
INDIAN JOURNAL OF APPLIED RESEARCH  X 491 

Volume : 4 | Issue : 3  | Mar 2014 | ISSN - 2249-555XResearch Paper Technology

Subjective Probability and Expected Utility, A 
Stochastic Approximation Evaluation

Yuri Pavlov Rumen Andreev
Institute of Information and Communication 

Technologies, Bulgarian Academy of Sciences
Institute of Information and Communication 

Technologies, Bulgarian Academy of Sciences

Keywords preferences, subjective probability, utility, stochastic approximation, non-additive 
measure.

ABSTRACT The topic of this article is stochastic algorithms for evaluation of the utility and subjective probability based 
on the decision maker’s preferences. The main direction of the presentation is toward development of mathe-

matically grounded algorithms for subjective probability and expected utility evaluation as a function of both the probability 
and the rank of the alternative. The stochastic assessment is based on mathematically formulated axiomatic principles and 
stochastic procedures and on the utility theory without additivity. 
The uncertainty of the human preferences is eliminated as is typical for the stochastic programming. Numerical presenta-
tions are shown and discussed.
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INTRODUCTION 
The representation of complex systems 

including human decisions as objective function 
needs mathematical tools for evaluation of qualitative 
human knowledge. In decision making theory the 
primitive are preferences relations as description of 
people's strategies, guided both by internal 
expectations about their own capabilities of getting 
results, and by external feedback of this result 
(Keeney & Raiffa, 1993). Such modeling addresses 
theory of measurement (scaling), utility theory and 
Bayesian approach in decision making. The Bayesian 
statistical technique in decision making is applicable 
when the information and uncertainty in respect of 
problems, hypothesis and parameters can be 
expressed by probability distribution and functional 
representation of human preferences (Griffiths & 
Tenenbaum, 2006). Such an approach needs careful 
analysis of the terms measurement, formalization and 
admissible mathematical operations in the modeling. 
This is a fundamental level that requires the use of 
basic mathematical terms like sets, relations and 
operations over them, and their gradual elaboration to 
more complex and specific terms like value and 
utility functions, operators on mathematically 
structured sets and harmonization of these 
descriptions with set of axioms. In this aspect we 
enter the theory of measurements and the expected 
utility theory (Fishburn, 1970).

The evaluation of qualitative human 
knowledge and the mathematical inclusion of the 
subjective probabilities and utility posed many 
difficulties and needs a special attention. Generally 
the human notions and preferences have qualitative or 
verbal expression. The wisely merge of the 
qualitative and verbal expression as human 
preferences and quantitative mathematical description 
causes many efforts. The violations of transitivity of 
the preferences lead to declinations in utility and 
subjective probability assessment (Cohen & al., 1988; 
Kahneman & Tversky, 1979; Fishburn, 1988; 
Machina, 2009). Such declinations explain the DM 
behavior observed in the Allais Paradox (Allais, 
1953). A long discussion for the role of the 
mathematic and the Bayesian theory in the human 
decision making reality has been started yet. New 
extensions of axiomatic bases of the developed 

mathematical theories are considered for further wide 
developments of von Neumann’s theory. Fruitful 
directions of researches are development of a non-
additive subjective utility theory. The mathematical 
results of Schmeidler in respect of subjective 
probability and utility description make a great 
impression on this development (Shmeidler, 1989). 

The paper suggests a reasonable well-
founded mathematical approach and methods for 
subjective probability and utility evaluation based on 
the von Neumann’s utility theory and the 
Kahneman’s and Schmeidler’s findings. We propose 
and discuss a stochastic programming for subjective 
probability and utility polynomial evaluation as 
machine learning based on the human preferences. 
Numerical presentations are shown and discussed. 

