Linear Programming Problem with Homogeneous Constraints

KEYWORDS

Linear programming problem, Homogeneous constraints, Transformation matrix.

S. Mohan
 Dr. S. Sekar

Assistant Professor in Mathematics, A.V.C. College(Autonomous), Mannampandal, Mayiladuthurai, Tamil Nadu, India

Assistant Professor, Department of Mathematics, Government Arts college, (Autonomous), Selam,

Tamil Nadu, India

ABSTRACT
This paper proposes an algorithm for solving a linear programming problem when some of its constraints are homogeneous. Using these homogeneous constraints a transformation matrix T is constructed. The matrix T transforms the given problem into another linear programming problem but with fewer constraints. A relationship between these two problems, which ensures that the solution of the original problem can be recovered from the solution of the transformed problem, is established. A simple numerical example illustrates the steps of the proposed algorithm.

1. INTRODUCTION

Linear programming is a special type of problem in which all relations among the variables are linear, both in the constraints and the functions to be optimized. Under the assumptions that the set of the feasible solutions is a convex polyhedral with a finite number of extreme points. We have many iterative algorithms Charnes and Cooper(1962) [2], Martos (1960) [7], Swarup (1965)[8] to solve such problems . Usually, we can solve this problem through any one of the simplex method, the Big-M method and the two- Phase method[9].

The intention here is to reduce the computing time of the optimization process when a block of constraints are homogeneous. The method seems to be beneficial to large class of the linear programming models containing a great number of homogeneous constraints. Such constraints are encountered in
transportation, flow and network models,
Dantzing(1963) [3],Gass (1985) [4].
A transformation matrix T , which eliminates the homogeneous constraints. Section 2 describes the development of the transformation matrix and create a new algorithm. Section 3 presents the desired relationship between the original problem and the transformed problem. Numerical example and conclusion are given in the last two sections.

2. DEVELOPMENT OF THE TRANSFORMATION MATRIX

Let the given problem be to Maximize
$Z=C X \rightarrow$ (2.1)
Subject to $A X \leq b \rightarrow$ (2.2)
and $\quad X \geq 0$
with $a_{i 1} x_{1}+a_{i 2} x_{2}+a_{i 3} x_{3}+$
$\cdots .+a_{i k} x_{k}+\cdots . .+a_{i l} x_{l}+\cdots+a_{i n} x_{n}=$
$0 \rightarrow$ (2.3)
for some i. Where $C=\left(c_{1}, c_{2} \ldots c_{n}\right)$ is a row vector with n components.

$$
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right) \quad, \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\cdot \\
\cdot \\
\cdot \\
b_{m}
\end{array}\right) \text { are column }
$$

vectors and $A=\left(a_{i j}\right) ; \mathrm{i}=1,2,3 \ldots . . \mathrm{m}$;

$$
\mathrm{j}=1,2,3, \ldots \mathrm{n}
$$

Where the constraint space is $L=$
$\{X: A X=b ; X \geq 0\}$

REMARK:

Let $X=\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$ be solution of (2.3). If x_{k} and $a_{i k}>0$ then it is obvious that there exists at least one $x_{l}>0$ with $a_{i l}<0 . \quad$ In view of the remark, We partition matrix A as $A=\left(A^{0}, A^{+}, A^{-}\right)$where A^{0} is the set of all column of A whenever $a_{i j}=0$. Let the number of such columns be r. A^{+}is the set of all column of A whenever $a_{i j}>0$. Let the number of such columns be p. A^{-}is the set of all column of A whenever $a_{i j}<0$. Let the number of such columns be q. Thus $p+q+r=n$.

Now we define a transformation matrix T with n rows and $p q+r$ columns such that the $i^{\text {th }}$ equation of $A T W=b$ Will be identically zero. Here w is a column vector with $p q+r$ components. This is accomplished by defining variable w_{kl} for each pair (k, l) such that $A_{k} \in A^{+}$and $A_{l} \in A^{-}$

Now partition $\mathrm{T}=\left(T_{1}: T_{2}\right)$ where T_{1} consist of unit column vectors e_{j} corresponding to $a_{i j}=0 . T_{2}$ consist of pq column vectors corresponding to variables $w_{k l}$. The transformation matrix T can be represented $\operatorname{asT}=\left(T_{1}: T_{2}\right)=\left[\left(e_{j}\right), \forall j \in a_{i j}=\right.$ $\left.0 ;\left(t_{k l}\right), \forall k \epsilon A^{+} ; \forall l \epsilon A^{-}\right]$

That is e_{j} is the $\mathrm{j}^{\text {th }}$ column of identity matrix I_{n} and $t_{k l}=-a_{i l} e_{k}+a_{i k} e_{l} . \rightarrow$

From the above, we can create a new algorithm when the linear programming problem(L.P.P) must have homogeneous constraints.

