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ABSTRACT This paper proposes an algorithm for solving a linear programming problem when some of its constraints 
are homogeneous.  Using these homogeneous constraints a transformation matrix T is constructed.  The 

matrix T transforms the given problem into another linear programming problem but with fewer constraints.  A relationship 
between these two problems, which ensures that the solution of the original problem can be recovered from the solution 
of the transformed problem,   is established.  A simple numerical example illustrates the steps of the proposed algorithm.
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1. INTRODUCTION

Linear programming   is   a special type of 

problem   in which all relations among the 

variables are linear , both in the constraints 

and the functions to be optimized.  Under 

the assumptions   that the set of the feasible 

solutions is a convex polyhedral with a finite 

number of extreme points.  We have many 

iterative algorithms Charnes and 

Cooper(1962) [2],  Martos (1960) [7], 

Swarup (1965)[8] to solve  such problems .   

Usually, we can solve this problem through 

any one of the simplex method, the Big-M

method and the two- Phase method[9].

The intention here is to reduce the 

computing time of the optimization process 

when a block of constraints are 

homogeneous.  The method seems to be 

beneficial to large class of the linear 

programming models containing a  great 

number of homogeneous constraints.   Such 

constraints are encountered in 

transportation, flow and network models, 

Dantzing(1963) [3],Gass (1985) [4].

A transformation matrix T , which 

eliminates the homogeneous constraints.  

Section 2 describes the development of the 

transformation matrix and create a new 

algorithm.  Section 3 presents the desired 

relationship between the original problem 

and the transformed problem.  Numerical 

example and conclusion are given in the last 

two sections.

2. DEVELOPMENT OF THE 
TRANSFORMATION MATRIX

Let the given problem be to       Maximize 

𝑍𝑍𝑍𝑍 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 →    (2.1)

Subject to  𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 ≤ 𝑏𝑏𝑏𝑏  →  (2.2)

and 𝐶𝐶𝐶𝐶 ≥ 0

with   𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖1𝑥𝑥𝑥𝑥1 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖2𝑥𝑥𝑥𝑥2 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖3𝑥𝑥𝑥𝑥3 +

⋯ . +𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + ⋯ . . +𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + ⋯+ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =

0 → (2.3)  

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖. Where 𝐶𝐶𝐶𝐶 = � 𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2 … 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖  � is a 

row vector with n components.
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𝐶𝐶𝐶𝐶 =

⎝

⎜
⎜
⎜
⎛

𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥3
.
.
.
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖⎠

⎟
⎟
⎟
⎞

, 𝑏𝑏𝑏𝑏 =

⎝

⎜
⎜
⎜
⎛

𝑏𝑏𝑏𝑏1
𝑏𝑏𝑏𝑏2
𝑏𝑏𝑏𝑏3
.
.
.
𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠⎠

⎟
⎟
⎟
⎞

are column 

vectors and 𝐴𝐴𝐴𝐴 =�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � ;i=1,2,3…..m; 

j=1,2,3,…n

Where the constraint space is 𝐿𝐿𝐿𝐿 =

{𝐶𝐶𝐶𝐶:𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑏𝑏𝑏𝑏;𝐶𝐶𝐶𝐶 ≥ 0}

REMARK:

Let 𝐶𝐶𝐶𝐶 =  �𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3, …𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖� be solution of 

(2.3).  If 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0 then it is obvious 

that there exists at least one 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 > 0 with 

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0.      In view of the remark,  We 

partition matrix 𝐴𝐴𝐴𝐴 as 𝐴𝐴𝐴𝐴 =(𝐴𝐴𝐴𝐴0,𝐴𝐴𝐴𝐴+,𝐴𝐴𝐴𝐴−) where 

𝐴𝐴𝐴𝐴0 is the set of all column of  𝐴𝐴𝐴𝐴 whenever 

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0. Let the number of such columns be  

r. 𝐴𝐴𝐴𝐴+ is the set of all column of  𝐴𝐴𝐴𝐴

whenever 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0. Let the number of such 

columns be  p. 𝐴𝐴𝐴𝐴− is the set of all column of  

𝐴𝐴𝐴𝐴 whenever 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0. Let the number of 

such columns be  q.   Thus 𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑞𝑞 + 𝑓𝑓𝑓𝑓 = 𝑖𝑖𝑖𝑖.

