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ABSTRACT The D -property is a covering property. Some special cases where unions of spaces or subspaces that are D 
make a whole space a D-space is discussed in this paper. The implications between selection principles and 

D -spaces are also discussed.

INTRODUCTION

The concept of 𝐷𝐷𝐷𝐷-spaces was first 

introduced in the year 1979 by E.K.Van 

Douwen and W.F.Pfeffer [1]. The 

implication between the 𝐷𝐷𝐷𝐷-property and 

the three selection principles namely 

Rothberger, Menger and Hurewicz is 

discussed in this paper.

Definition 1.1.[1] A neighbourhood 

assignment for a topological space (𝑋𝑋𝑋𝑋, 𝜏𝜏𝜏𝜏)

is a function 𝑁𝑁𝑁𝑁:𝑋𝑋𝑋𝑋 → 𝜏𝜏𝜏𝜏 such that 𝑥𝑥𝑥𝑥 ∈ 𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 

for each 𝑥𝑥𝑥𝑥 ∈ 𝑋𝑋𝑋𝑋. 𝑋𝑋𝑋𝑋 is said to be a 𝐷𝐷𝐷𝐷-space 

if for every neighbourhood assignment 

𝑁𝑁𝑁𝑁, there is a closed discrete subset 𝐷𝐷𝐷𝐷 of 

𝑋𝑋𝑋𝑋 such that 𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)\𝑥𝑥𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷 covers 𝑋𝑋𝑋𝑋.

Theorem 1.2. If 𝑋𝑋𝑋𝑋 is the countable union 

of closed 𝐷𝐷𝐷𝐷-subspaces then 𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-space.

Proof : Let 𝑋𝑋𝑋𝑋 = ⋃𝑛𝑛𝑛𝑛<𝜔𝜔𝜔𝜔𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 where each 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 is 

a closed 𝐷𝐷𝐷𝐷-subspace of 𝑋𝑋𝑋𝑋. Let {𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥)/𝑥𝑥𝑥𝑥 ∈

𝑋𝑋𝑋𝑋} be the range space of neighbourhood 

assignment 𝑈𝑈𝑈𝑈. Pick a closed discrete 

subset 𝐷𝐷𝐷𝐷1 of 𝐹𝐹𝐹𝐹1 such that  𝔇𝔇𝔇𝔇1 =

{𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥)/𝑥𝑥𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷1} covers 𝐹𝐹𝐹𝐹1.Since {𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥)/

𝑥𝑥𝑥𝑥 ∈ 𝐹𝐹𝐹𝐹2\⋃𝔇𝔇𝔇𝔇1 covers 𝐹𝐹𝐹𝐹2\⋃𝔇𝔇𝔇𝔇1 which is 

subset of 𝐹𝐹𝐹𝐹2, pick a closed discrete 𝐷𝐷𝐷𝐷2 of 

𝐹𝐹𝐹𝐹2\⋃𝔇𝔇𝔇𝔇1 such that 𝔇𝔇𝔇𝔇2 = {𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥)/𝑥𝑥𝑥𝑥 ∈ 𝔇𝔇𝔇𝔇2} 

covers 𝐹𝐹𝐹𝐹2\⋃𝔇𝔇𝔇𝔇1 . Note that  𝔻𝔻𝔻𝔻2� = 𝐷𝐷𝐷𝐷1⋃𝐷𝐷𝐷𝐷2 is 

a closed discrete subset of 𝐹𝐹𝐹𝐹1⋃𝐹𝐹𝐹𝐹 2 such 

that 𝔻𝔻𝔻𝔻2� = 𝐷𝐷𝐷𝐷1⋃𝐷𝐷𝐷𝐷2 covers 𝐹𝐹𝐹𝐹1⋃𝐹𝐹𝐹𝐹 2.

