Predict of Football Playing Ability on Selected Skill Related Variables and Motor Fitness Variables of School Level Male Football Players

ABSTRACT
We examined the predict of football playing ability on selected skill related variables and motor fitness variables of school level male football players. Various football teams participated in the Inter School Football Tournament (Zonal Level). One hundred and twenty school male football players from ten schools (n = 120) were selected. The study was formulated as a survey method design. The age of the subjects were ranged between 16 and 18 years. Motor fitness variables such as, agility, power and coordination and the skill related variables such as, dribbling, passing and shooting ability were selected variables for this study. Based on the results of the study the correlation between agility and power, coordination, dribbling, passing and shooting was high.

Methods:
The purpose of the study was to predict football playing ability through selected skill variables (dribbling, passing and shooting), motor fitness variables (agility, anaerobic power and coordination) and physiological variables (resting pulse rate and breath-holding time) of school level male football players. To achieve this purpose of the study, various football teams participated in the Inter School Football Tournament (Zonal Level) for boys were selected. One hundred and twenty school male football players from ten schools (n = 120), were selected.

There is an argument that peak performance in football requires a high level of fitness. Football fitness includes a variety of components from cardiovascular fitness, strength, power and agility.

Statistical Tool:
The Pearson Product Moment correlation was used to find out the relationship between the selected physical fitness variables such as speed, agility and muscular endurance and physiological fitness variable such as resting pulse rate, and breath-holding time and anthropometric variables such as height, weight and leg length and football playing ability of various school football players. Further, the one way ANOVA was used to find the significant difference between the selected school football players on selected criterion variables.

Results:

Table – I DESCRIPTIVE STATISTICS ON SELECTED CRITERION VARIABLES

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Variables</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agility</td>
<td>12.3028</td>
<td>0.22591</td>
</tr>
<tr>
<td>2</td>
<td>Power</td>
<td>90.96</td>
<td>5.790</td>
</tr>
<tr>
<td>3</td>
<td>Coordination</td>
<td>14.70</td>
<td>2.069</td>
</tr>
<tr>
<td>4</td>
<td>Dribbling</td>
<td>66.0569</td>
<td>1.64629</td>
</tr>
<tr>
<td>5</td>
<td>Passing</td>
<td>5.91</td>
<td>0.820</td>
</tr>
<tr>
<td>6</td>
<td>Shooting</td>
<td>117.85</td>
<td>12.432</td>
</tr>
</tbody>
</table>

From the scores exhibited in following inferences were drawn:
1. The correlation between agility and power was positive and \(r = 0.952 \) (\(p > 0.01 \)) and it was much higher than 0.00001 and found to be statistically significant.
2. The correlation between agility and coordination was positive and \(r = 0.262 \) (\(p > 0.01 \)) and it was much higher than 0.004 and found to be statistically significant.
3. The correlation between agility and dribbling was positive and \(r = 0.238 \) and it was much higher than 0.009 (\(p > 0.01 \)) and found to be statistically significant.
4. The correlation between agility and passing was positive and \(r = -0.415 \) and it was much higher than 0.00001 (\(p > 0.01 \)) and found to be statistically significant.
5. The correlation between agility and shooting was positive and \(r = -0.266 \) and it was much higher than 0.003 (\(p > 0.01 \)) and found to be statistically significant.
6. The correlation between power and coordination was positive and \(r = -0.192 \) and it was much higher than 0.036 (\(p > 0.05 \)) and found to be statistically significant.
7. The correlation between power and dribbling was positive and \(r = 0.184 \) and it was much higher than 0.044 (\(p > 0.01 \)) and found to be statistically significant.
8. The correlation between power and passing was positive and \(r = 0.369 \) and it was much greater than 0.000001 (\(p > 0.01 \)) and found to be statistically significant.
9. The correlation between power and shooting was posi-
tive and $r = -0.205$ and it was much greater than 0.024 ($p > 0.01$) and found to be statistically significant.

10. The correlation between coordination and dribbling was positive and $r = -0.793$ ($p > 0.01$) and it was much higher than 0.000001 and found to be statistically significant.

11. The correlation between coordination and passing rate was positive and $r = 0.608$ ($p > 0.01$) and it was much higher than 0.000001 and found to be statistically significant.

12. The correlation between coordination and shooting was positive and $r = 0.886$ and it was much higher than 0.00001 ($p > 0.01$) and found to be statistically significant.

13. The correlation between dribbling and passing was positive and $r = 0.528$ and it was much greater than 0.000001 ($p > 0.01$) and found to be statistically significant.

14. The correlation between dribbling and shooting was positive and $r = 0.813$ and it was much higher than 0.00001 ($p > 0.01$) and found to be statistically significant.

15. The correlation between passing and shooting was positive and $r = 0.617$ and it was much higher than 0.00001 ($p > 0.01$) and found to be statistically significant.

Conclusion:
The correlation between agility and power, coordination, dribbling, passing and shooting was high. There was a high correlation between power and coordination, dribbling, passing and shooting. There was a high correlation between dribbling and passing and shooting. There was a high correlation between passing and shooting.