ABSTRACT
The effect of Pr-doping on the transition temperature (Tc) and structural properties of YBa2Cu3O7-δ (YBCO) superconductor have been investigated. The sol-gel method has been employed for the synthesis of Y1-xPrxBa2Cu3O7-δ (YPBCO) samples with the compositions (x=0.0, 0.05, 0.10, 0.20 and 0.30). The broadening in X-ray diffraction (XRD) peaks has been used to calculate the micro-strain by the Williamson-Hall (W-H) plot. The broadening in XRD peaks and micro-strain are found to increase with increase in Pr concentration x which could be representatives for some disorder in Cu-O planes. The resistance-temperature measurements of as prepared YPBCO samples show the monotonic suppression of Tc with increase in Pr concentration from x=0 to x=0.30. The experimental Tc values were in good agreement with theoretical Tc values calculated by the inclusion of disorder effects along with magnetic pair breaking and hole filling effects. It has been suggested that disorder in Cu-O planes might be strain-induced. The disorder effects along with magnetic pair breaking and hole filling effects are responsible for the suppression of Tc in YPBCO system.

Introduction
YBCO was the first superconductor to have transition temperature (Tc) above boiling temperature of Liquid Nitrogen. Its superconducting properties are not affected much by the substitution of Y with the rare earth (RE) elements like La, Nd, Sm, Eu and Gd etc. however, Praseodymium (Pr) is the exception. The magnetic property measurements of YPrBa2Cu3O7 system clearly indicate the influence of Pr-doping on electrical properties of YBCO. The Pr-doped YBCO has potential applications as superconducting wires due to its enhanced critical current density (Jc) in the magnetic field. The Abrikosov-Gorkov relation has potential applications as superconducting wires due to its enhanced critical current density (Jc) in the magnetic field. The theoretical predictions of Tc in Y1-xPrxBa2Cu3O7-δ system clearly indicate the influence of Pr-doping on electrical properties of YBCO. The Pr-doped YBCO has potential applications as superconducting wires due to its enhanced critical current density (Jc) in the magnetic field. The theoretical Tc (in Kelvin) for Y1-xPrxBa2Cu3O7-δ system according to Dolev is given by

\[T_c(x) = T_{c0} - Bx \]

Where \(T_{c0} \) and \(B \) are constants. The equation (1) suggested that the Tc values depend on two terms (i) the linear term due to magnetic pair breaking mechanism and (ii) the quadratic term due to hole filling effects. The theoretical Tc (in Kelvin) of YPrBa2Cu3O7 system for various values of x has been calculated by J. J. Neu-meyer et al. using Abrikosov-Gorkov (A-G) relation

\[T_c(x) = T_{c0} - Bx \]

Where and. The equation (2) contains only linear term in x which is attributed to magnetic pair breaking mechanism.

Results and Discussions
Fig. 1 shows the variation of relative resistance with temperature in YPrBa2Cu3O7 system (x=0, x=0.05, x=0.10, x=0.20 and x=0.30) samples. The transition temperature Tc for various samples was determined from resistance-temperature measurements by means of standard four probe method. The structure of the samples was characterized using XRD technique. The size and surface morphology of grains were determined from SEM measurements.
concentrations of Pr is calculated using fig. 1, eq. (2), 3 and 4 are shown in table-1 and found in good agreement with reported values. The variation of experimental T_c with Pr concentration x is shown the fig. 2. The monotonic suppression of T_c with increase in Pr concentration was observed. Further, the various values of transition temperature calculated from equations (2), (3) & (4) along with experimental transition temperature is plotted against Pr concentration x in fig. 3. The transition temperatures calculated from eq. (4) are found in good agreement with experimental T_c values. From fig. 3, this is evident that there is some disorder present in the system.

Table 1 Comparison between experimental T_c and theoretical T_c calculated from Eq. (2), (3) & (4):

<table>
<thead>
<tr>
<th>Pr Conc. (x)</th>
<th>Experimental T_c (K)</th>
<th>T_{zero} (K)</th>
<th>T_{onset} (K)</th>
<th>Eq. (2)</th>
<th>Eq. (3)</th>
<th>Eq. (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>92</td>
<td>87</td>
<td>97</td>
<td>92.75</td>
<td>92.75</td>
<td>92.75</td>
</tr>
<tr>
<td>0.05</td>
<td>86</td>
<td>82</td>
<td>92.18</td>
<td>88.12</td>
<td>84.68</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>79</td>
<td>74</td>
<td>87.35</td>
<td>83.87</td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>71</td>
<td>67</td>
<td>77.70</td>
<td>76.07</td>
<td>69.18</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>62</td>
<td>57</td>
<td>68.05</td>
<td>67.96</td>
<td>59.52</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Variation of experimental T_c values in $Y_{1-x}Pr_xBa_2Cu_3O_7-\delta$ samples for various values of x.

Fig. 3. Plot of T_c values from experiment and equations (2), (3) & (4) in $Y_{1-x}Pr_xBa_2Cu_3O_7-\delta$ samples for various values of x.