Step 1: Write the given L.P.P. in to its standard from.

Step 2: Select a homogeneous constraint from the given L.P.P.

Step 3: Find the number of positive terms, the number of negative terms and the number of zero terms in the selected homogeneous constraints. These are denoted by p, q and r respectively.

Step 4: From step (3), Find the order of identity matrix using the relation $p+q+$ $r=n$.

Step 5: Construct the transformation matrix using the relation

$$
\begin{aligned}
& \mathrm{T}=\left(T_{1}: T_{2}\right)=\left[\left(e_{j}\right), \forall j \epsilon a_{i j}=\right. \\
& \left.0 ;\left(t_{k l}\right), \forall k \epsilon A^{+} ; \forall l \epsilon A^{-}\right]
\end{aligned}
$$

That is e_{j} is the $\mathrm{j}^{\text {th }}$ column of identity matrix I_{n} and $t_{k l}=-a_{i l} e_{k}+a_{i k} e_{l}$.

Step 6: Using the relation $X=T W$, the given problem can be transformed

Maximize $Z=C T W$, Subject to $A T \mathrm{~W}$ $=b$ and $\mathrm{W} \geq 0$

If there is no homogeneous constraints then go to step 7.If there is homogeneous constraints then go to step2. Continue this process until the homogeneous constraints are completely removed.

Step 7: Solve the transformed problem using by ordinary simplex method.

Step 8: The solution of the original problem obtained from the transformed problem using the relation $\mathrm{X}=\mathrm{TW}$.

2.TRANSFORMED PROBLEM AND RELATIONSHIP

Using the transformation matrix $\mathrm{X}=\mathrm{TW}$. We define the following problem.

Maximize $Z=\bar{C} \mathrm{~W} \rightarrow$ (3.1), Subject to $\bar{A} \mathrm{~W}=b \rightarrow(3.2)$ and $\mathrm{W} \geq 0$

[^0]Theorem 3.1. If X solves (2.2) then there exist W which solves (3.2).

To prove this theorem, We need the following lemma.

Lemma 3.1. If

$\sum_{i=1}^{p} a_{i}=\sum_{j=1}^{q} \beta_{j}=V ; a_{i} \geq 0 ; \quad \beta_{j} \geq 0$ then there exist a matrix $Y=\left(y_{i j} \geq 0\right)$ such that $\sum_{j=1}^{q} y_{i j}=a_{i}$ and $\sum_{i=1}^{p} y_{i j}=\beta_{j}$

Proof of the lemma. The existence of such a matrix is ensured by $y_{i j}=\frac{a_{i} \beta_{j}}{V}$. For
 $\sum_{j=1}^{q} y_{i j}=\frac{a_{i} \sum_{j=1}^{q} \beta_{j}}{V}=a_{i}$ and of course $y_{i j}$ as defined above ≥ 0.

Proof of the theorem.

As X solves (2.2), its $\mathrm{i}^{\text {th }}$ constraint equation will be $\sum_{\mathrm{k} \in \mathrm{A}^{+}} a_{i k} x_{k}{ }^{+}$
$\sum_{l \epsilon A^{-}}-a_{i l} x_{l}=0$.

Writing $a_{i k} x_{k}=a_{k}$ and $-a_{i l} x_{l}=$
$\beta_{l} \quad \rightarrow \quad(3.3)$

We have $\sum_{k=1}^{p} a_{k}=\sum_{l=1}^{q} \quad \beta_{l}$. From the lemma 3.1, there exist a p by q matrix
$Y=\left(y_{k l} \geq 0\right)$ such that
$\sum_{l=1}^{p} y_{k l}=a_{k}$ and $\sum_{k=1}^{q} y_{k l}=\beta_{l}$. Now we are ready to define vector $\mathrm{W}=\binom{w^{1}}{w^{2}}$ where w^{1} is a column vector with r components and w^{2} is a column vector with $p q$ components.

$$
\begin{equation*}
w_{j}^{1} x_{j} ; \forall j \epsilon A^{0} \text { and } \tag{3.4}
\end{equation*}
$$

$w_{k l}^{2}=\frac{-y_{k l}}{a_{i k} \cdot a_{i l}} ; \forall k \epsilon A^{+} ; \forall l \in A^{-} \rightarrow$

Clearly $\mathrm{W} \geq 0$. Next we wish to show that $\bar{A} \mathrm{~W}=b$, which amounts in showing that X $=T W$.