Now we define a transformation matrix T 

with n rows and 𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞 + 𝑓𝑓𝑓𝑓 columns such that 

the ith equation of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = b Will be 

identically zero.  Here w is a column vector 

with 𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞 + 𝑓𝑓𝑓𝑓 components.  This is 

accomplished by defining variable wkl for 

each pair ( k,l) such that 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝐴𝐴𝐴𝐴+ and 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝐴𝐴𝐴𝐴− 

Now partition T= (𝐴𝐴𝐴𝐴1:𝐴𝐴𝐴𝐴2) where 𝐴𝐴𝐴𝐴1consist 

of unit column vectors 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 corresponding to 

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.  𝐴𝐴𝐴𝐴2consist of  pq  column vectors  

corresponding to variables 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . The 

transformation matrix T can be represented 

asT= (𝐴𝐴𝐴𝐴1:𝐴𝐴𝐴𝐴2) = [�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 �,∀𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

0; (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖),∀𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝐴𝐴𝐴𝐴+;∀𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝐴𝐴𝐴𝐴−]

That is 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 is the jth column of identity matrix 

In and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 .  →      (2.4) 

From the above, we can create a new 

algorithm when the linear programming 

problem(L.P.P) must have homogeneous 

constraints.
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Step 1:  Write the given L.P.P. in to its 

standard from.

Step 2:  Select a homogeneous constraint 

from the given L.P.P.

Step 3:  Find the number of positive terms, 

the number of negative terms and the 

number of zero terms in the selected 

homogeneous constraints. These are denoted 

by p,q and r respectively. 

Step 4:  From step (3), Find the order of

identity matrix using the relation 𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑞𝑞 +

𝑓𝑓𝑓𝑓 = 𝑖𝑖𝑖𝑖.

Step 5: Construct the transformation matrix 

using the relation 

T= (𝐴𝐴𝐴𝐴1:𝐴𝐴𝐴𝐴2) = [�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 �,∀𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

0; (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖),∀𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝐴𝐴𝐴𝐴+;∀𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝐴𝐴𝐴𝐴−]

That is 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 is the jth column of identity matrix 

In and  𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 .           

Step 6:  Using the relation X =TW, the 

given problem can be transformed 

Maximize  𝑍𝑍𝑍𝑍 = 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    , Subject to   𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 W

= 𝑏𝑏𝑏𝑏 and W ≥ 0

If there is no homogeneous constraints then 

go to step 7.If there is homogeneous 

constraints then go to  step2.  Continue  this 

process until the homogeneous constraints  

are completely removed.

Step 7:  Solve the transformed problem 

using by ordinary simplex method.

Step 8:  The solution of the original problem 

obtained from the transformed problem  

using the relation X = TW.

2.TRANSFORMED PROBLEM AND 

RELATIONSHIP

Using the transformation matrix X = TW.  

We define the following problem.

Maximize    𝑍𝑍𝑍𝑍 =  𝐶𝐶𝐶𝐶 �W   →   (3.1), Subject 

to  𝐴𝐴𝐴𝐴 �W= 𝑏𝑏𝑏𝑏  → (3.2)and W ≥ 0

Where 𝐶𝐶𝐶𝐶 � = 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴;   𝐴𝐴𝐴𝐴 � = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.  Let   𝐺𝐺𝐺𝐺 =

 {𝐴𝐴𝐴𝐴: 𝐴𝐴𝐴𝐴 �W = 𝑏𝑏𝑏𝑏;𝐴𝐴𝐴𝐴 ≥ 0} be constraint space.
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Theorem 3.1.    If X solves (2.2) then there 

exist W which solves (3.2). 

To prove this theorem,  We need the

following lemma.

Lemma 3.1.  If 

∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 =𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖=1

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖=1 𝑉𝑉𝑉𝑉;  𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 ≥ 0;  𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0

then there exist a matrix 𝑌𝑌𝑌𝑌 = �𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0� such 

that ∑ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖=1 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 and  ∑ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

Proof of the lemma. The existence of such 

a matrix is ensured by  𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖  𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖    
𝑉𝑉𝑉𝑉

.  For 

∑ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖=1

𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖   ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖=1
𝑉𝑉𝑉𝑉

= 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 , For 

∑ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖=1

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖   ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖
𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖=1

𝑉𝑉𝑉𝑉
= 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 and of course 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 as defined above ≥ 0.

