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LUNMMVNAY The D -property is a covering property. Some special cases where unions of spaces or subspaces that are D
make a whole space a D-space is discussed in this paper. The implications between selection principles and

D -spaces are also discussed.

INTRODUCTION

The concept of D-spaces was first
introduced in the year 1979 by E.K.Van
Douwen and W.F.Pfeffer [1]. The
implication between the D-property and
the three selection principles namely
Rothberger, Menger and Hurewicz is

discussed in this paper.

Definition 1.1.[1] A neighbourhood
assignment for a topological space (X, 1)
is a function N:X — 7 such that x € N(x)
for each x € X. X is said to be a D-space
if for every neighbourhood assignment
N, there is a closed discrete subset D of

X such that N(x)\x € D covers X.

Theorem 1.2. If X is the countable union

of closed D-subspaces then X is a D-space.

Proof : Let X = U,,, F, where each F, is
a closed D-subspace of X. Let {U(x)/x €
X} be the range space of neighbourhood
assignment U. Pick a closed discrete
subset D; of F; such that D =
{U(x)/x € D1} covers F;.Since {U(x)/
x € F\UD; covers F,\U®D; which is
subset of F,, pick a closed discrete D, of
F>\U®; such that ®, = {U(x)/x € Dy}
covers F,\U®; Note that D, = D, UD, is
a closed discrete subset of F;UF, such
that D, = D;UD, covers FiUF,.
Inductively since {U(x)/x € E,(UD,,_1)}

covers F,(U®D,_;) which is a closed

subset of F,, , pick a closed discrete subset
D, of FE,(U®,,_;) such that D, =
{U(x)/x € D,} covers E,(UD,,_1). Note
that D,, = D,,_;UD,, is a closed discrete
subset of F,UF,U...UF, such that
D, = D,_,UD, covers F,UF,U ...UE,.
Letting D = U<, Dy, and © = U,, ., D, it
is seen that D is a closed discrete subset of

X such that {U(x)/x € D} covers X.

Corollory 1.3. F, subsets of D-spaces are
D-spaces.

Proposition 1.4. If X =YUZ, where Y
and Z are D-spaces and Y is closed in X,
then X is also a D-space.

Theorem 1.5. If a regular space X is union
of a countable family v of dense
metrizable subspaces , then X is a D-space.
Proof : Each Y € y has a o disjoints base
B, . For each V € B, We fix an open
subset U(V) of X such that U(V)NY =
V. For any disjoint elements V;and V; of
B, the sets U(Vy) and U (V) are disjoint
, since Y is dense in X . Therefore the
family 8B, = {U(V)/V € B,} is o -
disjoint. Since X is regular, the family
B, contains a base of X at y, for every
Yy € Y. Hence the family g = U{*B, /Y €
v} is a o disjoint base of X. Hence by

theorem X is a D-space .

Lemma 1.6. suppose X = U{X;/i =

1,2,...n} for some n < w, and let Y; =
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XiNnX;n(X; VX)), foreach i = 2,3, ...m.
Then the set Z = U{Y;/i =2,3,..n} is
closed in .

Proof : Take any y € Zy € Z. Then y €
y;, for some i, where 2 <i <n

Which implies that y € X; and € X; . Also
Yy € X, for some k, where 1 <k <n.
Now we have two cases.

Case 1. k=1. Then yEY; =X, NX; N
XjuX)cz,2<i<n

Case 2. 2<k<n.Theny€X;NnX, N
X,uX) =Y, cz

Hence, y € Z and Z is closed in X.

Lemma 1.7. If X =YUZ where each of
the subspaces Y and Z has a o- disjoint

base and X is regular, then the subspaces

YNZ also has a o - disjoint base.