MATHEMATICAL FORMULATIONS AND 
BACKGROUND

The difficulties that come from the 
mathematical approach are due to the probability and 
subjective uncertainty of the DM expression and the 
cardinal character of the expressed human’s 
preferences. The mathematical description is the 
following. Let X be the set of alternatives (X⊆Rm). 
From practical point of view the empirical system of 
human preferences relations is a algebraic system 
with relations SR (X,(≈),()), where (≈) can be 
considered as the relation “indifferent or equivalent”, 
and () is the relation “prefer”. We look for 
equivalency of the empirical system with the 
numbered system of relations SR (R-real numbers,
(=), (>)). The “indifference” relation (≈) is based on 
() and is defined by ((x≈y) ¬((xy)∨(xy))). 

We introduce a set S, which elements are 
named state of nature, following Schmaidler’s 
exposition (Shmeidler, 1989). Let Ω be algebra of 
subset of S.  Denote by Do the set of all measurable 
finite step valued functions from S to P and denote by 
Dc the constant functions in Do. Let D be a convex 
subset of PΩ which includes Dc,    (Dc ⊆ Do ⊆ D). In 
the neo-Bayesian nomenclature elements of X are 
deterministic finite outcome (alternatives), elements 
of P are random outcomes or lotteries connected with 
the objective probabilities, and elements of D are acts
connected with the uncertainty of human operations 
described with subjective probabilities. Elements of S
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are state of nature and elements of Ω are events. The 
relations (≈) and () are primitives in the empirical 
system with relations SR(D, (≈),()). A value function
is a function (u*:X→R) for which it is fulfilled: 

((x, y)∈X2,xy)⇔(u*(x)>u*(y)). 

The assumption of existence of a value 
function u(.) leads to the “negatively transitive” and 
“asymmetric” relation () - “weak order”. A “strong 
order” is a “weak order” for which is fulfilled 
(¬(x≈y)⇒((xy) ∨ (xy)).  The existence of a “weak 
order” () over X leads to the existence of a “strong 
order” over X/≈. Consequently the existence of a 
value function u(.) leads to the existence of: 
asymmetry ((xy) ⇒ (¬(xy)), transitivity ((xy) ∧
(yz ) ⇒ (xz)) and transitivity of the “indifference” 
relation (≈) (Fishburn, 1970).

The definition of utility function is more 
complex. Let X be a set of alternatives and P is a set 
of probability distributions over X and that X⊆P
(x∈X ⇒ ∃ y∈P, y(x)=1). A utility function u(.) will 
be any function for which is fulfilled:

( pq , (p,q)∈P2 ) ⇔ ( ∫ u(.)dp > ∫ u(.)dq).

The relations (≈) and () are primitives in the 
algebraic system with relations SR (P,(≈),()). To 
every choice corresponds a discrete probability 
distribution p, p∈P with finite domain of appearance 
of final results (alternatives). There are different 
systems of mathematical axioms that give satisfactory 
conditions of a utility function existence. The most 
famous of them is the system of Von Neumann and 
Morgenstern’s axioms:

(A.1) Preferences relations () and (≈)
defined over P are transitive, i.e. the binary 
preference relation () is weak order;

(A.2) Archimedean Axiom: for all p, q, r∈P
such that (pqr), there is an α, β∈(0,1) such that ((α 
p + (1-α)r)q) and (q(βp + (1-β)r)); 

(A.3) Independence Axiom: for all p, q, r∈P
and any α∈(0, 1), then (pq) if and only if ((α p + (1-
α )r)  (α q + (1- α )r)).

Axioms (A1) and (A3) cannot give solution 
(Fishburn, 1970). Axioms (A1), (A2) and (A3) give 
solution in the interval scale (precision up to an affine 
transformation):

((pq) ⇔ (∫v(x)dp∫v(x)dq) ⇔ (v(x)= au(x)+b, a,
b∈R, a>0, x∈ X)). 

