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ABSTRACT Bayesian estimation and inference has a number of advantages in statistical modelling and data analysis. It 
provides a way of formalising the process of learning from data to update beliefs in accord with recent no-

tions of knowledge synthesis.In this paper the Bernoulli distribution is taken for Bayesian analysis. The properties of Bayes 
estimates of the parameters are studied under different loss functions through simulated and real life data. Different priors 
like informative and non-informative are used to estimate the parameters. The loss functions are compared through pos-
terior risk.

Introduction

Bernoulli distribution is a 
discreteprobability distribution, which 
takes value 1 with success probability p
and value 0 with failure probability q = 1 -
p. If X is a random variable with this 
distribution, we have:Pr(X = 1) = 1- Pr(X 
= 0) = 1 - q = p

The probability mass function of this 
distribution is
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This can be expressed as
}1,0{)1();( 1 ∈−= − kforpppkf kk . The 

mean of a Bernoulli random variable X is 
E(X) = p, and its variance is 

Var(X) = p (1 - p)
The cumulative distribution function of 
Xfollowing Bernoulli distribution is
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Posterior distributions and Likelihood 
function:

The posterior distribution summarizes 
available probabilistic information on the 
parameters in the form of prior distribution 
and the sample information contained in 
the likelihood function. The likelihood 
principle suggests that the information on 
the parameter should depend only on its 
posterior distribution. Bayesian scientist’s 
job is to assist the investigator to extract 
features of interest from the posterior 
distribution. In this section we will use the 
Bernoulli distribution as sampling 
distribution mingles with the informative 
and noninformative priors for the 
derivation of posterior distribution

Let the random variable yifollow a 
Bernoulli distribution with parameter θ.
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i ,...,2,1,)1()/( 1 =−= −θθθ

The likelihood function is
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Posterior Distribution using Conjugate 

Prior(CP):

A flexible choice of conjugate prior 
distribution for a Bernoulli distribution is a 
beta distribution with parameters αandβ.
The probability function of the beta 
distribution is given by

g(θ) = 11 )1( −− −
ΓΓ
+Γ βα θθ
βα
βα

The joint probability density function (pdf)
),y,...,y,y(H n21 θ is given by 

),y,...,y,y(H n21 θ

= ),y,...,y,y(L n21 θ )(g θ

where ),y,...,y,y(L n21 θ is the likelihood 
function of )/( θiyP and )(θg is the prior 
distribution. 

Hence the joint pdf is ),y,...,y,y(H n21 θ =
Гα+β
Г𝛼𝛼𝛼𝛼Г𝛽𝛽𝛽𝛽

𝜃𝜃𝜃𝜃𝛼𝛼𝛼𝛼+∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−1(1− 𝜃𝜃𝜃𝜃)𝛽𝛽𝛽𝛽+𝑛𝑛𝑛𝑛−∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−1

The marginal pdf of n21 y,...,y,y is given 

byp(𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦2,.......𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)

= ∫𝐻𝐻𝐻𝐻(𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦2, … … .𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 , θ)𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

=Г𝛼𝛼𝛼𝛼+𝛽𝛽𝛽𝛽
Г𝛼𝛼𝛼𝛼Г𝛽𝛽𝛽𝛽

Г𝛼𝛼𝛼𝛼+∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖Г𝛽𝛽𝛽𝛽+𝑛𝑛𝑛𝑛−∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
Г𝛼𝛼𝛼𝛼+𝛽𝛽𝛽𝛽+𝑛𝑛𝑛𝑛

The posterior pdf )/( iyP θ of θ is given by 
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)y,...,y,y/( n21θπ =
)y,...,y,y(P

),y,...,y,y(H

n21

n21 θ

=
Г𝛼𝛼𝛼𝛼+𝛽𝛽𝛽𝛽+𝑛𝑛𝑛𝑛

Г𝛼𝛼𝛼𝛼+∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖Г𝛽𝛽𝛽𝛽+𝑛𝑛𝑛𝑛−∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝜃𝜃𝛼𝛼𝛼𝛼+∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−1(1−)𝛽𝛽𝛽𝛽+𝑛𝑛𝑛𝑛−∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−1

which is again a beta distribution with 

parameters α = α+∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 ,  β = β+ n-∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖and 

mean α+∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼+β+ n

. The posterior mean is used to 

compute the point estimates for the 

parameter. 