Theorem 1.8. suppose X = U{X;/i =
1,2,..n} for some n < w, where X is
regular and X; has a ¢ - disjoint base, for
eachi = 1,2,...n. Then X is a D-space.
Proof: We prove by induction. For n = 1
the statement is true, since every space
with a point countable space is a D-space.
Assume now that for less than n
summands the assertion holds. For any i
and j suchthat 1<i<nand 1<j<n
and i#j put ¥,; =X, nX n(X UX).
By Lemma, the set

Z; = U{Y,;/i# j,1< i< n}is closed

in X. By Lemma each Y;; is a space with

Volume : 4 | Issue : 5 | May 2014 | ISSN - 2249-555X

o- disjoint base. Therefore, the space Z; is
the union of less than n spaces with a o-
disjoint base. By inductive assumption, Z;
is a D-space, for each j = 1,2,..n.
Therefore, since each Z; is a closed in X,
the subspace Z = U{Z/j = 1,2,..n} of
X is a D-space.
The family p={V;/1 <i < n},
where V; = X; \ Z, is a disjoint family of
open subsets of X. Indeed, X \ Z is open
in X, and no point of x of V; can belong to
the closure of V; for i # j, since otherwise
x would belong to Y;; which is contained
in Z. Therefore, X \ Z has a o- disjoint
base and is a D-space. Hence X is a D-
space, as the union of an open D-space and

a closed D-space.

Corollory 1.9. If a regular space X is the
union of a finite family of metrizable

subspaces, then X is a D-space.

Definition 1.10.[2] A subset P of a space
X is said to be locally closed if P is open in
its closure. i.e, P can be represented as the
intersection of an open subset of X with a
closed subset of X. For example every
discrete subspace of a space X is locally

closed in X.

Lemma 1.11. If a space Y is the union of a
finite collection of locally closed D-space

s, then Y is a D-space.
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Proof: We argue by induction. Let
Y = P, UP,U...UP,, where each P; is
locally closed in X and a D-space. Assume
that the lemma holds whenever the number
of summands does not exceed n. For
i = 1,2..n+1 put F;, = P\P, then F, is
closed in Y and P,NF; = @. Therefore, F;
is the union of < n locally closed D-
spaces PNF; i#j. By the inductive
assumption it follows that each F; is a D-
space. Clearly, P, = P, UF; . Since F; is
closed in P;, and both F; and P; are D-
spaces, it follows that P. is a D-space, for
eachi = 1,2,...n+ 1. Hence Y is also a
D-space, as the union of a finite number of
locally closed D-spaces.

Theorem 1.12. Suppose that =
X, U...UX, , where X is a regular space
and each X; is a space with a point
countable base. Then X is a D-space.
Proof : We prove by induction. Assume

that the statement is not true for not more

than K-1 summands. Put H; =
Xinx.,
M/i,j:)?i \' H;; , for i,j = 1,2,...k and

F=N{H;/i,j=12,..k} Let i # j,
then obviously, W;;NX; = @. Therefore
W, ; is the union of < k - 1 spaces with a
point countable base and the inductive
assumption implies that W, ;is a D-space.

W;; is locally closed in X. The space
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V; = X\X; = X\ X; is also locally closed in
X, foreach i = 1,2,...k. Since the sets V;
and X; are disjoint, the space V; is the
union of < k — 1 spaces with a point
countable base, and the inductive
assumption implies that V; is a D-space. It
follows from the above lemma that the
E = U{w,/i,j=
1,...kPDUWU{V; /i =1,..k}) of X is a
D-space. Take any x € X\E. Then

subspace

x € X; and

x € W; foralli,j = 1,..., k. It follows
thatx € H;; foralli,j = 1,...,k.
Hencex € F.ThusX = EUF.

Let us show that the space F has a point
countable base. Fix a point countable base
B; in each space X;,i =1, ..., k. for each
V € B;. Let @(V) be the largest open
subset of X; such that @(V) NX; = V. put
G = {@e(V)/V € B},G = U{G; /i =
1,...,k} , and S = {(WNF /W € G}.
From regularity of X it easily follows that
S is a base of the space F.