Inductively since {𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥)/𝑥𝑥𝑥𝑥 ∈ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛(⋃𝔇𝔇𝔇𝔇𝑛𝑛𝑛𝑛−1� )}

covers  𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛(⋃𝔇𝔇𝔇𝔇𝑛𝑛𝑛𝑛−1� ) which is a closed 

subset of 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 , pick a closed discrete subset 

𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 of 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛(⋃𝔇𝔇𝔇𝔇𝑛𝑛𝑛𝑛−1� ) such that 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 =

{𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥)/𝑥𝑥𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛} covers 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛(⋃𝔇𝔇𝔇𝔇𝑛𝑛𝑛𝑛−1� ).  Note 

that  𝔻𝔻𝔻𝔻𝑛𝑛𝑛𝑛� = 𝔻𝔻𝔻𝔻𝑛𝑛𝑛𝑛−1�⋃𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 is a closed discrete 

subset of 𝐹𝐹𝐹𝐹1⋃𝐹𝐹𝐹𝐹 2⋃…⋃𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 such that   

𝔻𝔻𝔻𝔻𝑛𝑛𝑛𝑛� = 𝔻𝔻𝔻𝔻𝑛𝑛𝑛𝑛−1�⋃𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 covers 𝐹𝐹𝐹𝐹1⋃𝐹𝐹𝐹𝐹 2⋃…⋃𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 .

Letting 𝐷𝐷𝐷𝐷 = ⋃𝑛𝑛𝑛𝑛<𝜔𝜔𝜔𝜔𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 and 𝔇𝔇𝔇𝔇 = ⋃𝑛𝑛𝑛𝑛<𝜔𝜔𝜔𝜔𝔇𝔇𝔇𝔇𝑛𝑛𝑛𝑛 it 

is seen that 𝐷𝐷𝐷𝐷 is a closed discrete subset of 

𝑋𝑋𝑋𝑋 such that {𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥)/𝑥𝑥𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷} covers 𝑋𝑋𝑋𝑋.

Corollory 1.3. 𝐹𝐹𝐹𝐹𝜎𝜎𝜎𝜎 subsets of 𝐷𝐷𝐷𝐷-spaces are 
𝐷𝐷𝐷𝐷-spaces.

Proposition 1.4. If 𝑋𝑋𝑋𝑋 = 𝑌𝑌𝑌𝑌⋃𝑍𝑍𝑍𝑍, where 𝑌𝑌𝑌𝑌
and 𝑍𝑍𝑍𝑍 are 𝐷𝐷𝐷𝐷-spaces and 𝑌𝑌𝑌𝑌 is closed in 𝑋𝑋𝑋𝑋,
then 𝑋𝑋𝑋𝑋 is also a 𝐷𝐷𝐷𝐷-space.

Theorem 1.5. If a regular space 𝑋𝑋𝑋𝑋 is union 

of a countable family  γ of dense 

metrizable subspaces , then 𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-space.