The assumption of existence of a utility 
(value) function u(.) leads to the “negatively 
transitive” and “asymmetric” relation () and to 
transitivity of the relation (≈). So far we are in the 
preference scale, the ordering scale. The assumption 
of equivalence with precision up to affine 
transformation has not been included yet. In other 
words we have only a value function. For value, 
however, the mathematical expectation is unfeasible, 
but we underline that the mathematical expectation is 
included in the definition of the utility function. For 
this reason it is accepted that (X⊆P) and that the set 
of objective probability distributions P is a convex 
set:  ((q,p)∈P2⇒(αq+(1-α)p)∈P, for ∀α∈[0,1]). 
Then by the von Neuman – Morgenstern theorem the 
utility u(.) is determined in the interval scale 
(Fishburn, 1970): 

Theorem1: Let P be a convex set of finite 
distributions over the set X of final results and let X is 
included in P, X⊆P. The axioms (A1), (A2) and (A3) 
are necessary and sufficient condition for existence of 
an affine real valued utility function over the convex 
set. This is means that if ((x∈Χ ∧ p(x)=1)⇒ p∈P)
and (((q, p)∈P2) ⇒ ((αp+(1-α)q)∈P, α∈[0,1])) are 
realized, then the utility function u(.) is defined with 
precision up to an affine transformation: (u1(x)≈u2(x), 
x∈ X) ⇔ (u1(.)=au2(.)+b, a>0).  

Following this theorem, the measurement of 
the preferences defined over P is in the interval scale.
That is to say, this is a utility function. Now it is 
obvious why in practice the gambling approach is 
used to construct the utility function in the sense of 
von Neumann (Keeney & Raiffa, 1993).  The reason 
is that to be in the interval scale the set of the discrete 
probability distributions P have to be convex. The 
same holds true in respect of the set X. The utility 
function is evaluated by the “gambling approach”. 
This approach consists within the comparisons 
between lotteries. A "lottery" is called every discrete 
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probability distribution over X. We denote as <x, y, 
α> the simplest lottery: α is the probability of the 
appearance of the alternative x and (1-α) - the 
probability of the alternative y. The weak points of 
the gambling approach are the violations of the 
transitivity of the preferences, the so called “certainty 
effect” and “probability distortion” (Cohen and al., 
1988). Violations of the transitivity of the 
equivalence relation (≈) is a general case and also 
lead to declinations in the utility assessment. All these 
difficulties explain the DM behavior observed in the 
Allais Paradox. Schmeidler introduced four new 
axioms defined over SR (D, (≈), ()) (Schmeidler, 
1989):

(B.4) Comonotonic Independence: For all 
pairwise comonotonic acts f, g and h in D and for all
α∈(0, 1), ( f  g ) implies  (α f +α hα g + α h):

(f g ⇒α f + α hα g + α h). 

Two acts f and g in D are said to be 
commonotonic if for no s and t in S, (f (s) f (t)) and 
(g (t)  g (s)). It is obvious that a constant act f (f = ps)
for some p, p∈P and any constant act g, are 
comonotonic. Comonotonic independence is less 
restrictive then the independendence axiom.

(B.5) Monotonicity: For all acts f, g in D: if 
for all s, s∈S, (f (s) g(s),  defined over P) then (f 
g, () defined over D). 

(B.6) Strict Monotonicity: For all acts f and g
in D, p and q in P and E, E∈Ω: if (f  g), f = p on E
and g = q on E, and (f (s) = g (s)) on Ec, then for the 
constant acts is true (ps qs). 

(B.7) Nondegeneracy: There are f and h in D
that f  h.

