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ABSTRACT Fourier sine transform and Laplace transform are used for solving the energy equation with fractional deriva-
tive, where the fractional derivative is defined in the Caputo sense of order mm ≤<− γ1  . The solution of 

classical problem for the energy equation has been obtained as limiting case.
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1. Introduction 
 Fractional partial differential 

equations have many applications in 

applied sciences and engineering. These 

applications appear in gravitation elastic 

membrane, electrostatics, fluid flow, 

steady state, heat conduction and many 

other topics in both pure and applied 

mathematics. Typical examples partial 

differential equations of the time fractional 

advection dispersion equation as in[6,7], 

fractional diffusion equation as 

in[16,8,5,9,15], fractional wave equation 

as in[14]. The Rayleigh-stokes fractional 

equations as in[2].    

 The energy fractional equations are 

examples of fractional partial differential 

equation . 

 In this paper  we consider energy 

fractional equation. Exact solution of this 

equation will be investigated. The Fourier 

sine transform and fractional Laplace 

transform are used for getting exact 

solution for this equation. The fractional 

terms in energy equation are considered as 

Caputo fractional derivative. 

Basic Definitions: 

Definition1: The Rieman-Liouville 

fractional integral[10,2] of order α is 

defined as: 
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Definition 2: The Caputo fractional 

derivative [10] of order mm ≤<− α1  is 

defined as:
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Definition 3: The Laplace integral 

transform[11,13,4,10], of the function 

( )xf  is defined as: 
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dxexfxfL st    (1.3) 

Definition 4: The Fourier sine integral 

transform[4,10,1], of the function ( )xf  is 

defined as: 
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2. The Energy Fractional 

Equation: 

 The time-fractional energy 

equation, when the Fourier’s law of heat 

conduction is considered may be written in 

the form 
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where r(x,t) is the radiant heating, which is 

neglected in this study, c is the specific 

heat and k is the conductivity which is 

assumed to be constant and m-1<γ≤m. 

The corresponding initial and boundary 

conditions of Eq. (2.1) are 
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( ) 0,,0 0 ≥= tforTtθ     (2.3) 

Moreover, the natural conditions 
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also have to be satisfied.  

Applying the non-dimensional quantities  
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Eqs. (2.2), (2.3) and (2.4) can be reduce to 

non-dimensional equations as follows  
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Letting ( ) ( ) 2,, 





∂
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=
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txutxg λ , then Eq. 

(2.6) can be rewritten as 
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Applying Fourier integral sine transform to 

Eqs. (2.10) and (2.7), we get  
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Using initial condition (2.12) for getting 

fractional Laplace transform of Eq. (2.11) 

as 
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Taking the inverse Laplace transform of  

Eq. (2.14) and using the relation  
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Then Eq. (2.14) leads to 
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Special cases: 

1. When γ=1, ( ) 00 =ζa , then Eq. (2.15) 

yields  
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which is the result obtained by Fang and 

others [2]. 

2. When γ=1, g(ζ,t)=0, a0(ζ)=0, then from 

Eq. (2.15) we get  
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which is the result obtained also by 

Fetacau and Corina [3]. 

3. When 10 ≤< γ , then Eq. (2.15) yields 
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which is the result obtained by Salim and 

El-Kahlout [12]. 

3. The time-fractional energy 

equation in xz plane:  

The time-fractional energy equation in xz 

plane is written as  
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where 
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a known function as soon as the velocity 

field u(x,z,t) is prescribed,  r(x,z,t) is the 

radiant heating, which is neglected. 

The corresponding initial and boundary 

conditions of Eq. (3.1) are  
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Moreover, the natural condition  
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also have to be satisfied. 

Using the non-dimensional quantities 

(2.5), and ν
zUz =∗

 , Eqs. (3.1), (3.2), 

(3.3) and (3.4) reduce to dimensionless 

equations as follows (for brevity the 

dimensionless mark “*” are omitted here). 
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where m-1<γ≤m  
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Letting  
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By following the same steps as in section 

2, we get the exact solution of Eq. (3.9) as 
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Special case: 

When 10 ≤< γ , then Eq. (3.10) yields 
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which is the result obtained by Salim and 

El-Kahlout [12]. 

3. Conclusion: 

 This paper has presented some 

results about the time-fractional 

energy equation in x and xz plane. Exact 

solution of this equation is obtained by 

using the Fourier sine integral  transform 

and integral Laplace transform. The 

Caputo fractional derivative is considered 

in time-fractional energy equation as time 

derivative, where the order of the 

fractional derivative is considered as 

mm ≤<− γ1 . Special cases have been 

considered in the cases 10,1 <<= γγ . 
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