Proof : Each 𝑌𝑌𝑌𝑌 ∈ 𝛾𝛾𝛾𝛾 has a 𝜎𝜎𝜎𝜎 disjoints base 

𝔅𝔅𝔅𝔅𝛾𝛾𝛾𝛾 . For each 𝑉𝑉𝑉𝑉 ∈ 𝔅𝔅𝔅𝔅𝛾𝛾𝛾𝛾  We fix an open 

subset  𝑈𝑈𝑈𝑈(𝑉𝑉𝑉𝑉) of  𝑋𝑋𝑋𝑋 such that 𝑈𝑈𝑈𝑈(𝑉𝑉𝑉𝑉)⋂𝑌𝑌𝑌𝑌 =

𝑉𝑉𝑉𝑉. For any disjoint elements 𝑉𝑉𝑉𝑉1and 𝑉𝑉𝑉𝑉2 of 

𝔅𝔅𝔅𝔅𝛾𝛾𝛾𝛾 the sets 𝑈𝑈𝑈𝑈(𝑉𝑉𝑉𝑉1) and  𝑈𝑈𝑈𝑈(𝑉𝑉𝑉𝑉2) are disjoint 

, since  𝑌𝑌𝑌𝑌 is dense in 𝑋𝑋𝑋𝑋 . Therefore the 

family 𝔅𝔅𝔅𝔅𝛾𝛾𝛾𝛾 = {𝑈𝑈𝑈𝑈(𝑉𝑉𝑉𝑉)/𝑉𝑉𝑉𝑉 ∈ 𝔅𝔅𝔅𝔅𝛾𝛾𝛾𝛾} is 𝜎𝜎𝜎𝜎 -

disjoint. Since 𝑋𝑋𝑋𝑋 is regular, the family 

𝔅𝔅𝔅𝔅𝛾𝛾𝛾𝛾contains a base of 𝑋𝑋𝑋𝑋 at  𝑦𝑦𝑦𝑦,  for every 

𝑦𝑦𝑦𝑦 ∈ 𝑌𝑌𝑌𝑌.  Hence  the  family 𝔓𝔓𝔓𝔓 = ⋃{𝔓𝔓𝔓𝔓𝛾𝛾𝛾𝛾/𝑌𝑌𝑌𝑌 ∈

𝛾𝛾𝛾𝛾} is a  𝜎𝜎𝜎𝜎 disjoint base of 𝑋𝑋𝑋𝑋. Hence by 

theorem 𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-space .

Lemma 1.6. suppose 𝑋𝑋𝑋𝑋 = ⋃{𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖/𝑖𝑖𝑖𝑖 =

1,2, …𝑛𝑛𝑛𝑛} for some 𝑛𝑛𝑛𝑛 < 𝜔𝜔𝜔𝜔, and let 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 =
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𝑋𝑋𝑋𝑋1��� ∩ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� ∩ (𝑋𝑋𝑋𝑋1 ∪ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖), for each 𝑖𝑖𝑖𝑖 = 2,3, …𝑛𝑛𝑛𝑛.

Then the set 𝑍𝑍𝑍𝑍 = ⋃{𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖/𝑖𝑖𝑖𝑖 = 2,3, …𝑛𝑛𝑛𝑛} is 

closed in  .

Proof : Take any 𝑦𝑦𝑦𝑦 ∈ �̅�𝑍𝑍𝑍y ∈ 𝑍𝑍𝑍𝑍. Then 𝑦𝑦𝑦𝑦 ∈

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖� , for some 𝑖𝑖𝑖𝑖, where 2 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛

Which implies that 𝑦𝑦𝑦𝑦 ∈ 𝑋𝑋𝑋𝑋1��� and ∈ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� . Also

 𝑦𝑦𝑦𝑦 ∈ 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 , for some 𝑘𝑘𝑘𝑘, where 1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛.

Now we have two cases.

Case 1. 𝑘𝑘𝑘𝑘 = 1. Then 𝑦𝑦𝑦𝑦 ∈ 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑋𝑋1��� ∩ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� ∩

(𝑋𝑋𝑋𝑋1 ∪ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖) ⊂ 𝑍𝑍𝑍𝑍, 2 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛.

Case 2.  2 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛. Then 𝑦𝑦𝑦𝑦 ∈ 𝑋𝑋𝑋𝑋1��� ∩ 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘��� ∩

(𝑋𝑋𝑋𝑋1 ∪ 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘) = 𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘 ⊂ 𝑍𝑍𝑍𝑍 

Hence, 𝑦𝑦𝑦𝑦 ∈ 𝑍𝑍𝑍𝑍 and 𝑍𝑍𝑍𝑍 is closed in 𝑋𝑋𝑋𝑋.

Lemma 1.7. If 𝑋𝑋𝑋𝑋 = 𝑌𝑌𝑌𝑌⋃𝑍𝑍𝑍𝑍 where each of 

the subspaces 𝑌𝑌𝑌𝑌 and 𝑍𝑍𝑍𝑍 has a 𝜎𝜎𝜎𝜎- disjoint 

base and 𝑋𝑋𝑋𝑋 is regular, then the subspaces 

𝑌𝑌𝑌𝑌⋂�̅�𝑍𝑍𝑍 also has a 𝜎𝜎𝜎𝜎 - disjoint base.