When subjective probability enters into 
calculation of the expected utility of an act of D, an 
integral with respect to a finite additive set function 
has to be defined. Denote by L a finitely additive 
probability measure onΩ, the algebra of subset of S
and let k(.) be a real value Ω–measurable function on 
S. For the case where k(.) is a finite step function, can 

be represented by ∑
=

=
н

i
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The Anscombe-Auman theorem is true (Fishburn, 
1970; Schmeidler, 1989):

Theorem2: Suppose that a preference 
relation () defined over Do satisfies (A.1) Weak 
order, (A.3) Independence, (A.2) Archimedean 
axiom-continuity, (B.6) Strict Monotonicity and (B.7) 
Nondegeneracy.  Then there exists a unique finitely 
additive probability measure L on Ω and an affine 
real valued utility function u(.) on X ( ∫ u(.)dp > ∫
u(.)dq), p  q, p∈P, q∈P) such that for all f and g in 
Do:

.dL.))((dL.))((if ∫∫ >
SS

gufugf 

The utility function u(.) is defined over P,
X⊆P, with precision up to an affine transformation:

(u1(x)≈u2(x), x∈ X)⇔ (u1(.)=au2(.)+b, a>0). 

A real valued set function v(.) is termed non-
additive probability if it satisfies the normalization 
conditions v(∅)=0 and v(S) =1. The function satisfies 
moniotonicity, i.e. for E and G inΩ: (E ⊆G) implies 
(v(E) ≤ v(G)). Schmeidler introduces the following 
definition of (∫Sk(x)dv) for v(.) non-additive 

probability and ∑
=

=
н

i
iiЕa

1

*к ,where (a1> a2>..ai> ,.,

>an) are the values that k(.) attains and *
i

Е is the 

indicator function on of Ei≅{ s∈S/ k(s) = ai}, for 
i=1,..,n. Let an+1=0 and define:
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This is the definition of the Choquet integral 
for finite step functions. For the case of non-additive 
subjective probability the following theorem is true
(Schmeidler, 1989): 

Theorem3: Suppose that the preference 
relation () defined over Do satisfies (A.1) - Weak 
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order, (B.4) - Comonotonic independence, (A.2) -
Archimedean axiom-continuity, (B.5) - Monotonicity,
and (B.7) - Nondegeneracy.  Then there exists a 
unique non-additive probability measure v on Ω and 
an affine real valued utility function u(.) on X               
(∫u(.)dp > ∫ u(.)dq, p q, p∈P, q∈P) such that for all f
and g in Do:

.dv.))((d.))((if ∫∫ >
SS

guvfugf 

The utility function u(.) is defined over P,
X⊆P with precision up to an affine transformation:

(u1(x)≈u2(x), x∈ X)⇔ (u1(.)=au2(.)+b, a>0). 

In Schmeidler’s paper is proved an extended 
theorem for the more extended set D as a subset of PΩ

(acts connected with the uncertainty of the human 
operations described mathematically with subjective 
probabilities). Interesting for us is the case of Do - all 
measurable finite step valued functions from S to P
since in the practice the set of acts is a finite set.

Proceeding from these theorems and 
following the research of Kahneman, Tversky and the 
debates about the well known Allais paradox and 
similar paradoxes extensions and further 
developments of von Neumann’s theory were sought. 
Among these theories the rank dependent utility 
(RDU) and its derivative cumulative Prospect theory 
are currently the most popular (Kahneman & 
Tversky, 1979).  In the RDU the decision weight of 
an outcome is not just the probability associated with 
this outcome. It is a function of both the probability 
and the rank the alternative. For example, the RDU of 
the lottery (p1, x1; p2, x2; ...; pn, xn) is: 

.)()(
1

i

n

i
i xupWRDU ∑

=

=

Based on empirical researches several 
authors have argued that the probability weighting 
function W(.) has an inverse S-shaped form, which 
starts on concave and then becomes convex. It is 
supposed that W(pi)= pi+∆W(pi). The declination of 
the probability assessment, the probability distortion 
∆W(pi) has а S-shaped form closed to symmetry. The 
theoretical findings and the discussions described in 

short above give a hint for investigations of the 
process preferences evaluation as a function of both 
subjective probability (in the lottery) and rank of the 
alternative (utility) (1988; Kahneman, 1979; 
Schmeidler, 1989; Machina, 2009).