Posterior Distribution using Uniform 

Prior(UP):

The prior distribution of θ can be taken as 

general uniform distribution with                                

pdf = 𝑔𝑔𝑔𝑔(θ) =1
𝜃𝜃𝜃𝜃

0 ≤ 𝜃𝜃𝜃𝜃 ≤ 1

The Bayesian posterior distribution for the 
parameter θ is  )y,...,y,y/( n21θπ

= 𝜃𝜃𝜃𝜃∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−1 (1 − 𝜃𝜃𝜃𝜃)𝑛𝑛𝑛𝑛−∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

which is a beta distribution with 
parameters α = ∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , β = n−∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1 and 

mean 
1+
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Posterior Distributionusing Jeffrey’s 
Prior (JP):

The Jeffery’s prior information, 

g(θ)= 
2
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Posterior probability function is given by 
)y,...,y,y/( n21θπ =

𝜃𝜃𝜃𝜃(∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
2)−1 (1−𝜃𝜃𝜃𝜃)(𝑛𝑛𝑛𝑛−∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
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wherec =β(∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 + 1 
2

, n − ∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 + 1
2
  )

which is again a beta distribution with 
parameters   α =∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 + 1

2
, β = 𝑛𝑛𝑛𝑛 − ∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 +

1
2
and mean

∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−
1
2

𝑛𝑛𝑛𝑛+1

Bayesian Estimation Under Different 
Loss Functions:
Linear ExponentialLoss Function

The linear exponential (LINEX) loss 
function is an asymmetric loss function. 
This loss function rises approximately 
exponentially onone side of zero and 
approximately linearly on the other side. It 
is under the assumption that the minimal 
loss occurs at θθ =ˆ and is expressed as 
L (∆ )∝ exp (a∆ ) – ( a∆ ) – 1 ; a ≠ 0                                            
---------------- (1)
with∆ = ( θθ −ˆ ), where θ̂ is an estimate 
of θ .The sign and magnitude of the shape 
parameter ‘a’ represents the direction and 
degree of symmetry, respectively. There is 
overestimation if a > 0 and 
underestimation if a < 0 but when 0≅a ,
the LINEX loss function is approximately 
the squared error loss function. The 
posterior expectation of the LINEX loss 
function, according is

)]ˆ([ θθθ −LE ∝

1))(ˆ()]([exp)ˆ(exp −−−− θθθθ θθ EaaEa

------------------ (2)

The Bayes estimator ofθ , represented by 

Lθ̂ under LINEX loss function, is the 
value of θ̂ which minimizes (2) and is 
given as

)]([expln1ˆ θθ θ aE
aL −−=

----------------- (3)

provided that )]([exp θθ aE − exists and is 
finite. The Bayes estimator Lû of a function 
u = )](exp),([exp ηaab −− is given as 
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Lû = E ]/)(exp),([exp yaab η−−
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------------------ (4)
From equation (4), it can be observed that 
it contains a ratio of integrals which cannot 
be solved analytically, and for that we 
employ Linley’s approximation procedure 
to estimate the parameters. Lindley 
considered an approximation for the ratio 
of integrals for evaluating the posterior 
expectation of an arbitrary function )(ˆ θu
as 

∫
∫=

θθθ

θθθθ
θ
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)](exp[)(
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Lindley’s expansion can be approximated 
asymptotically by

where L is the log- likelihood function,  
and
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Entropy Loss Function

Another useful asymmetric loss 
function is a entropy loss function (ENLF) 

which is given as )ˆ( θθ −L ∝

1
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The Bayes estimator Gθ̂ of θ under the 
entropy loss function is

kk
G E

1

)]([ˆ −−= θθ θ provided )( kE −θθ exists 
and is finite. The Bayes estimator for this 
loss function is
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Similar Lindley approach is used for the 
general entropy loss function as in the 
LINEX loss but here the Lindley 
approximation procedure as stated in (4), 
where u1,u11 and u2,u22 are the first and 
second derivatives for α and β, 
respectively, and are given as
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Squared Error Loss Function

The squared error loss 
function(SELF) is symmetric in nature and 
is given by 2)ˆ()ˆ( θθθθ −=−l . The Bayes 
estimator of a function u = u ),( ηb of the 
unknown parameters under squared error 
loss function is the posterior mean.
where
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Applying the same Lindley approach here 
with u1, u11 and u2, u22 being the first and 
second derivatives for α and β, 
respectively, we have 

,bu = 11 =
∂
∂

=
b
uu , u11 = u2 = u22 = 0,

,η=u ,12 =u u11 = u1 = u22 = 0

Numerical Data Analysis:

In Kanyakumari districtthere are 
four taluksvizAgastheeswaram, Kalkulam, 
Thovalai, and Vilavancode. The dengue 
patients reported from the health centres of 
the above four taluks from the year 2009 to 
2012 are taken for the study. In each year, 
out of a sample of ‘n’ patients affected by 
fever,  ∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 were affected by dengue. 

