RESEARCH PAPER	Mat	hematics	Volume	: 4 Issue : 5 May 2014 ISSN - 2249-555X
COST REAL RANGE	Selection Principles and D-Spaces			
KEYWORDS	D-Spaces, Regular Base, Toplogy			
R. Ragavendran		Dr. K. Vijay	valakshmi	P. Rajendran
Saveetha School of Engineering, Saveetha University, Chennai, India		Saveetha School of Engineering, Saveetha University, Chennai, India		Saveetha School of Engineering, Saveetha University, Chennai, India

ABSTRACT The D -property is a covering property. Some special cases where unions of spaces or subspaces that are D make a whole space a D-space is discussed in this paper. The implications between selection principles and D -spaces are also discussed.

INTRODUCTION

The concept of *D*-spaces was first introduced in the year 1979 by E.K.Van Douwen and W.F.Pfeffer [1]. The implication between the *D*-property and the three selection principles namely Rothberger, Menger and Hurewicz is discussed in this paper.

Definition 1.1.[1] A neighbourhood assignment for a topological space (X, τ) is a function $N: X \to \tau$ such that $x \in N(x)$ for each $x \in X$. *X* is said to be a *D*-space if for every neighbourhood assignment *N*, there is a closed discrete subset *D* of *X* such that $N(x) \setminus x \in D$ covers *X*.

Theorem 1.2. If *X* is the countable union of closed *D*-subspaces then *X* is a *D*-space.

Proof: Let $X = \bigcup_{n < \omega} F_n$ where each F_n is a closed *D*-subspace of *X*. Let $\{U(x)/x \in$ *X*} be the range space of neighbourhood assignment U. Pick a closed discrete subset D_1 of F_1 such that $\mathfrak{D}_1 =$ $\{U(x)/x \in D_1\}$ covers F_1 . Since $\{U(x)/x\}$ $x \in F_2 \setminus \bigcup \mathfrak{D}_1$ covers $F_2 \setminus \bigcup \mathfrak{D}_1$ which is subset of F_2 , pick a closed discrete D_2 of $F_2 \setminus \bigcup \mathfrak{D}_1$ such that $\mathfrak{D}_2 = \{U(x)/x \in \mathfrak{D}_2\}$ covers $F_2 \setminus \bigcup \mathfrak{D}_1$. Note that $\widetilde{\mathbb{D}_2} = D_1 \cup D_2$ is a closed discrete subset of $F_1 \cup F_2$ such that $\widetilde{\mathbb{D}_2} = D_1 \cup D_2$ covers $F_1 \cup F_2$. Inductively since $\{U(x)/x \in F_n(\bigcup \widetilde{\mathfrak{D}_{n-1}})\}$ covers $F_n(\bigcup \widetilde{\mathfrak{D}_{n-1}})$ which is a closed

subset of F_n , pick a closed discrete subset D_n of $F_n(\bigcup \widetilde{\mathfrak{D}_{n-1}})$ such that $D_n =$ $\{U(x)/x \in D_n\}$ covers $F_n(\bigcup \widetilde{\mathfrak{D}_{n-1}})$. Note that $\widetilde{\mathbb{D}_n} = \widetilde{\mathbb{D}_{n-1}} \cup D_n$ is a closed discrete subset of $F_1 \cup F_2 \cup \dots \cup F_n$ such that $\widetilde{\mathbb{D}_n} = \widetilde{\mathbb{D}_{n-1}} \cup D_n$ covers $F_1 \cup F_2 \cup \dots \cup F_n$. Letting $D = \bigcup_{n < \omega} D_n$ and $\mathfrak{D} = \bigcup_{n < \omega} \mathfrak{D}_n$ it is seen that D is a closed discrete subset of X such that $\{U(x)/x \in D\}$ covers X.

Corollory 1.3. F_{σ} subsets of *D*-spaces are *D*-spaces.

Proposition 1.4. If $X = Y \cup Z$, where Y and Z are D-spaces and Y is closed in X, then X is also a D-space.