Theorem 1.8. suppose 𝑋𝑋𝑋𝑋 = ⋃{𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖/𝑖𝑖𝑖𝑖 =

1,2, …𝑛𝑛𝑛𝑛} for some 𝑛𝑛𝑛𝑛 < 𝜔𝜔𝜔𝜔, where 𝑋𝑋𝑋𝑋 is 

regular and 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 has a 𝜎𝜎𝜎𝜎 - disjoint base, for 

each 𝑖𝑖𝑖𝑖 = 1,2, …𝑛𝑛𝑛𝑛. Then 𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-space.

Proof: We prove by induction. For 𝑛𝑛𝑛𝑛 = 1

the statement is true, since every space 

with a point countable space is a 𝐷𝐷𝐷𝐷-space.

Assume now that for less than 𝑛𝑛𝑛𝑛

summands the assertion holds. For any 𝑖𝑖𝑖𝑖

and 𝑗𝑗𝑗𝑗 such that 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛 and 1 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑛𝑛𝑛𝑛

and 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 put 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 = 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� ∩ 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� ∩ (𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 ∪ 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗 ).

By Lemma, the set 

𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗  =  ⋃ {𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗/𝑖𝑖𝑖𝑖 ≠  𝑗𝑗𝑗𝑗, 1 ≤  𝑖𝑖𝑖𝑖 ≤  𝑛𝑛𝑛𝑛} is closed 

in 𝑋𝑋𝑋𝑋. By Lemma each 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 is a space with 

𝜎𝜎𝜎𝜎- disjoint base. Therefore, the space 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗 is 

the union of less than 𝑛𝑛𝑛𝑛 spaces with a 𝜎𝜎𝜎𝜎-

disjoint base. By inductive assumption, 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗

is a 𝐷𝐷𝐷𝐷-space, for each 𝑗𝑗𝑗𝑗 =  1,2, . .𝑛𝑛𝑛𝑛.

Therefore, since each 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗 is a closed in 𝑋𝑋𝑋𝑋,

the subspace 𝑍𝑍𝑍𝑍 =  ⋃{ 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗/ 𝑗𝑗𝑗𝑗 =  1,2, . .𝑛𝑛𝑛𝑛} of 

𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-space.

The family µ =  {𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  / 1 ≤  𝑖𝑖𝑖𝑖 ≤  𝑛𝑛𝑛𝑛},

where 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  = 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖  \ 𝑍𝑍𝑍𝑍, is a disjoint family of 

open subsets of  𝑋𝑋𝑋𝑋. Indeed, 𝑋𝑋𝑋𝑋 \ 𝑍𝑍𝑍𝑍 is open 

in 𝑋𝑋𝑋𝑋, and no point of 𝑥𝑥𝑥𝑥 of  𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 can belong to 

the closure of 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗, since otherwise 

𝑥𝑥𝑥𝑥 would belong to 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 which is contained 

in 𝑍𝑍𝑍𝑍. Therefore, 𝑋𝑋𝑋𝑋 \ 𝑍𝑍𝑍𝑍 has a 𝜎𝜎𝜎𝜎- disjoint 

base and is a 𝐷𝐷𝐷𝐷-space. Hence  𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-

space, as the union of an open 𝐷𝐷𝐷𝐷-space and 

a closed 𝐷𝐷𝐷𝐷-space.

Corollory 1.9. If a regular space 𝑋𝑋𝑋𝑋 is the 

union of a finite family of metrizable  

subspaces, then 𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-space.

Definition 1.10.[2] A subset 𝑃𝑃𝑃𝑃 of a space 

𝑋𝑋𝑋𝑋 is said to be locally closed if 𝑃𝑃𝑃𝑃 is open in 

its closure. i.e, 𝑃𝑃𝑃𝑃 can be represented as the 

intersection of an open subset of 𝑋𝑋𝑋𝑋 with a 

closed subset of 𝑋𝑋𝑋𝑋. For example every 

discrete subspace of a space 𝑋𝑋𝑋𝑋 is locally 

closed in 𝑋𝑋𝑋𝑋.