The original data follows a 
Bernoulli distribution with parameter θ. 
The flexible choice of a prior distribution 
for a Bernoulli probability is θ ~ Beta 
(α,β) that is, θ has a beta distribution with 
specified parameters α and β.
The posterior summary of the real life data 
is shown in Table 1. The Bayesian 
estimates and the posterior risk under 
different loss functions is given in Table 2.

Simulation Study

Here a simulation criterion is used and for 
each n = 50, 75 and 100, the Bayes 
estimates and the Bayes posterior risks are 
calculated under different loss functions 
along with different priors. The 
comparison of Bayes posterior risk under 
different loss function using different  

priors has been made through which we 
can conclude from Table 3 to Table 5that 
within each loss functions the conjugate 
prior provides less Bayes posterior risk so 
it is more suitable for the class of life-time 
distributions and amongst loss functions,  
LINEX loss function, is more preferable as 
compared to all other loss functions which 
are provided here because under  this loss 
function Bayes posterior risk is small for 
each and every value of parameter .

CONCLUSION

The Bayesian analysis of the 
Bernoulli distribution is done using 
different priors. After analysis the 
conjugate prior of Beta distribution is 
compatible for the unknown parameter of 
the distributions and preferable over all 
other competitive priors because of having 
less posterior variance along with less 
Skewness combined with less Kurtosis.As 
far as choice of loss function is concerned, 
one can easily observe based on evidence 
of different properties as discussed above 
that the LINEX loss function has smaller 
posterior risk. As we increase sample size 
posterior risk comes down. In future, this 
work can be extended using class of life-
time truncated distributions and 
considering location parameter. The study 
is useful for the researchers, practitioners 
and also for scientists in the field of 
physics and chemistry or other fields 
where life-time distribution are extensively 
used.
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Table 1 Posterior Summary using the real data with different priors for the year  2009, 2010, 2011, 2012

Year 2009 2010

CP UP JP CP UP JP

Mean 0.19777 0.1979 0.19815 0.19684 0.19134 0.1914

Mode 0.19747 0.1976 0.19787 0.19655 0.19104 0.19111

Variance 0.00007 0.00008 0.00008 0.00007 0.00007 0.00007

Skewnes 0.06731 0.06775 0.06766 0.06604 0.06843 0.06841

Kurtosis 0.00381 0.00389 0.00387 0.00373 0.00417 0.00416

2011 2012

Mean 0.17894 0.1777 0.17792 0.16353 0.1645 0.16373

Mode 0.17865 0.17741 0.17763 0.16327 0.16423 0.16347

Variance 0.00062 0.00064 0.00065 0.54673 0.54739 0.54726

Skewnes 0.07048 0.07104 0.07095 0.07272 0.07222 0.07264

Kurtosis 0.00479 0.0049 0.00489 0.00553 0.00543 0.00552

Table 2 Bayes estimates and posterior risk using different loss functions for  2009,2010, 2011, 2012 for the real life data

Year 2009 2010

Prior SELF ELF LINEX SELF ELF LINEX

CP 0.19876(0.00172) 0.79825(0.359224) 0.19596(0.002494) 0.19684(0.00168) 0.642712(0.34622) 0.09792(0.02494)

UP 0.19794(0.00176) 0.505306(0.18369) 0.19514(0.001251) 0.19131(0.00154) 0.522629(0.17299) 0.09515(0.01251)

JP 0.19815(0.00178) 0.250874(0.12389) 0.19535(0.000835) 0.19156(0.00132) 0.254191(0.14669) 0.09528(0.00835)

2011 2012

CP 0.17894(0.00159) 0.487532(0.31522) 0.08897(0.001994) 0.16449(0.00142) 0.426743(0.31322) 0.08174(0.001824)

UP 0.17771(0.00149) 0.562525(0.15299) 0.08835(0.000951) 0.16352(0.00138) 0.611509(0.11169) 0.08125(0.000781)

JP 0.17792(0.00128) 0.26148(0.13569) 0.08846(0.000435) 0.16373(0.00114) 0.270248(0.10599) 0.08136(0.000375)

Bayes estimates and respective posterior risk under simulation study
 
Table 3 Bayes estimates and posterior risk using priors under Squared Error Loss Function