Consider TW $=\mathrm{T}_{1} \mathrm{~W}^{1}+\mathrm{T}_{2} \mathrm{~W}^{2} . \operatorname{Using}(2.4)$ and (3.4).

This reduces to TW $=\sum_{j} e_{j} w_{j}^{1}+$
$\sum_{k} \sum_{l} t_{k l} w_{k l}^{2}=$
$\sum_{j} e_{j} X_{j}+\sum_{k} \sum_{l}\left(-a_{i l} e_{k}+a_{i k} e_{l}\right) \frac{-y_{k l}}{a_{i k} \cdot a_{i l}}$
$\mathrm{TW}=\sum_{j} e_{j} X_{j}+\sum_{k} \frac{e_{k} a_{k}}{a_{i k}}-\sum_{l} \frac{e_{l \beta_{l}}}{a_{i l}}$,

In view of (3.3) We have,
$\mathrm{TW}=\sum_{j \epsilon A^{0}} e_{j} X_{j}+\sum_{k \epsilon A^{+}} e_{k} X_{k}+$
$\sum_{l \epsilon A^{-}} e_{l} X_{l}$
$\mathrm{TW}=\mathrm{X}$, This proves the theorem.

Theorem 3.2. If X^{*} solves the problem
(2.1) - (2.2) then W^{*} solves the problem (3.1) - (3.2).

Proof: Theorem 3.1 guarantees the existence of a feasible W^{*}. That is
$\bar{A} \mathrm{~W}^{*}=\mathrm{b} ; \mathrm{W}^{*} \geq 0$

ATX $^{*}=\mathrm{b} ; \mathrm{X}^{*} \geq 0$

Next X^{*} solves the problem (2.1) - (2.2)
imply that $\mathrm{CX}^{*} \geq C X ; \forall X \in L$

This implies that $\mathrm{CTW}^{*} \geq C T W ; \forall W \epsilon G$
$\bar{C} \mathrm{~W}^{*} \geq \bar{C} W ; \forall W \epsilon G$

Thus W^{*} solves the problem (3.1) - (3.2).

Theorem 3.3. If W^{*} solves the problem $(3.1)-(3.2)$ then there exist $\mathrm{X}^{*}=\mathrm{TW}^{*}$ which solves the problem (2.1)-(2.2).

Also we know that $\bar{C} \mathrm{~W}^{*} \geq \bar{C} \mathrm{~W}$;
$\forall W \epsilon G \quad \rightarrow \quad(3.7)$
Also the extreme values of the two objective functions are equal.

Proof:

W^{*} solves the problem (3.1) - (3.2) means that $\bar{A} \mathrm{~W}^{*}=\mathrm{b} ; \mathrm{W}^{*} \geq 0$ or $\mathrm{ATW}^{*}=\mathrm{b} ;$ $X^{*} \geq 0 \quad$ or
$\mathrm{AX}^{*}=\mathrm{b} ; \mathrm{X}^{*} \geq 0 \quad \rightarrow \quad$ (3.5)

Further, $\quad \mathrm{T} \geq 0, \mathrm{~W}^{*} \geq 0$ implies that X^{*}
$\geq 0 \rightarrow$ (3.6)

And would like to show that $C X^{*} \geq C X$;
$\forall X \epsilon L \quad \rightarrow \quad(3.8)$

If possible, let \bar{X} and not X^{*} solve the problem (3.1) - (3.2) which means that $C \bar{X}$ $>C \mathrm{X}^{*}$

From theorem (3.1) it follows that $C T \bar{W}$
$>C T \mathrm{~W}^{*}$ or $\overline{C W}>\bar{C} \mathrm{~W}^{*}$

This violates (3.7), the contradiction proves the result. Finally, let Z^{*} and z^{*} be the
values of (2.1) and (3.1) at X^{*} and W^{*}
respectively. This means $\mathrm{Z}^{*}=C \mathrm{X}^{*}=\mathrm{CTW}^{*}$
$=\bar{C} \mathrm{~W}^{*}=\mathrm{z}^{*} \rightarrow(3.9)$

The result then follows from
(3.5), (3.6), (3.8) and (3.9)

2.NUMERICAL EXAMPLE

In this section, we indicate how our new method is differ from the Two-phase
method. First we solve a L.P.P. using

Two- phase method. Consider an L.P.P.