Claim : The family S is point countable.

Proof : To prove the claim, we have to
show that for any j = 1,...,kand any
x € F, the family G; is countable at x;
that is, only countably many elements of
G; contain x. Obviously x € X; for some

i =1,..k Then x €F cH;=

XN X;. However the space X; is first
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countable at the point x, since x € X; and
the space X is regular. It follows that the
tightness of the space X; at the point x is
countable, and there exists a countable
subset M € X;N X; such that € M . Let y,
be the family of all elements of G;
containing x. Clearly x € X;, and each
W €y, is an open neighbourhood of x in
)7]'. However M is countable and the family
G; is point countable at each point of M,
since M c X; and B; is a point countable
base of the space X;. Therefore y, is
countable. It follows that S is a point
countable base of F. Hence F is a D-space.
Since F is closed in X and X = EUF
where E is also a D-space, X is a D-space.

Corollory 1.13. If a regular space X of
countable extent is the union of a finite
collection of subspaces with a point

countable base , then X is Lindelof.

Definition 1.14.[3] A space X is said to be
locally D, if every point

x € X has a neighbourhood U such that U
with the relative topology of X is a D-

space.

Theorem 1.15. If a locally D-space 4 is
the union of a finite collection of

neighbourhood spaces then A is a D-space.

Theorem 1.16. If a locally D-space A is
the union of a finite collection of
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neighbourhood and locally compact then A
is a D-space.

Definition 1.17.[8] An Alster cover G of a
topological space X is a cover by Gg sets
such that every compact subset of X is
included in a member of G. A space is said
to be Alster if every Alster cover has a
countable subcover.

Definition 1.18.[4] A space X is said to be
Menger if for each sequence {U,},<, of
open covers, such that each finite union of
elements of U, is a member of U, there
are u, € U, ,n <w,suchthat {u, /n<

w} is an open cover.

Definition 1.19.[5] A space X is said to be
Rothberger if for each sequence {U,}, <
of open covers, there are u, € U, such

that { u,, / n < w} is an open cover.

From the definition it can be seen that

every Rothberger space is Menger.

Definition 1.20.[6] A y over of a space X
is a countably infinite open cover such that
each point x € X is in all but finitely many
members of the cover. A space X is said to
be Hurewicz if given a sequence {u, /
n < w} of y-covers, there is for each , a
finite V, € U, such that either { UV, /
n < w} is a y-cover, or else for some n,

V, is a cover.

Lemma 1.21. Every Menger space is D.
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Theorem 1.22. Every Hurewicz space is

Menger.

Proof : Let {U,},<, be a sequence of
open covers, such that each finite union of
elements of U, is a member of U,.
Rewriting the sequence of open covers
{Unnaw 8 {UicnUidn<cw we get a
sequence of  y-covers. Since X 1is
Hurewicz there is for each n, a finite
V, € U, such that either { UV, /n < w} is
a y-cover, or else for some n, 1, is a cover.

Hence there are V, €U, such that

{V,, / n < w} is an open cover.

Corollary 1.23. Every Hurewicz space is

D.

Theorem 1.24. Every Alster space is
Menger.

Proof : Let {U,},<, be a sequence of
open covers of X, each closed under finite
unions. Let G be the set of all N,,,,,U,’s,
where u, €U, . Let K is included in
some u, € U, Thus K is included in some
G’ € G. Since X is Alster , there are
{H} }k<w In G such that Uj ., H, covers X.
Let H, =N, <y, Uy, where U, € U,.
Then {U,;, },<w covers , since H, € U,,.

Thus since each U,,, € U, . X is Menger.

Corollory 1.25. Every Alster space is D.
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Theorem 1.26. If X is concentrated on a
Rothberger  subspace, then X s

Rothberger.

Definition 1.27.[8] A space is said to be
Lusin if every nowhere dense set is

countable.

Corollory 1.28. Every seperable Lusin

space is Rothberger and therefore D.
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