Proof of the theorem.

As X solves (2.2) ,  its ith constraint 

equation will be  ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖kϵA+ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+

∑ −𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  = 0.

Writing 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖    and  −𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =

 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖       →     (3.3)

We have   ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 =𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖=1 ∑𝑞𝑞𝑞𝑞

𝑖𝑖𝑖𝑖=1 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 .  From the 

lemma 3.1, there exist a p by q matrix 

𝑌𝑌𝑌𝑌 = (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0) such that   

∑ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖=1 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎 ∑ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =𝑞𝑞𝑞𝑞

𝑖𝑖𝑖𝑖=1 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 .  Now we 

are ready to define vector W= �𝑤𝑤𝑤𝑤
1

𝑤𝑤𝑤𝑤2� where 

𝑤𝑤𝑤𝑤1 is a column vector with r components 

and 𝑤𝑤𝑤𝑤2is a column vector with pq

components.

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ; ∀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 and  

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
2 = −𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
;   ∀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+;∀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖− →     (3.4)

Clearly W ≥ 0.  Next we wish to show that 

𝑖𝑖𝑖𝑖 �W= 𝑏𝑏𝑏𝑏 ,  which amounts in showing that X

=TW.

Consider TW = T1w1+ T2w2 .  Using (2.4) 

and (3.4). 

This reduces to TW = ∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖1 +𝑖𝑖𝑖𝑖

∑ ∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
2

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + ∑ ∑ (−𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖)
−𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

TW = ∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + ∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖   𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∑
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝛽𝛽𝛽𝛽 𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,
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In view of (3.3) We have,  

TW  = ∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + ∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴+𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴0 +

∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴−

TW = X , This proves the  theorem.

Theorem 3.2.    If   X* solves the problem 

(2.1) – (2.2) then W* solves the problem 

(3.1) – (3.2).

Proof:   Theorem 3.1 guarantees the 

existence of a feasible W*. That is      

𝐴𝐴𝐴𝐴 �W* = b; W* ≥ 0

ATX* = b;  X* ≥ 0

Next  X* solves the problem (2.1)  - (2.2) 

imply that C X* ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ; ∀ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶

This implies that  CTW* ≥ 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ; ∀ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴

𝐶𝐶𝐶𝐶 �W* ≥ 𝐶𝐶𝐶𝐶 �𝐴𝐴𝐴𝐴 ; ∀ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴

Thus  W* solves the problem (3.1) – (3.2).

Theorem 3.3. If  W* solves the problem 

(3.1) – (3.2) then  there exist X*= TW*

which solves the problem    (2.1) – (2.2).  

Also the extreme values of the two objective 

functions are equal.

Proof:

W* solves the problem (3.1) – (3.2) means 

that   𝐴𝐴𝐴𝐴 �W* =  b;   W* ≥ 0 or     ATW* = b;  

X* ≥ 0 or                                                 

AX* = b;  X* ≥ 0        →     (3.5)

Further ,     T ≥ 0 , W* ≥ 0 implies that   X*

≥ 0     →     (3.6)

Also we  know that  𝐶𝐶𝐶𝐶 �W* ≥ 𝐶𝐶𝐶𝐶 �W ;

∀ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴     →     (3.7)

And would like to show that  C X* ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ;

∀ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶   →     (3.8)

If possible , let  𝐶𝐶𝐶𝐶�  and  not X* solve the 

problem (3.1) – (3.2) which means that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�

> 𝐶𝐶𝐶𝐶 X*

From theorem (3.1) it follows that 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�

> 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 W* or  𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴����� > 𝐶𝐶𝐶𝐶 �W*

This violates (3.7) , the contradiction proves 

the result. Finally, let Z* and  z* be the 
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values of (2.1) and (3.1) at X*  and  W*

respectively.  This means Z* = 𝐶𝐶𝐶𝐶 X* = CTW*

= 𝐶𝐶𝐶𝐶 �W* =  z* →  (3.9)

The result then follows from 

(3.5), (3.6), (3.8)𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎(3.9)

2.NUMERICAL EXAMPLE

In this section, we indicate how our new 

method  is differ from the Two-phase 

method.    First we  solve a L.P.P. using 

Two- phase method.  Consider  an L.P.P.  