Maximize $Z=2 x_{1}+6 x_{2}$ Subject to x_{1}
$+x_{2}+x_{3}=4,3 x_{1}+x_{2}+x_{4}=6$
$\mathrm{x}_{1}-\mathrm{x}_{2} \quad=0$ and $\quad \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \geq 0$.

Solution: The above problem can be written as Maximize $\mathrm{Z}=2 \mathrm{x}_{1}+6 \mathrm{x}_{2}+0 \mathrm{x}_{3}+$ $0 x_{4}-1 x_{5}$

Subject to $x_{1}+x_{2}+x_{3}+0 x_{4}+0 x_{5}=4,3$

Here $\mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$ are basic variables; $\mathrm{x}_{1}, \mathrm{x}_{2}$ are non- basic variables and x_{5} is an artificial variable.

Phase - I:Assigning a cost - 1 to the artificial variable and zero cost to all other variables. The objective function of the auxiliary L.P.P. becomes Maximize $Z^{*}=$ $0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4}-1 x_{5}$

Table:1. Initial Iteration
$\mathrm{Cj}: \quad 0$
$0 \quad 0$
$0 \quad-1$

C_{B}	Y_{B}	X_{B}	x_{1}		x_{2}	Ratio
x_{3}	x_{4}					
0	x_{3}	4	1		1	4
0	x_{4}	6	1	0	0	2
-1	x_{5}	0	0		1	0
0			1		0	0

$\begin{array}{llll}\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} & & -1 & 1 \\ 0 & 0 & 0 & \end{array}$
$\mathrm{x}_{1}+\mathrm{x}_{2}+0 \mathrm{x}_{3}+\mathrm{x}_{4}+0 \mathrm{x}_{5}=6$,
$x_{1}-x_{2}+0 x_{3}+0 x_{4}+1 x_{5}=0$ and
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5} \geq 0$.

Table :2. First Iteration: Here x_{5} drops from the basis and x_{1} enters the basis.

$\begin{array}{lllll} & \mathrm{Cj}: & 0 & 0 & 0\end{array}$						
C_{B}	Y_{B}	X_{B}	X_{1}		x_{2}	x_{3}
			X_{4}	x_{5}		
0	x	4	0		2	1
0	x_{4}	6	0	-1		
			0		4	0
0	x_{1}	0	1	-3	1	
			-1	0	0	
			1			

$\left.\begin{array}{ll|l|l|l|l|l|}\hline 0 & x_{3} & 4 & 0 & 2 \\ 0 & x_{4} & 6 & 2 & 1 & 3 / 2 \\ 2 & x_{1} & 0 & & - \\ 0 & & & & \\ \hline\end{array}\right]$

Tabel:4 . Final Iteration: In this iteration x_{4} drops and x_{2} enters in the basis.

$$
\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}
$$

$0 \quad 0 \quad 1$
Here all $Z_{j-} \mathrm{C}_{\mathrm{j}} \geq 0$ and the artificial variable does not lie in the basis. So we go to Phase-II.

Phase -II We consider the actual cost associated with original variables. The new objective function is Maximize $\mathrm{Z}=2 \mathrm{x}_{1}+6$ $\mathrm{x}_{2}+0 \mathrm{x}_{3}+0 \mathrm{x}_{4}$.

Table :3. Initial Iteration :
$\mathrm{C}_{\mathrm{j}}: \quad 2$
6
0

$$
\begin{aligned}
& 0 \\
& \begin{array}{|l|l|l|l|l|}
\hline C_{B} & Y_{B} & X_{B} & x_{1} & \text { Ratio } \\
& & & & x_{2} \\
x_{3} \\
x_{4}
\end{array} \\
& \hline
\end{aligned}
$$

Cj : 2
60

Since all $Z_{j}-C_{j} \geq 0$, We reached optimum solution.