STOCHASTIC UTILITY EVALUATION
The theorems in the previous section 

oriented us to analytical evaluations as preferences 
function of two variables u(.,.) - Utility of the 
alternative and the appropriate probability. It is 
proposed the following stochastic approximation 
procedure for evaluation of the utility function of two 
variables u(.,.), named in short utility function. In 
correspondence with the theorem1, theorem2 and 
theorem3 it is assumed that (X⊆P), ((q, 
p)∈P2⇒(αq+(1-α)p)∈P, for ∀α ∈[0,1]) and that the 
utility function u(.,.) exists. The "lotteries" are 
discrete probability distribution over X. Once again 
we denote as <x, y,α> the simplest lottery: α is the 
probability of the appearance of the alternative x and 
(1-α) - the probability of the alternative y. The DM 
compares the "lottery" <x, y,α> with the simple 
alternative z, z∈X and preferences are expressed as 
learning points for the machine learning stochastic 
procedure. We define two sets base on the form of the 
lotteries <x, y, α> and on the form u(.,.) of the utility 
function:

Au*= {(x,y,z,α)/(αu*(x,α) + (1-α)u*(y, 1-α))>u*(z,1)},

Bu*={(x,y,z,α)/(αu*(x,α) + (1-α)u*(y,1-α))>u*(z,1)}, 
α∈[0,1].

The notation u*(.,.) is preserved for the 
DM’s empirical human preferences and assessment. 
The following proposition is in the foundation of the 
used stochastic approximation approach (Pavlov & 
Andreev, 2013):

Proposition4: We denote Au={(x, y, z, β, γ, 
α)/(αu( x, β)+(1-α)u(y, γ))>u(z,1)}, here α, β, γ∈[0,1]. 
If Au1=Au2 and u1(x, β) and u2(x, β) are continuous 
functions than is true (u1(x, β) = au2(x, β) + b, a>0).

The approximation of the utility function is 
based on pattern recognition of the set Au []. The 
process is machine-learning based on the DM’s 
preferences expressed in the framework of the 
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gambling approach. This is a stochastic pattern 
recognition because (Au*∩Bu*≠∅).  The utility 
evaluation is a stochastic approximation with noise 
elimination. The evaluation procedure is:

The DM compares the "lottery" <x, y, α>
with the simple alternative z, z∈Z ("better-, f(x, y, z, 
α)=1”, "worse-, f(x, y, z, α)=(-1)” or "can’t answer 
or equivalent- ∼ , f(x, y, z, α)=0”, f(.) denotes the 
qualitative DM’s preference and determines the 
answer). This determine a learning point ((x, y, z, β, 
γ,α), f(x, y, z, α). The following recurrent stochastic 
algorithm constructs the utility polynomial 
approximation )()(),(

,
ββ j

ji
iji xcxu ΦΦ=∑ :

)(, 1))1(()1(1 +




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In the formula are used the following 
notations (based on Au): t=(x, y, z, β, γ, α), 
ψij(t)=ψij(x, y, z, β, γ, α) =αΦi(x)Φj(β)+(1-
α)Φi(y)Φj(γ)-Φi(z)Φj(1), where (Φi(x)) is a family of 
polynomials (possibly orthogonal). The line above the 

scalar product ))(,( tncv Ψ= means: ( 1=v ), if 

(v>1), ( 1−=v ) if (v<-1) and ( vv = ) if (-1<v<1). 
The coefficients cij

n take part in the polynomial 

presentation ).()(),(
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The 

notation ))(,(),,,,,( tczyxG nn Ψ=αγβ ,
)1,(),()),())(,( zgygxgtc nnnn −−(1+=Ψ γαβα is a 

scalar product. The learning points (x, β) are set with 
a pseudo random sequence.