θ 0.5 1

n CP UP JP CP UP JP

50
0.17519
(0.000038)

0.16352
(0.000036)

0.16373
(0.000041)

0.29966
(0.00089)

0.44874
(0.05525)

0.61935
(0.01958)

75
0.16483
(0.000044)

0.16244
(0.000038)

0.16229
(0.000051)

0.39114
(0.01634)

0.61663
(0.0613)

0.56892
(0.0178)

100
0.16531
(0.000045)

0.16256
(0.000037)

0.16233
(0.000050)

0.32757
(0.00804)

0.66381
(0.00156)

0.284
(0.0066)

Table 4 Bayes estimates and posterior risk using priors under LINEX loss function	

θ 0.5 1

n CP UP JP CP UP JP

50
0.00018
(0.000055)

6.14024
(0.000054)

2.70828
(0.000054)

0.000011
(0.000065)

2.22846
(0.000055)

2.05953
(0.000035)

75
0.00011
(0.000045)

6.15612
(0.000044)

2.71211
(0.000044)

0.000476
(0.000055)

1.62171
(0.000043)

2.01927
(0.000037)

100
0.00008
(0.000035)

6.15157
(0.000034)

2.71184
(0.000034)

0.000565
(0.000035)

1.50645
(0.000032)

2.21761
(0.000027)

Applying the same Lindley approach here 
with u1, u11 and u2, u22 being the first and 
second derivatives for α and β, 
respectively, we have 

,bu = 11 =
∂
∂

=
b
uu , u11 = u2 = u22 = 0,

,η=u ,12 =u u11 = u1 = u22 = 0

Numerical Data Analysis:

In Kanyakumari districtthere are 
four taluksvizAgastheeswaram, Kalkulam, 
Thovalai, and Vilavancode. The dengue 
patients reported from the health centres of 
the above four taluks from the year 2009 to 
2012 are taken for the study. In each year, 
out of a sample of ‘n’ patients affected by 
fever,  ∑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 were affected by dengue. 

The original data follows a 
Bernoulli distribution with parameter θ. 
The flexible choice of a prior distribution 
for a Bernoulli probability is θ ~ Beta 
(α,β) that is, θ has a beta distribution with 
specified parameters α and β.
The posterior summary of the real life data 
is shown in Table 1. The Bayesian 
estimates and the posterior risk under 
different loss functions is given in Table 2.

Simulation Study

Here a simulation criterion is used and for 
each n = 50, 75 and 100, the Bayes 
estimates and the Bayes posterior risks are 
calculated under different loss functions 
along with different priors. The 
comparison of Bayes posterior risk under 
different loss function using different  

priors has been made through which we 
can conclude from Table 3 to Table 5that 
within each loss functions the conjugate 
prior provides less Bayes posterior risk so 
it is more suitable for the class of life-time 
distributions and amongst loss functions,  
LINEX loss function, is more preferable as 
compared to all other loss functions which 
are provided here because under  this loss 
function Bayes posterior risk is small for 
each and every value of parameter .

CONCLUSION

The Bayesian analysis of the 
Bernoulli distribution is done using 
different priors. After analysis the 
conjugate prior of Beta distribution is 
compatible for the unknown parameter of 
the distributions and preferable over all 
other competitive priors because of having 
less posterior variance along with less 
Skewness combined with less Kurtosis.As 
far as choice of loss function is concerned, 
one can easily observe based on evidence 
of different properties as discussed above 
that the LINEX loss function has smaller 
posterior risk. As we increase sample size 
posterior risk comes down. In future, this 
work can be extended using class of life-
time truncated distributions and 
considering location parameter. The study 
is useful for the researchers, practitioners 
and also for scientists in the field of 
physics and chemistry or other fields 
where life-time distribution are extensively 
used.
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Table 5 Bayes estimates and posterior risk using priors under Entropy loss function

θ 0.5 1

n CP UP JP CP UP JP

50 0.17519 (0.45011) 0.163522 
(0.45922) 0.16373 (0.46076) 0.28169 (1.00056) 0.17935 (1.00068) 0.18058 (1.00132)

75 0.16483 (0.45734) 0.176011 
(0.45910) 0.16427 (0.45189) 0.27133 (1.01432) 0.16899 (1.02391) 0.17022 (1.03472)

100 0.16531 (0.45830) 0.177043 
(0.449378) 0.16745 (0.41489) 0.27181 (1.03425) 0.16947 (1.05642) 0.17073 (1.07638)
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