Therefore Maximum $\mathrm{Z}=12$ when $\mathrm{x}_{1}=\mathrm{x}_{2}=$ $3 / 2, x_{3}=1$ and $x_{4}=0$.

This method have totally four Iterations.
The same problem, in the B- M have three iterations. But our new method have two iterations only. Our new method illustrated through the same problem as follows. The problem can be written as in the matrix form

Maximize $Z=2 x_{1}+6 x_{2} ;$ Here, Let
$A=\left(\begin{array}{cccc}1 & 1 & 1 & 0 \\ 3 & 1 & 0 & 1 \\ 1 & -1 & 0 & 0\end{array}\right) ; X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$ and
$b=\left(\begin{array}{l}4 \\ 6 \\ 0\end{array}\right)$

Here $x_{1}-x_{2}+0 x_{3}+0 x_{4}+1 x_{5}=0$ is a
homogeneous constraint. According to the new algorithm $p=1, q=1$ and $r=2$. Now n
$=4$ this implies $I_{4}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ and
$t_{k l}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)$. Therefore $T=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.
For the transformation problem, $C T W=$
$\left(\begin{array}{llll}2 & 6 & 0 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)=8 w_{3}$.
$A T W=b$ implies
$\left(\begin{array}{cccc}1 & 1 & 1 & 0 \\ 3 & 1 & 0 & 1 \\ 1 & -1 & 0 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)=$ $\left(\begin{array}{l}4 \\ 6 \\ 0\end{array}\right)$

This implies $\mathrm{w}_{1}+2 \mathrm{w}_{3}=4$ and $\mathrm{w}_{2}+4 \mathrm{w}_{3}=6$

Thus the given problem can be transformed
as Maximize $\mathrm{Z}=8 w_{3}$, Subject to $\mathrm{w}_{1}+$
$2 \mathrm{w}_{3}=4, \quad \mathrm{w}_{2}+4 \mathrm{w}_{3}=6$ and $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3} \geq 0$

This transformed problem have two
constraints only and the homogeneous
constraint is completed eliminated. Solution
of the transformed problem is as follows

Tabel:5. Initial iteration:

$\begin{array}{cccc}Z_{j}-C_{j} & 0 & 0 & -8\end{array}$
Since, there is one $\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}<0$.
Therefore , we go to next iteration.
Table:6. First iteration: W_{3} enters to the basis and W_{2} drops from the basis.
$\mathrm{C}_{\mathrm{j}}: \quad 0$

C_{B}	Y_{B}	W_{B}	W_{1} $\mathrm{~W}_{2}$ $\mathrm{~W}_{3}$	
0	$\mathrm{~W}_{1}$	1	1	
8	$\mathrm{~W}_{3}$	$3 / 2$	$-1 / 2$	0
0				

2

Since all $Z_{j}-C_{j} \geq 0$. Therefore we reached optimum solution. That is Maximum $\mathrm{Z}=12$
when $\mathrm{w}_{1}=1$ and $\mathrm{w}_{3}=3 / 2$. Now we get
solution of the original problem using the relation $\mathrm{X}=\mathrm{TW}$.

$$
\begin{aligned}
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) \\
&=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
3 / 2
\end{array}\right) \\
&=\left(\begin{array}{c}
3 / 2 \\
3 / 2 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Here the same solution reached as
Maximum $Z=12$ when $x_{1}=x_{2}=3 / 2, x_{3}=1$ and $\mathrm{x}_{4}=0$.

But total number of iterations reduced as well as computing time reduced.

2.CONCLUSION

The process described in section 2, can be extended to define T if $\mathrm{AX}=\mathrm{b}$ has more than one homogeneous constrains. In case there are s homogeneous constraints, we define s transformation matrices $\mathrm{T}(1), \mathrm{T}(2)$,
$\mathrm{T}(3), \ldots \mathrm{T}(\mathrm{s}) . \mathrm{T}(2)$ is determined once
$\mathrm{AT}(1)$ has been computed. In general $\mathrm{T}(\mathrm{s})$
is determined only when $\mathrm{AT}(1), \mathrm{AT}(2)$
....AT(s-1) has been computed. This
algorithm which reduces the number of
constraints the main factor of the
optimization complexity, can be used
efficiently for solving large- scale
programming problems.

[^0]: Where $\bar{C}=C T ; \bar{A}=A T$. Let $G=$ $\{W: \bar{A} \mathrm{~W}=b ; W \geq 0\}$ be constraint space.