Lemma 1.11. If a space 𝑌𝑌𝑌𝑌 is the union of a 

finite collection of locally closed 𝐷𝐷𝐷𝐷-space

s, then 𝑌𝑌𝑌𝑌 is a 𝐷𝐷𝐷𝐷-space.
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Proof: We argue by induction. Let 

𝑌𝑌𝑌𝑌 =  𝑃𝑃𝑃𝑃1 ⋃ 𝑃𝑃𝑃𝑃2⋃. . .𝑈𝑈𝑈𝑈𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛+1 where each 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 is  

locally closed in 𝑋𝑋𝑋𝑋 and a 𝐷𝐷𝐷𝐷-space. Assume 

that the lemma holds whenever the number 

of summands does not exceed 𝑛𝑛𝑛𝑛. For 

𝑖𝑖𝑖𝑖 =  1,2. .𝑛𝑛𝑛𝑛 + 1 put 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�\𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 then 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is 

closed in 𝑌𝑌𝑌𝑌 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖⋂𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∅. Therefore, 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖
is the union of ≤  𝑛𝑛𝑛𝑛 locally closed 𝐷𝐷𝐷𝐷-

spaces 𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗⋂𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖   𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗. By the inductive 

assumption it follows that each 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is a 𝐷𝐷𝐷𝐷-

space. Clearly, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� = 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  ⋃𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 . Since 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is 

closed in  𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ���, and both 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 are 𝐷𝐷𝐷𝐷-

spaces, it follows that 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� is a 𝐷𝐷𝐷𝐷-space, for 

each 𝑖𝑖𝑖𝑖 =  1,2, . . .𝑛𝑛𝑛𝑛 + 1. Hence 𝑌𝑌𝑌𝑌 is also a 

𝐷𝐷𝐷𝐷-space, as the union of a finite number of 

locally closed 𝐷𝐷𝐷𝐷-spaces.

Theorem 1.12. Suppose that  =

 𝑋𝑋𝑋𝑋1 ⋃ . . .𝑈𝑈𝑈𝑈𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 , where 𝑋𝑋𝑋𝑋 is a regular space 

and each  𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖  is a space with a point 

countable base. Then 𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-space.

Proof : We prove by induction. Assume 

that the statement is not true for not more 

than 𝐾𝐾𝐾𝐾 –  1 summands. Put  𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 =

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� ∩  𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗  ,

𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗=𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� \ 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 , for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 =  1,2, . . . 𝑘𝑘𝑘𝑘 and 

𝐹𝐹𝐹𝐹 = ⋂{𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗/𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,2, … 𝑘𝑘𝑘𝑘}. Let 𝑖𝑖𝑖𝑖 ≠  𝑗𝑗𝑗𝑗,

then obviously, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗⋂𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗 = ∅. Therefore 

𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 is the union of  ≤  𝑘𝑘𝑘𝑘 –  1 spaces with a 

point countable base and the inductive 

assumption implies that 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 is a 𝐷𝐷𝐷𝐷-space.

𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 is locally closed in 𝑋𝑋𝑋𝑋. The space 

𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑋𝑋\𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� = X \ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� is also locally closed in 

𝑋𝑋𝑋𝑋, for each 𝑖𝑖𝑖𝑖 =  1,2, . . .𝑘𝑘𝑘𝑘. Since the sets 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
and 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 are disjoint, the space 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 is the 

union of ≤  𝑘𝑘𝑘𝑘 − 1 spaces with a point   

countable base, and the inductive 

assumption implies that 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 is a 𝐷𝐷𝐷𝐷-space. It 

follows from the above lemma that the 

subspace 𝐸𝐸𝐸𝐸 =  (⋃{ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  / 𝑖𝑖𝑖𝑖 , 𝑗𝑗𝑗𝑗 =