Theorem 1.5. If a regular space X is union of a countable family γ of dense metrizable subspaces, then X is a D-space. **Proof** : Each $Y \in \gamma$ has a σ disjoints base \mathfrak{B}_{γ} . For each $V \in \mathfrak{B}_{\gamma}$ We fix an open subset U(V) of X such that $U(V) \cap Y =$ V. For any disjoint elements V_1 and V_2 of \mathfrak{B}_{γ} the sets $U(V_1)$ and $U(V_2)$ are disjoint , since Y is dense in X. Therefore the family $\mathfrak{B}_{\gamma} = \{ U(V) / V \in \mathfrak{B}_{\gamma} \}$ is σ disjoint. Since X is regular, the family \mathfrak{B}_{γ} contains a base of X at y, for every $y \in Y$. Hence the family $\mathfrak{P} = \bigcup \{\mathfrak{P}_{\gamma} / Y \in \mathbb{C}\}$ γ is a σ disjoint base of X. Hence by theorem X is a D-space.

Lemma 1.6. suppose $X = \bigcup \{X_i / i = 1, 2, ..., n\}$ for some $n < \omega$, and let $Y_i =$

 $\overline{X_1} \cap \overline{X_i} \cap (X_1 \cup X_i)$, for each i = 2,3, ..., n. Then the set $Z = \bigcup \{Y_i / i = 2,3, ..., n\}$ is closed in .

Proof: Take any $y \in \overline{Z}y \in \overline{Z}$. Then $y \in \overline{y_i}$, for some *i*, where $2 \le i \le n$ Which implies that $y \in \overline{X_1}$ and $\in \overline{X_i}$. Also $y \in X_k$, for some *k*, where $1 \le k \le n$. Now we have two cases.

Case 1. k = 1. Then $y \in Y_i = \overline{X_1} \cap \overline{X_i} \cap (X_1 \cup X_i) \subset Z$, $2 \le i \le n$. **Case 2.** $2 \le k \le n$. Then $y \in \overline{X_1} \cap \overline{X_k} \cap X$

 $(X_1 \cup X_k) = Y_k \subset Z$

Hence, $y \in Z$ and Z is closed in X.

Lemma 1.7. If $X = Y \cup Z$ where each of the subspaces *Y* and *Z* has a σ - disjoint base and *X* is regular, then the subspaces $\overline{Y} \cap \overline{Z}$ also has a σ - disjoint base.

Theorem 1.8. suppose $X = \bigcup \{X_i / i = 1, 2, ..., n\}$ for some $n < \omega$, where X is regular and X_i has a σ - disjoint base, for each i = 1, 2, ..., n. Then X is a *D*-space.

Proof: We prove by induction. For n = 1 the statement is true, since every space with a point countable space is a *D*-space. Assume now that for less than *n* summands the assertion holds. For any *i* and *j* such that $1 \le i \le n$ and $1 \le j \le n$ and $i \ne j$ put $Y_{i,j} = \overline{X}_i \cap \overline{X}_j \cap (X_i \cup X_j)$. By Lemma, the set

 $Z_j = \bigcup \{Y_{i,j} / i \neq j, 1 \le i \le n\}$ is closed in X. By Lemma each $Y_{i,j}$ is a space with σ - disjoint base. Therefore, the space Z_j is the union of less than *n* spaces with a σ disjoint base. By inductive assumption, Z_j is a *D*-space, for each j = 1,2,..n. Therefore, since each Z_j is a closed in *X*, the subspace $Z = \bigcup \{ Z_j / j = 1,2,..n \}$ of *X* is a *D*-space.

The family $\mu = \{V_i / 1 \le i \le n\}$, where $V_i = X_i \setminus Z$, is a disjoint family of open subsets of *X*. Indeed, $X \setminus Z$ is open in *X*, and no point of *x* of V_i can belong to the closure of V_j for $i \ne j$, since otherwise *x* would belong to $Y_{i,j}$ which is contained in *Z*. Therefore, $X \setminus Z$ has a σ - disjoint base and is a *D*-space. Hence *X* is a *D*space, as the union of an open *D*-space and a closed *D*-space.

Corollory 1.9. If a regular space *X* is the union of a finite family of metrizable subspaces, then *X* is a *D*-space.

Definition 1.10.[2] A subset P of a space X is said to be locally closed if P is open in its closure. i.e, P can be represented as the intersection of an open subset of X with a closed subset of X. For example every discrete subspace of a space X is locally closed in X.

Lemma 1.11. If a space *Y* is the union of a finite collection of locally closed *D*-space s, then *Y* is a *D*-space.