Fig. 4 shows the XRD measurements of $Y_{1-x}Pr_xBa_2Cu_3O_7-\delta$ samples for various values of x. It shows that all the samples have the orthorhombic Perovskite structure and contain no extra peaks due to impurity phases within the experimental error. The lattice parameters calculated for each sample from the diffraction peak positions (2\theta) are listed in table-2. The variation of lattice parameters with the Pr concentration x is shown in the fig. 5. From XRD pattern, it is evident that lattice parameters a and b first decreases and then increases with x. On the other hand, lattice parameter c increases monotonically with x. The volume of the unit cell first decreases for $x=0.05$ and then monotonically increases up to $x=0.30$. The results clearly show that the distance between the two Cu-O planes increases and Cu-O planes bend towards the Ba-O planes with increase in Pr concentration.

Table 2 Lattice parameters for various values of x in $Y_{1-x}Pr_xBa_2Cu_3O_7-\delta$ samples:

<table>
<thead>
<tr>
<th>Pr Conc. (x)</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>Unit cell volume (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3.822</td>
<td>3.885</td>
<td>11.645</td>
<td>172.91</td>
</tr>
<tr>
<td>0.05</td>
<td>3.827</td>
<td>3.876</td>
<td>11.654</td>
<td>172.87</td>
</tr>
<tr>
<td>0.10</td>
<td>3.826</td>
<td>3.885</td>
<td>11.679</td>
<td>173.60</td>
</tr>
<tr>
<td>0.20</td>
<td>3.830</td>
<td>3.893</td>
<td>11.705</td>
<td>174.46</td>
</tr>
<tr>
<td>0.30</td>
<td>3.830</td>
<td>3.893</td>
<td>11.705</td>
<td>174.52</td>
</tr>
</tbody>
</table>
Fig. 5. The variation unit cell volume in \(Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta} \) samples for various values of \(x \). Inset: variation of lattice parameters \(a, b \) and \(c \) with \(x \).

Fig. 6 shows the variation of the full-width half maximum (FWHM) of the (005) peak in YPBCO system and confirms that the FWHM monotonically increases with Pr concentration \(x \). From the results, it can be said that Pr-doping influences the structure of entire unit cell. The FWHM of XRD peaks can be expressed as linear sum of FWHM of size, strain and Instrumental.

\[
\beta = \beta_{size} + \beta_{strain} + \beta_{instrumental} \tag{5}
\]

Here, in order to find the strain broadening each XRD peak fitted with Lorentzian profile. The micro-strain, \(\varepsilon \) and the average grain size, \(D \) can be calculated from Williamson-Hall (W-H) plot for the X-ray diffraction peak broadenings.

\[
\beta \cos\theta = 4\varepsilon \sin\theta + \lambda / D \tag{6}
\]

Where \(\lambda \) is wavelength of incident X-rays. In fig. 7, plotted against and linearly fitted to find micro-strain \(\varepsilon \). The micro-strain \(\varepsilon \) increases with increase in Pr concentration \(x \) as shown in the fig. 8. Further, fig. 9 shows that transition temperature \(T_c \) of YPBCO system decreases monotonically with increase in micro-strain \(\varepsilon \). The variation of \(T_c \) with micro-strain \(\varepsilon \) has not been reported elsewhere and, suggested that micro-strain \(\varepsilon \) is a good variable to define the suppression of \(T_c \) along with magnetic pair-breaking and hole filling effects. A closer correlation can be found between micro-strain \(\varepsilon \) and transition temperature \(T_c \) compared with the correlation between the disorder present in Cu-O planes and transition temperature \(T_c \).

From these results, it can be said that the disorder in Cu-O planes might be strain-induced. Fig. 10 shows the SEM of \(Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta} \) samples with \((a) x=0 \), \((b) x=0.05 \), \((c) x=0.10 \), \((d) x=0.20 \) and \((e) x=0.30 \). The average size of the grains calculated from SEM images ranges from 4 to 15 \(\mu \text{m} \). The EDAX
analysis of grains in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ samples for the range $0 \leq x \leq 0.30$ revealed that the various elements were present in the appropriate proportion.

![Fig. 10. SEM of $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ samples; (a) x=0.0, (b) x=0.05, (c) x=0.10, (d) x=0.20 and (e) x=0.30.](image)

Conclusions:
The effects of Pr-doping on the superconducting transition temperature T_c and XRD patterns of YBCO samples have been investigated. The monotonic suppression of T_c was observed with increase in Pr-doping. The broadening in XRD peaks was found to increase with increase in Pr-doping and, has been used to calculate the micro-strain ε. We have observed an increase of ε and a decrease of T_c with increase in Pr-doping. Our experimental T_c values were in good agreement with theoretical T_c values calculated from equation (4) which includes the disorder term along with the magnetic-pair breaking and hole filling terms. Probably, the theoretically predicted disorder in Cu-O planes was strain-induced. The more experimental studies will be required to correlate the micro-strain and disorder effects in YPBCO system. The present work emphasizes on the strain-induced disorder effect, along with the other effects, to explain the suppression of T_c in Pr-doped YBCO superconductor.

REFERENCE