Maximize  Z = 2x1 + 6x2    Subject to      x1

+ x2 + x3 = 4, 3 x1 + x2 + x4 = 6

x1 - x2 = 0 and x1 , x2 , x3 , x4 ≥ 0.

Solution:  The above problem can be 

written as Maximize  Z = 2x1 + 6x2 + 0 x3+

0x4- 1x5

Subject to    x1 + x2 + x3+ 0x4 +  0x5 = 4, 3

x1 + x2 + 0x3 + x4+ 0x5 = 6,

x1 - x2+ 0x3 + 0x4+ 1x5      = 0 and 

x1 , x2 , x3 , x4, x5  ≥ 0 .

Here  x3 , x4, x5  are basic variables; x1 , x2 

are non- basic variables and x5 is an 

artificial variable.

Phase – I:Assigning a cost -1 to the 

artificial variable and zero cost to all other 

variables .  The objective function of  the 

auxiliary L.P.P. becomes Maximize  Z* =

0x1 + 0 x2 + 0 x3 + 0 x4   -1x5 

Table:1. Initial Iteration

Cj  :            0                        0            0            

0 -1

CB YB XB x1 x2
x3 x4      
x5  

Ratio 

0

0

-1

x3

x4

x5  

4

6

0

1                       1
1            0             0

3                       1
0           1             0

1 -1
0           0             1

4

2

0

Zj- Cj                -1                   1
0          0            0
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Table :2.  First Iteration: Here x5 drops 
from the basis  and  x1 enters the basis.

Cj  :     0                        0           0             
0 -1

CB YB XB x1 x2 x3
x4                 x5  

0

0

0

x3

x4

x1  

4

6

0

0                       2              1

0 -1

0                       4              0 

1 -3 1

-1              0            0

1

Zj- Cj 0                       0
0             0              1

Here all   Zj- Cj≥ 0 and the artificial 
variable does not lie in the basis.  So we go
to Phase –II.

Phase –II We consider the actual cost 
associated with original variables.  The new 
objective  function is Maximize Z = 2x1 + 6 
x2 + 0x3 + 0 x4.

Table :3. Initial Iteration :

Cj  :       2                                      
6                0              0                       

CB YB XB x1
x2
x3
x4    

Ratio 

0

0

2

x3

x4

x1  

4

6

0

0
2
1
0

0
4
0
1

1
-1
0
0

2

3/2

-

Zj- Cj 0
-8 0             0

Tabel:4 . Final Iteration: In this iteration   
x4 drops and x2 enters in the basis.

Cj  :  2                         
6            0              0

CB YB XB x1
x2 x3
x4          

0

6

2

x3

x2

x1  

1

3/2

3/2

0
0              1
-1/2             

0
1 0
1/4            

1
0 0
1/4            

Zj- Cj 0
0              0             2 
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Table :2.  First Iteration: Here x5 drops 
from the basis  and  x1 enters the basis.

Cj  :     0                        0           0             
0 -1

CB YB XB x1 x2 x3
x4                 x5  

0

0

0

x3

x4

x1  

4

6

0

0                       2              1

0 -1

0                       4              0 

1 -3 1

-1              0            0

1

Zj- Cj 0                       0
0             0              1

Here all   Zj- Cj≥ 0 and the artificial 
variable does not lie in the basis.  So we go
to Phase –II.

Phase –II We consider the actual cost 
associated with original variables.  The new 
objective  function is Maximize Z = 2x1 + 6 
x2 + 0x3 + 0 x4.

Table :3. Initial Iteration :

Cj  :       2                                      
6                0              0                       

CB YB XB x1
x2
x3
x4    

Ratio 

0

0

2

x3

x4

x1  

4

6

0

0
2
1
0

0
4
0
1

1
-1
0
0

2

3/2

-

Zj- Cj 0
-8 0             0

Tabel:4 . Final Iteration: In this iteration   
x4 drops and x2 enters in the basis.

Cj  :  2                         
6            0              0

CB YB XB x1
x2 x3
x4          

0

6

2

x3

x2

x1  

1

3/2

3/2

0
0              1
-1/2             

0
1 0
1/4            

1
0 0
1/4            

Zj- Cj 0
0              0             2 
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Since all Zj- Cj ≥ 0 ,  We reached optimum 

solution .

