INTRODUCTION

Anemia of chronic inflammation (ACI) is the most frequent anemia in hospitalized patients with chronic diseases including cancer and is associated with significant morbidity. In several cancer patients the causative mechanism of anemia is incompletely defined; therefore the term “anemia of chronic disease” is used. Several cytokines, including tumor necrosis factor (TNF), Interferon Gamma (IFγ) and Interleukin-1 (IL-1), released into the blood of cancer patients can suppress erythropoiesis by poisoning red cell production and impaired iron utilization. Inflammatory cytokines promote the production of WBCs. Bone marrow produces both RBCs and WBCs from the same precursor stem cells. Therefore, the up regulation of WBC’s causes fewer stem cells to differentiate into red blood cells. This may be an important cause for the effective inhibition of erythropoiesis, even when erythropoietin levels are normal. Management of ACD using intravenous iron and erythropoietin stimulation agents are ineffective for some patients and are not without adverse effects, driving the need for new alternative therapies.

Materials and Methods

For this study the following offline and online bioinformatics tools were used

Offline tool:
Free trial version MOLEGRO virtual docker (4.1.0) for docking and calculating binding free energy

Online tools:
I-Tasser (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) for Ab-initio structure prediction
HEX (http://hexserver.loria.fr/) for protein-protein interaction

Methodology

Table 1: Screenshot of I-Tasser homepage

Amino acid sequence retrieved from NCBI for ferroportin is as follows:
>FDGTTGYAYTQGLSGSILS
The sequence in Fasta format was pasted in the defined box and uploaded. The predicted structure was released with best five models with C-score, estimated accuracy and RMSD.

MD simulation
The predicted structure was optimized by running molecular dynamics simulation at 37°C, pH 7.4 and normal saline environment for 20ps using YASARA. The trajectory was build for RMSD of C-a and backbone. The average structure was generated and compared with the energy minimized initial structure to assess the overall deviation in the conformation. RMSF was calculated to check the deviation in specific amino acid residue. The average structure was considered for further protein-protein interaction study using Hex online server.

Result
- **Picture 2: Screenshot of HEX online server**

In the HEX server receptor PDB file (Hepcidin-3H0T-c) and ligand PBD file (predicted Ferroportin) were uploaded with default setting. The results of receptor-ligand complex were retrieved as best result (.pdb file). Post processing of hepcidin-ferroportin complex downloaded from HEX server for energy calculation and interaction study to identify interacting residues.

Docking using MOLEGRID Virtual Docker
The following work flow was adopted to carry out docking studies with hepcidin structure retrieved from Protein Data Bank (PDB ID: 3H0T-c chain)

Structure refinement was done using MOLEGRID (3H0T-c chain)

Structure of Amygdalin (CID 34751) was retrieved from PUBCHEM

Docking of Target with ligand was carried out using docking wizard against the whole protein as it was small in size and ferroportin interaction showed involvement of majority of amino acid residues

Post processing of docking results e.g. binding free energy; H-bond, selection of best pose was done

Chart 1: Trajectory file for ferroportin plotting RMSD(C-a) vs time in picoseconds

Chart 2: RMSD plot for individual amino acids

Picture 4: Screenshot showing HEX DOCKING
HEX docking reveals interaction of majority of amino acid residues of hepcidin with ferroportin with major interactions involving 3, 4, 5, 8, 13, 15 and 23 as shown in shaded zone.

Docking of Hepcidin & Amygdalin revealed strong interaction. The post processing of docking results gave two major poses as follows:

Picture 5: Screenshot of pose1 showing interacting residues (6-8; 10-15; 22-24) with molDock score -74.3 Kcal/mol

Picture 6: Screenshot of pose2 showing interacting residues (3-6 & 24) with molDock score -71.1 Kcal/mol

These in-silico results are suggestive of a strong molecular interaction of Hepcidin with amygdalin stabilized by H-bonding which is more stronger than ferroportin. This prompted us to predict a competitive binding of amygdalin with hepcidin than with ferroportin.

DISCUSSION:

A characteristic feature of ACD is functional deficiency of iron, which is associated with increased serum hepcidin levels. These functional iron deficiency in ACD, are rectified by iron supplementation either alone or in combination with erythropoiesis stimulating agents (ESA). Reports generated from past studies have shown that treatment of ACD using ESAs and iron therapy have limited effectiveness and may have potentially serious adverse events [3]. Inspite of this they do not address the root cause of the Pathophysiology of ACD, i.e. excess hepcidin and reduced ferroportin activity. Research in the last decade suggest that the functional iron deficiency in ACD can be attributed to over expression of Hepcidin, and suggest that targeting hepcidin may be a useful therapeutic approach to treat ACD. The design of hepcidin inhibitors has been directed elucidating the molecular mechanisms of hepcidin regulation and action. In the current study we judiciously targeted hepcidin - ferroportin interaction site as the potential binding site to increase the effectiveness of inhibitor binding. The blind docking of ligand with the whole hepcidin molecule revealed interaction of the same residues which interacted with the ferroportin but with more efficiency and strongly with H-bonding.

CONCLUSION:

The current study suggestive of amygdalin, a unique constituent of wheatgrass juice, as a potential ligand (inhibitor) which can competitively bind to ferroportin binding site on hepcidin and thereby may prevent the ferroportin inhibition by hepcidin in inflammatory condition. At the same time wheatgrass juice which is loaded with many phyto-nutrients, vitamins and minerals may pose to be a healthy supplement for rectifying other nutritional deficiencies due to chronic disease e.g. cancer.

REFERENCE