The mathematical procedure describes the 
following assessment process: the expert relates 
intuitively the “learning point” (x, y, z, β, γ, α)
(comparison of the "lottery" <x, y, α> with the 
alternative z) to the set Au* with probability D1(x, y, z,
α) or to the set Bu* with probability D2(x, y, z, α). The 
probabilities D1(x, y, z, α) and D2(x, y, z, α,) are 
mathematical expectation of f(.) over Au* and Bu*

respectively, (D1(x, y, z, α)=M(f/x, y, z, α)) if (M(f/x,
y, z, α)>0), (D2(x, y, z, α)=(-)M(f/x, y, z, α)) if (M(f/x,
y, z, α)<0). Let D'(x, y, z, α) be the random value: 

D'(x, y, z, α)=D1(x, y, z, α, β) if (M(f/x, y, z, α)>0); 
D'(x, y, z, α)=(D2(x, y, z, α) if (M(f/x, y, z, α)<0); 
D'(x, y, z, α)=0 if (M(f/x, y, z, α)=0). We approximate 
function D'(x, y, z, α) by the function: G(x, y, z, β,
γ,α)=(αg(x, β)+(1-α)g(y, γ)-g(z, 1)), where

)()(),(
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approximation of G(x, y, z, β, γ,α):  

The function Gn(x, y, z, β, γ, α) is positive 
over Au* and negative over Bu* depending on the 
degree of approximation of D'(x, y, z, α). In keeping 
with proposition 4 function gn(x, β) is the 
approximation of the utility function u(x, β). Another 
form of the stochastic recurrent procedure is the 
following (Aizerman and al., 1970):

)(, 1))1((
1

)1(1 D' +
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In the formula above is used the 
decomposition:





 +

+++ = 1
)1(1 D')( nnn ttf ξ .

The following theorem determines the 
convergence of the procedure (Pavlov & Andreev, 
2013):

Theorem5: Let (t1, t2, t3,......., tn,.....) be a 
sequence of independent random vectors of the form 
t=( x, y, z, β, γ, α) with one and the same distribution 
F. We suppose that the sequence of random values 
(ξ1, ξ2,., ξn,..) in the recurrent stochastic procedure 
satisfies the conditions:      M(ξn/(x, y, z, β, γ, α),cn-1)
= 0, M((ξn)2/(x, y, z, β, γ, α),cn-1)<d, d∈R. Let the 
Euclidian norm of Ψ(t) is limited by a constant,
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The following convergence is result from the 
stochastic evaluation procedure: 
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In the theorem above e. w. denotes “almost 
sure” (with probability 1) and M denotes 
mathematical expectation. The functions S(t) in the 
limits of the integral belong to L2 (the space of square 
integrable functions defined by the probability 
measure F). This function has the presentation:

S(x, y, z, β, γ, α)=(αs(x, β)+(1-α)s(y, γ)-s(z, 1)). 

The integral )),,,((GJ n
D' αzyx fulfills 

(Pavlov & Andreev, 2013):

dFD'))dv)dF(D'v((
(t)nG
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2
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The proof is based on the “extremal 
approach” of the Potential function method (Pavlov & 
Andreev, 2013). The procedure and its modifications 
are machine learning (Kivinen and al, 2004; 
Aizerman and al., 1970). The computer is taught to 
have the same preferences as the decision maker 
(DM). The learning points ((x, y, z,α, β, γ), f(x, y, z,
α)) are set with a pseudo random sequence. The DM 
is comparatively fast in learning to operate with the 
procedure: a session with 512 questions (learning 
points) takes approximately 90 minutes and requires 
only qualitative answers “yes”, “no” or “equivalent ”.

NUMERIC PRESENTATION AND 
VARIFICATIONS

The numerical verifications give again proof 
of the efficacy of proposed stochastic approximation 
approach. The proposed stochastic approach permits
sufficiently precise utility function presentation by 
two variables function u(.,.) of the DM’s preferences.

