n x
+ + − − +

− − − −

2
2

( ( )) ( ( ))
1lim ( ( )) ( ( ))

2( 1) ( ( ))

m m

m m
mm

m

f n nx y f n nx y
f n x y f n x y

n
n f n x

→∞

+ + −

= − + − −

− −

( )(2 )

1lim ( ) ( )

0.

r r
m rm

P x P y
n −→∞

≤ +

=

which gives 

2

Q( ) ( ) ( ) ( )
2( 1)Q( )

nx y Q nx y Q x y Q x y
n x

+ + − = + + −

+ −

for all x, y ∈ X and so the mapping 

Q : X Y→ is quadratic. By taking the limit 

as m →∞ in equation (3.6), we obtain

2

1( ) ( ) ( )
2( )

r
rf x Q x P x

n n
− ≤

−

for all x ∈ X.

Now, let T : X Y→ be another quadratic 

mapping satisfying the equation (3.2). Then 

we have

2

2 (2 )

( ) ( )1( ) ( )
( ) ( )

1 ( ) (3.10)
( )

m m

m m m

r
r m r

Q n x f n x
Q x T x

n f n x T n x

P x
n n n −

 − +
 − ≤
 − 

≤
−

By condition (3.1), the right hand side of 

equation (3.9) approaches 0 as m →∞ . We 

conclude that Q(x) = T(x) for all x ∈ X. This 

proves the uniqueness of Q.

Thus the mapping Q : X Y→ is unique 

quadratic mapping satisfying (3.2).

Theorem 3.2. Let r, θ be positive real 

numbers with     r > 2 and let f : Y X→ be a 

mapping satisfying f(0)=0 and
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( )
2

( ) ( ) ( )
( ) 2( 1) ( )

(3.11)r r

f nx y f nx y f x y
P

f x y n f x

x yθ

+ + − − + 
 

− − − − 

≤ +

for all x, y ∈ Y. Then there exists a unique 

quadratic mapping : YQ X→ such that

( ) 2( ) ( )
2( )

r
rP f x Q x x

n n
θ

− ≤
−

(3.12)

for all x ∈ Y.

Proof: Letting y = 0 in (3.1), we get

( )2( ) ( )
2

rP f nx n f x xθ
− ≤ (3.13)

for all x ∈ Y.

Dividing by n2 on both sides,

2 2

1 ( ) ( )
2

rP f nx f x x
n n

θ − ≤ 
 

(3.14)

for all x ∈ Y.

Replacing x by x
n

and multiply both sides 

by n2 in (3.14), we obtain

2( ) ( )
2

r
r

xP f x n f x
n n

θ − ≤ 
 

(3.15)

for all x ∈ Y.

Again Replacing x by x
n

and multiply both 

sides by n2 in equation (3.15), we obtain

2
2 4

2 2( ) ( )
2

r
r

x x nP n f n f x
n n n

θ − ≤ 
 

(3.16)

Combining (3.15) and (3.16) we obtain,

2
4

2( ) ( ) 1
2

r
r r

x nP f x n f x
n n n

θ   − ≤ +  
   

(3.17)

which can be extended by mathematical 

induction on m, we obtain

21
2

0
( ) ( )

2

km
rm

m r kr
k

x nP f x n f x
n n n

θ −

=

 − ≤ 
 

∑ (3.18)

for every positive integer m ≥1 and for all x

∈ Y . We have to show that the sequence 

2

( )s

s

f n x
n

 
 
 

converges for all x ∈ Y. For every 

positive integer m and s, replacing x by

s

x
n

and multiplying by n2s on both sides in 

(3.18), we obtain

2 2 2

21

( 2) (k 1)
0

( ) ( )

.
2

s m s
s m s

km
r

s r r
k

x xP f n n f
n n

n x
n n
θ

+
+

−

− +
=

 − 
 

≤ ∑
(3.19)

By condition (3.12), the right-hand side 

approaches 0 as s →∞ for all x ∈ X. Thus, 

the sequence 2m
m

xn f
n

  
  

  
is a Cauchy 

sequence for all x ∈ Y, Since X is complete,
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the sequence 2m
m

xn f
n

  
  

  
converges. So 

we can define the mapping :Q Y X→ by

2( ) lim m
mm

xQ x n f
n→∞

  =   
  

(3.20)

for all x ∈ Y. Now we claim that the mapping 

:Q Y X→ is a quadratic which satisfies the 

equation (3.11). Setting (x, y) = (nm x, nm y) 

in equation (3.11) respectively and dividing 

by n2m, we obtain

( )2 2

( , ) 1m m r rm m
m m

D f n x n yP n x n y
n n

θ
 

≤ + 
 

(3.21)

it follows from (3.11)that

2

( ) ( ) ( )
( ) 2( 1) ( )

Q nx y Q nx y Q x y
P

Q x y n Q x
+ + − − + 

 
− − − − 

( )

2

2

2

( 2)

lim
2( 1)

lim

lim

0.

m m m
m

m

m m

r r
m

m mm

r r
m rm

nx y nx y x yf f f
n n n

n P
x y xf n f
n n

x yn
n n

x y
n

θ

θ

→∞

→∞

−→∞

 + − +     + −      
      ≤

 −   − − −    
    

 
≤ +  

 

≤ +

=
for all x, y ∈ Y. Hence

2

( ) ( ) ( ) ( )
2( 1) ( )

Q nx y Q nx y Q x y Q x y
n Q x

+ + − = + + −

+ −

for all x, y ∈ Y and so the mapping 

:Q Y X→ is quadratic. By taking the limit 

as m →∞ in (3.19) and using (3.20), we 

obtain

( ) 2( ) ( ) .
2( )

r
rP f x Q x x

n n
θ

− ≤
−

Now let T : Y X→ be another quadratic 

mapping satisfying (3.12), then we 

have

( ) 2

2

2

( ) ( ) m
m m

m
m m

m m
m

m m

x xP Q x T x P n Q T
n n

x xn P Q T
n n

x xP Q f
n n

n
x xP T f

n n

     − = −     
     

    ≤ −    
    

     − +     
     ≤       −          

2

2

2 ( 2)

( )

( )

m
r

r mr

r
r m r

n x
n n n

x
n n n

θ

θ
−

≤
−

≤
−

which tends to 0 as m →∞ for all x ∈ Y . So 

we can conclude Q(x) = T(x) for all x ∈ Y.

This proves the uniqueness of Q. Thus the 

mapping :Q Y X→ is a unique quadratic 

mapping satisfies (3.12).
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