 1, . . .𝑘𝑘𝑘𝑘})⋃(⋃{𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  / 𝑖𝑖𝑖𝑖 = 1, . . 𝑘𝑘𝑘𝑘}) of 𝑋𝑋𝑋𝑋 is a 

𝐷𝐷𝐷𝐷-space. Take any 𝑥𝑥𝑥𝑥 ∈  𝑋𝑋𝑋𝑋 \ 𝐸𝐸𝐸𝐸. Then 

𝑥𝑥𝑥𝑥 ∈ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� and 

𝑥𝑥𝑥𝑥 ∉  𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗  for all 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 =  1, . . . ,𝑘𝑘𝑘𝑘. It follows 

that 𝑥𝑥𝑥𝑥 ∈  𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗  for all 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 =  1, . . . ,𝑘𝑘𝑘𝑘.

Hence 𝑥𝑥𝑥𝑥 ∈  𝐹𝐹𝐹𝐹. Thus 𝑋𝑋𝑋𝑋 =  𝐸𝐸𝐸𝐸 ⋃ 𝐹𝐹𝐹𝐹.

Let us show that the space 𝐹𝐹𝐹𝐹 has a point 

countable base. Fix a point countable base 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖  in each space 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 = 1, … ,𝑘𝑘𝑘𝑘. for each 

𝑉𝑉𝑉𝑉 ∈  𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖. Let 𝛷𝛷𝛷𝛷(𝑉𝑉𝑉𝑉) be the largest open 

subset of Xi� such that 𝛷𝛷𝛷𝛷(𝑉𝑉𝑉𝑉) ⋂𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖  = 𝑉𝑉𝑉𝑉. put 

𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖  =  {𝛷𝛷𝛷𝛷(𝑉𝑉𝑉𝑉)/𝑉𝑉𝑉𝑉 ∈  𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖},𝐺𝐺𝐺𝐺 =  𝑈𝑈𝑈𝑈{𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖  / 𝑖𝑖𝑖𝑖 =

 1, . . . ,𝑘𝑘𝑘𝑘} , and 𝑆𝑆𝑆𝑆 =  {𝑊𝑊𝑊𝑊⋂𝐹𝐹𝐹𝐹 / 𝑊𝑊𝑊𝑊 ∈  𝐺𝐺𝐺𝐺 }.

From regularity of 𝑋𝑋𝑋𝑋 it easily follows that 

𝑆𝑆𝑆𝑆 is a base of the space 𝐹𝐹𝐹𝐹.

Claim : The family 𝑆𝑆𝑆𝑆 is point countable.

Proof : To prove the claim, we have to 

show that for any 𝑗𝑗𝑗𝑗 =  1, . . . ,𝑘𝑘𝑘𝑘 and any 

𝑥𝑥𝑥𝑥 ∈  𝐹𝐹𝐹𝐹, the family 𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 is countable at 𝑥𝑥𝑥𝑥;

that is, only countably many elements of 

𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 contain 𝑥𝑥𝑥𝑥. Obviously 𝑥𝑥𝑥𝑥 ∈  𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 for some 

𝑖𝑖𝑖𝑖 =  1, . . . ,𝑘𝑘𝑘𝑘. Then 𝑥𝑥𝑥𝑥 ∈  𝐹𝐹𝐹𝐹 ⊂ 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗 =

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖�⋂ 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗 . However the space 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� is first 
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countable at the point 𝑥𝑥𝑥𝑥, since 𝑥𝑥𝑥𝑥 ∈ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� and 

the space 𝑋𝑋𝑋𝑋 is regular. It follows that the 

tightness of the space 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖� at the point 𝑥𝑥𝑥𝑥 is 

countable, and there exists a countable 

subset 𝑀𝑀𝑀𝑀 ⊂ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖�⋂ 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗 such that  ∈ 𝑀𝑀𝑀𝑀 . Let 𝛾𝛾𝛾𝛾𝑥𝑥𝑥𝑥

be the family of all elements of 𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗

containing 𝑥𝑥𝑥𝑥. Clearly 𝑥𝑥𝑥𝑥 ∈ 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� , and each 