Proof: We argue by induction. Let $Y = P_1 \cup P_2 \cup \dots \cup \cup P_{n+1}$ where each P_i is locally closed in X and a D-space. Assume that the lemma holds whenever the number of summands does not exceed n. For i = 1, 2... n + 1 put $F_i = \overline{P_i} \setminus P_i$ then F_i is closed in Y and $P_i \cap F_i = \emptyset$. Therefore, F_i is the union of $\leq n$ locally closed Dspaces $P_i \cap F_i$ $i \neq j$. By the inductive assumption it follows that each F_i is a Dspace. Clearly, $\overline{P_i} = P_i \cup F_i$. Since F_i is closed in $\overline{P_i}$, and both F_i and P_i are Dspaces, it follows that $\overline{P_i}$ is a *D*-space, for each $i = 1, 2, \dots, n + 1$. Hence Y is also a D-space, as the union of a finite number of locally closed *D*-spaces.

Theorem 1.12. Suppose that = $X_1 \cup \ldots \cup X_k$, where X is a regular space and each X_i is a space with a point countable base. Then X is a D-space.

Proof: We prove by induction. Assume that the statement is not true for not more than K - 1 summands. Put $H_{i,j} = \overline{X_i \cap X_j}$,

 $W_{i,j} = \overline{X}_i \setminus H_{i,j}$, for i, j = 1, 2, ..., k and $F = \bigcap \{H_{i,j} / i, j = 1, 2, ..., k\}$. Let $i \neq j$, then obviously, $W_{i,j} \cap X_j = \emptyset$. Therefore $W_{i,j}$ is the union of $\leq k - 1$ spaces with a point countable base and the inductive assumption implies that $W_{i,j}$ is a *D*-space. $W_{i,j}$ is locally closed in *X*. The space $V_i = X \setminus \overline{X}_i = X \setminus \overline{X}_i$ is also locally closed in X, for each $i = 1, 2, \dots k$. Since the sets V_i and X_i are disjoint, the space V_i is the union of $\leq k - 1$ spaces with a point countable base, and the inductive assumption implies that V_i is a *D*-space. It follows from the above lemma that the $E = (\bigcup \{ W_{i,i} / i, j =$ subspace 1, ..., k) $\cup (\cup \{V_i / i = 1, ..., k\})$ of X is a *D*-space. Take any $x \in X \setminus E$. Then $x \in \overline{X}_i$ and $x \notin W_{i,j}$ for all $i, j = 1, \dots, k$. It follows that $x \in H_{i,j}$ for all $i, j = 1, \dots, k$. Hence $x \in F$. Thus $X = E \cup F$. Let us show that the space F has a point countable base. Fix a point countable base

 B_i in each space $X_i, i = 1, ..., k$. for each $V \in B_i$. Let $\Phi(V)$ be the largest open subset of \overline{X}_i such that $\Phi(V) \cap X_i = V$. put $G_i = \{\Phi(V)/V \in B_i\}, G = U\{G_i / i = 1, ..., k\}$, and $S = \{W \cap F / W \in G\}$. From regularity of X it easily follows that S is a base of the space F.

Claim : The family *S* is point countable.

Proof: To prove the claim, we have to show that for any j = 1, ..., k and any $x \in F$, the family G_j is countable at x; that is, only countably many elements of G_j contain x. Obviously $x \in X_i$ for some i = 1, ..., k. Then $x \in F \subset H_{i,j} =$ $\overline{X_i \cap X_j}$. However the space $\overline{X_i}$ is first

RESEARCH PAPER

countable at the point x, since $x \in \overline{X}_i$ and the space X is regular. It follows that the tightness of the space \overline{X}_i at the point x is countable, and there exists a countable subset $M \subset \overline{X}_i \cap X_i$ such that $\in \overline{M}$. Let γ_x be the family of all elements of G_i containing x. Clearly $x \in \overline{X_i}$, and each $W \in \gamma_z$ is an open neighbourhood of x in $\overline{X_i}$. However *M* is countable and the family G_i is point countable at each point of M, since $M \subset X_i$ and B_i is a point countable base of the space X_i . Therefore γ_x is countable. It follows that S is a point countable base of F. Hence F is a D-space. Since F is closed in X and $X = E \cup F$ where E is also a D-space, X is a D-space.

Corollory 1.13. If a regular space X of countable extent is the union of a finite collection of subspaces with a point countable base, then X is Lindelof.

Definition 1.14.[3] A space X is said to be locally D, if every point

 $x \in X$ has a neighbourhood U such that U with the relative topology of X is a Dspace.