Therefore Maximum Z = 12when x1 = x2 =

3/2  , x3 = 1 and x4= 0.

This method have totally four Iterations.  

The same problem , in the B- M have three 

iterations.  But our new method have two 

iterations only.  Our new method illustrated 

through the same problem as follows.   The  

problem can be written as in the matrix form 

Maximize  Z = 2x1 + 6x2 ;    Here, Let     

𝐴𝐴𝐴𝐴 =  �
1 1 1 0
3 1 0 1
1 −1 0 0

� ; 𝐶𝐶𝐶𝐶 = �

𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥3
𝑥𝑥𝑥𝑥4

� and  

𝑏𝑏𝑏𝑏 = �
4
6
0
�

Here  x1 - x2+ 0x3 + 0x4 + 1x5 = 0 is a 

homogeneous constraint.  According to the 

new algorithm p =1,q =1 and r = 2.  Now  n

= 4 this implies 𝐼𝐼𝐼𝐼4 = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� and  

 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �

1
1
0
0

�.Therefore   𝐴𝐴𝐴𝐴 = �

0 0 1
0 0 1
1 0 0
0 1 0

� .

For the transformation problem, 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

(2 6 0 0)�

0 0 1
0 0 1
1 0 0
0 1 0

��
𝑤𝑤𝑤𝑤1
𝑤𝑤𝑤𝑤2
𝑤𝑤𝑤𝑤3

� = 8𝑤𝑤𝑤𝑤3.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑏𝑏𝑏𝑏  implies 

�
1 1 1 0
3 1 0 1
1 −1 0 0

��

0 0 1
0 0 1
1 0 0
0 1 0

��
𝑤𝑤𝑤𝑤1
𝑤𝑤𝑤𝑤2
𝑤𝑤𝑤𝑤3

� =

�
4
6
0
�

This implies w1 + 2w3 = 4 and  w2 + 4w3 = 6

Thus the  given problem can be transformed  

as Maximize    Z = 8𝑤𝑤𝑤𝑤3,Subject to   w1 +

2w3 = 4, w2 + 4w3 = 6 and w1 , w2 ,w3 ≥ 0

This transformed problem have two 

constraints only and  the  homogeneous 

constraint is completed eliminated. Solution 

of the transformed problem is as follows
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Tabel:5. Initial iteration: 

Cj :        0               0                   8                                           

CB YB wB w1
w2
w3        
  

ratio

0

0

W1

W2

 

4

6

1
0
2

0
1
4

2

1.5

Zj- Cj 0                       0 -8

Since ,there is one    Zj- Cj < 0 .

Therefore ,we go to next iteration.

Table:6. First iteration: W3 enters to the basis 
and W2 drops from  the basis.                                

Cj  :        0                               0                   8                             

CB YB WB w1
w2
w3        
  

0

8

W1

W3

 

1

3/2

1
-1/2          0       

0
1/4          1

Zj- Cj 0
2              0

Since all   Zj- Cj ≥ 0 . Therefore we reached 

optimum solution. That is Maximum  Z = 12 

when w1 = 1and w3=3/2.Now we get 

solution of the original problem using the 

relation X = TW.

�

𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥3
𝑥𝑥𝑥𝑥4

� = �

0 0 1
0 0 1
1 0 0
0 1 0

��
𝑤𝑤𝑤𝑤1
𝑤𝑤𝑤𝑤2
𝑤𝑤𝑤𝑤3

�

= �

0 0 1
0 0 1
1 0 0
0 1 0

��
1
0

3/2
�

= �

3/2
3/2

1
0

�

Here  the same solution reached as 
Maximum Z = 12 when x1 = x2= 3/2, x3=1
and x4= 0 . 

But total number of iterations reduced  as 
well as computing time reduced.

2.CONCLUSION

The process described in section 2,  can be 

extended to define T if AX = b has more 

than one homogeneous constrains.  In case 

there are s homogeneous constraints, we 

define s transformation matrices  T(1), T(2), 
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T(3), ….T(s).  T(2) is determined once 

AT(1) has been computed.  In general T(s) 

is determined  only when AT(1) ,AT(2) 

….AT(s-1) has been computed.  This 

algorithm which reduces the number of 

constraints the main factor of the 

optimization complexity, can be used 

efficiently for solving large- scale 

programming problems.
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