𝑊𝑊𝑊𝑊 ∈ 𝛾𝛾𝛾𝛾𝑧𝑧𝑧𝑧 is an open neighbourhood of 𝑥𝑥𝑥𝑥 in 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� . However 𝑀𝑀𝑀𝑀 is countable and the family 

𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 is point countable at each point of 𝑀𝑀𝑀𝑀,

since 𝑀𝑀𝑀𝑀 ⊂ 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗 and 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗 is a point countable 

base of the space 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗 . Therefore 𝛾𝛾𝛾𝛾𝑥𝑥𝑥𝑥 is 

countable. It follows that 𝑆𝑆𝑆𝑆 is a point 

countable base of 𝐹𝐹𝐹𝐹. Hence 𝐹𝐹𝐹𝐹 is a 𝐷𝐷𝐷𝐷-space.

Since 𝐹𝐹𝐹𝐹 is closed in 𝑋𝑋𝑋𝑋 and 𝑋𝑋𝑋𝑋 =  𝐸𝐸𝐸𝐸⋃𝐹𝐹𝐹𝐹

where 𝐸𝐸𝐸𝐸 is also a 𝐷𝐷𝐷𝐷-space, 𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-space.

Corollory 1.13. If a regular space 𝑋𝑋𝑋𝑋 of 

countable extent is the union of a finite 

collection of subspaces with a point 

countable base , then 𝑋𝑋𝑋𝑋 is Lindelof.

Definition 1.14.[3] A space 𝑋𝑋𝑋𝑋 is said to be 

locally D , if every point 

𝑥𝑥𝑥𝑥 ∈  𝑋𝑋𝑋𝑋 has a neighbourhood 𝑈𝑈𝑈𝑈 such that 𝑈𝑈𝑈𝑈

with the relative topology of 𝑋𝑋𝑋𝑋 is a 𝐷𝐷𝐷𝐷-

space.

Theorem 1.15. If a locally 𝐷𝐷𝐷𝐷-space 𝜆𝜆𝜆𝜆 is 

the union of a finite collection of 

neighbourhood spaces then 𝜆𝜆𝜆𝜆 is a 𝐷𝐷𝐷𝐷-space.

Theorem 1.16. If a locally 𝐷𝐷𝐷𝐷-space 𝜆𝜆𝜆𝜆 is 
the union of a finite collection of 

neighbourhood and locally compact then 𝜆𝜆𝜆𝜆
is a 𝐷𝐷𝐷𝐷-space.

Definition 1.17.[8] An Alster cover 𝐺𝐺𝐺𝐺 of a 
topological space 𝑋𝑋𝑋𝑋 is a cover by 𝐺𝐺𝐺𝐺𝛿𝛿𝛿𝛿 sets 
such that every compact subset of 𝑋𝑋𝑋𝑋 is 
included in a member of 𝐺𝐺𝐺𝐺. A space is said 
to be Alster if every Alster cover has a 
countable subcover.

Definition  1.18.[4] A space 𝑋𝑋𝑋𝑋 is said to be 

Menger if for each sequence {𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛}𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤 of 

open covers, such that each finite union of 

elements of 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 is a member of 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 , there 

are  𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 ∈ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 , 𝑛𝑛𝑛𝑛 < 𝑤𝑤𝑤𝑤, such that { 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛  / 𝑛𝑛𝑛𝑛 <

𝑤𝑤𝑤𝑤} is an open cover.

Definition 1.19.[5] A space 𝑋𝑋𝑋𝑋 is said to be 

Rothberger if for each sequence {𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛}𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤

of open covers, there are 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 ∈ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 such 

that { 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛  / 𝑛𝑛𝑛𝑛 < 𝑤𝑤𝑤𝑤} is an open cover.