Theorem 1.15. If a locally *D*-space λ is the union of a finite collection of neighbourhood spaces then λ is a *D*-space.

Theorem 1.16. If a locally *D*-space λ is the union of a finite collection of

neighbourhood and locally compact then λ is a *D*-space.

Definition 1.17.[8] An Alster cover G of a topological space X is a cover by G_{δ} sets such that every compact subset of X is included in a member of G. A space is said to be Alster if every Alster cover has a countable subcover.

Definition 1.18.[4] A space X is said to be Menger if for each sequence $\{U_n\}_{n < w}$ of open covers, such that each finite union of elements of U_n is a member of U_n , there are $u_n \in U_n$, n < w, such that $\{u_n / n < w\}$ is an open cover.

Definition 1.19.[5] A space X is said to be Rothberger if for each sequence $\{U_n\}_{n < w}$ of open covers, there are $u_n \in U_n$ such that $\{u_n / n < w\}$ is an open cover.

From the definition it can be seen that every Rothberger space is Menger.

Definition 1.20.[6] A γ over of a space X is a countably infinite open cover such that each point $x \in X$ is in all but finitely many members of the cover. A space X is said to be Hurewicz if given a sequence $\{u_n / n < w\}$ of γ -covers, there is for each , a finite $V_n \subseteq U_n$ such that either $\{\bigcup V_n / n < w\}$ is a γ -cover, or else for some n, V_n is a cover.

Lemma 1.21. Every Menger space is *D*.

Theorem 1.22. Every Hurewicz space is Menger.

Proof : Let $\{U_n\}_{n < w}$ be a sequence of open covers, such that each finite union of elements of U_n is a member of U_n . Rewriting the sequence of open covers $\{U_n\}_{n < w}$ as $\{U_{i < n}U_i\}_{n < w}$ we get a sequence of γ -covers. Since X is Hurewicz there is for each n, a finite $V_n \subseteq U_n$ such that either $\{UV_n / n < w\}$ is a γ -cover, or else for some n, V_n is a cover. Hence there are $V_n \in U_n$ such that $\{V_n / n < w\}$ is an open cover.

Corollary 1.23. Every Hurewicz space is *D*.

Theorem 1.24. Every Alster space is Menger.

Proof : Let $\{U_n\}_{n < w}$ be a sequence of open covers of X, each closed under finite unions. Let G be the set of all $\bigcap_{n < w}, U_n's$, where $u_n \in U_n$. Let K is included in some $u_n \in U_n$. Thus K is included in some $G' \in G$. Since X is Alster , there are $\{H_k\}_{k < w}$ in G such that $\bigcup_{k < w} H_k$ covers X. Let $H_k = \bigcap_{n < w}, U_{nk}$, where $U_{nk} \in U_n$. Then $\{U_{nn}\}_{n < w}$ covers , since $H_n \subseteq U_{nn}$. Thus since each $U_{nn} \in U_n$, X is Menger.

Corollory 1.25. Every Alster space is D.

Theorem 1.26. If X is concentrated on a Rothberger subspace, then X is Rothberger.

Definition 1.27.[8] A space is said to be Lusin if every nowhere dense set is countable.

Corollory 1.28. Every seperable Lusin space is Rothberger and therefore *D*.

REFERENCE [1] E.K. Van Douwen, W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J.Math. No.2vol.81 (1979), 371-377. [2] R. Buzyakova, On D-property of strong Sapaces, comment. Math. Univ. Car. Vol.43 (2002), 493-495. [3] Juan C. Martinez, On finite unions and finite products with the D-property, Topology Appl. Vol.158 (2011), 223-228. [4] L. Xue Peng, On finite unions of certain D-spaces, Topology Appl. Vol.155 (2008), 522-526. [5] A.V. Arhangel'skii, D-spaces and finite unions, Proc. Amer. Math. Soc. Vol.132 (2004), 2163-2170. [6] L.F. Auricla, D-spaces, topological games and selection principles, Topology Proc vol.36 (2010), 107-122. [7] L. Xue Peng, A note on D-spaces and infinite unions, Topology Appl.vol.154 (2007), 2223-2227. [8] G. Gruenhage, Generalized metric spaces, in the Handbook of set-theoretic topology, K. Kunen and J.E. Vaughan, eds., North-Holland, Amsterdam, 1984, 423-501. [