Example of such an evaluated utility function f2(y,α)
is shown on figure 1. The seesaw surface f2(y,α) in 
figure (1) is constructed by 512 DM’s “learning 
points” of the form ((x, y, z,α, β, γ), f(x, y, z, α)), f(x, 
y, z, α)∈{1, -1, 0} (probabilistic pattern recognition 
of the sets Au* and Bu*, Au*∩Bu*≠∅). The explicit 
formula of the cumulative utility function f2(y) shown 
in figure 2 is: 

∫=
1

0

22 ),()( αα dyfyf .

The utility function is evaluated additionally 
and independently with 512 DM’s “learning points” 
((x, y, z,α), f(x, y, z,α)), f(x, y, z,α)∈{1, -1, 0}. The 
probabilistic pattern recognition function f3(y) is 
shown on figure (2). 

Figure 1: pattern recognition - f2(y, α)

Figure 2: functions f(y), f2(y), f3(y)
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This is pattern recognition of the sets Au*

and Bu* without assuming dependence of utility from 
the probability in the lotteries and recognize correctly 
more than 95% of the DM’s answers. The polynomial 
approximation of the utility is the function f(y) shown 
as the solid line on figure (2). This example shows 
that the procedure permits direct assessment of the 
utility function f2(y, α) as a function of both 
probability (of the lottery) and the rank (alternative) 
y. If the probability weighting function W(.) in RDU 
utility has a symmetric form then is true:

.0)(f)( 2

1

0

=∆∫ dpypW

In this case the expected von Neuman and 
Morgenstern’s utility function f2(.) is exactly the 
integral because p is evenly distributed in the pseudo-
random sequence:

)(
2
1)(f)( 2

1

0

yudpypW =∫ .

Thus, we could first evaluate f2(y, α), 
following Kaneman, Tversky and Schmeidler 
theoretical findings and after that we could apply 
integration and the “certainty effect” and “probability 
distortion” could be reduced. 

DISCUTIONS
The two variables utility function u(x, α)

permits evaluation of the dependence of the utility on 
probability. The function has the following 
presentation: u(x, α) = (1+∆W(α, x))u*(x). This 
presentation permits calculation of an approximation 
of the Choquet integral:

.)E)v(a(adv(s)
n

1i
j

i

1j
1ii∑∫

= =
+−= 

S

к

In the cases of discrete finite distribution 
(finite number of acts, finite probability distribution 
over the set of alternatives) the non-additive function 
v(p) is a function of the expression (1 + ∆ W ( p , x) )
where the function ∆ W ( p, x) is a part of the RDU.
RDU could have in new notation the presentation: 

RDU= (p+p∆W(p, x))u*(x).

The stochastic approach proposed in the 
paper gives a possibility for evaluation and 
approximations of the non-additive probability 
measure discussed in the Schmeidler’s theorem 3 
(Schmeidler, 1989). 

CONCLUSIONS
The stochastic approach proposed in the 

paper is a possible approach for investigation and 
determination of new mathematical procedures for 
approximations of the non-additive probability 
measure discussed in theorem 3. 

The numerical experiments and the 
mathematical modeling confirm a 95% precision of 
the approximations. The human uncertainty is found 
predominated to the dependence of the utility on 
probability in the experiments with the lotteries 
comparisons. The elimination of the uncertainty 
effect through a two variables function utility 
evaluation needs sufficiently high number of learning 
points in the machine learning (512 or 1024 points). 
In some cases as in the trading of a set of various 
articles the experiments show growing up of the 
utility dependence on probability. In such 
experiments the merge of different articles in the 
grocery is preferable in regard to the salesman and 
reflects the gain or loss of money as result of this 
variety of articles. In the rest of experiments the 
utility dependence on probability did not made real 
appearance in the process of utility evaluation based 
on the gambling approach.

The precision of the approximations could 
be increased by utilization of comparisons 
(preferences) between more complex lotteries in the 
gambling approach. Such a more complex lotteries 
will put wide requirements in regard to the decision 
maker. 
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