From the definition it can be seen that 

every Rothberger space is Menger.

Definition 1.20.[6] A 𝛾𝛾𝛾𝛾 over of a space 𝑋𝑋𝑋𝑋

is a countably infinite open cover such that 

each point 𝑥𝑥𝑥𝑥 ∈ 𝑋𝑋𝑋𝑋 is in all but finitely many 

members of the cover. A space 𝑋𝑋𝑋𝑋 is said to 

be Hurewicz if given a sequence { 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛  /

 𝑛𝑛𝑛𝑛 < 𝑤𝑤𝑤𝑤} of 𝛾𝛾𝛾𝛾-covers, there is for each  , a 

finite 𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛 ⊆  𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 such that either { ⋃𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛  /

 𝑛𝑛𝑛𝑛 < 𝑤𝑤𝑤𝑤} is a 𝛾𝛾𝛾𝛾-cover, or else for some 𝑛𝑛𝑛𝑛,

𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛 is a cover.

Lemma 1.21. Every Menger space is 𝐷𝐷𝐷𝐷.
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Theorem 1.22. Every Hurewicz space is 

Menger.

Proof : Let {𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛}𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤 be a sequence of 

open covers, such that each finite union of 

elements of 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 is a member of 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 .

Rewriting the sequence of open covers 

{𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛}𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤 as {𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖<𝑛𝑛𝑛𝑛𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖}𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤 we get a 

sequence of  𝛾𝛾𝛾𝛾-covers. Since 𝑋𝑋𝑋𝑋 is 

Hurewicz there is for each 𝑛𝑛𝑛𝑛, a finite 

𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛 ⊆ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 such that either { ⋃𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛  / 𝑛𝑛𝑛𝑛 < 𝑤𝑤𝑤𝑤} is 

a 𝛾𝛾𝛾𝛾-cover, or else for some 𝑛𝑛𝑛𝑛, 𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛 is a cover. 

Hence there are 𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛 ∈ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 such that

{ 𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛  / 𝑛𝑛𝑛𝑛 < 𝑤𝑤𝑤𝑤} is an open cover.

Corollary 1.23. Every Hurewicz space is 

𝐷𝐷𝐷𝐷.

Theorem 1.24. Every Alster space is 

Menger.

Proof : Let {𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛}𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤 be a sequence of 

open covers of  𝑋𝑋𝑋𝑋, each closed under finite 

unions. Let 𝐺𝐺𝐺𝐺 be the set of all ⋂𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤 ,𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛′𝑠𝑠𝑠𝑠,

where  𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 ∈ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 . Let 𝐾𝐾𝐾𝐾 is included in 

some  𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 ∈ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 . Thus 𝐾𝐾𝐾𝐾 is included in some 

𝐺𝐺𝐺𝐺’ ∈  𝐺𝐺𝐺𝐺. Since 𝑋𝑋𝑋𝑋 is Alster , there are 

{𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘<𝑤𝑤𝑤𝑤 in 𝐺𝐺𝐺𝐺 such that ⋃𝑘𝑘𝑘𝑘<𝑤𝑤𝑤𝑤𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 covers 𝑋𝑋𝑋𝑋.

Let 𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = ⋂𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤 ,𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 , where 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 ∈ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 .

Then {𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 }𝑛𝑛𝑛𝑛<𝑤𝑤𝑤𝑤 covers  , since 𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛 ⊆ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 .

Thus since each 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛 , 𝑋𝑋𝑋𝑋 is Menger.

Corollory 1.25. Every Alster space is 𝐷𝐷𝐷𝐷.

Theorem 1.26. If 𝑋𝑋𝑋𝑋 is concentrated on a 

Rothberger subspace, then 𝑋𝑋𝑋𝑋 is 

Rothberger.

Definition 1.27.[8] A space is said to be 

Lusin if every nowhere dense set is 

countable.

Corollory 1.28. Every seperable Lusin 

space is Rothberger and therefore 𝐷𝐷𝐷𝐷.
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