Synergistic Activity of Antibiotics and Trachyspermum ammi (Ajwain) Extract on MDR Staphylococcus aureus

KEYWORDS
Multidrug resistance, Trachyspermum ammi, herb extracts, Staphylococcus aureus.

ABSTRACT
New emerging trends in multidrug resistance among several groups of microorganisms against different classes of antibiotics led to development of different strategies. Total 106 Clinical samples were screened for isolation of Staphylococcus sp. Total 21 suspected isolates of Staphylococcus aureus were identified on the basis of morphological, cultural & biochemical characteristics and all of them were found to be Staphylococcus aureus. 17 isolates were associated with pus samples, 3 with urinary tract infection (UTI) and 1 was associated with blood. Antibiogram study of these isolates revealed that all these isolates are resistant to several antibiotics out of 16 antibiotics tested. Synergistic study of extracts of T. ammi and antibiotics on susceptibility of resistant Staphylococcus isolates showed that most of the extracts exhibited potentiating effect on antibiotics. The potency shown by these extracts may explore their use against multidrug resistant microorganisms in combination therapy.

Introduction:
Natural medicine is the chemical agents derived from Natural origin that is used for curative purpose (Dorman H.J. and Deans S.G., 2000). Medicinal plants are natural resources for valuable products that can be used in the treatment of various ailments. In Indian system of medicine, (T. ammi) ajwain is most often used herb and administered for stomach disorders, a paste of crushed herb were applied externally for relieving local pains; and a hot and dry concentrates of herb were also layered on the chest to cure asthma. The synergistic and additive effect of phytochemicals in combination play key role to use plant extracts as antimicrobial agents. Aqueous extract of T. ammi is a popular preparation for diarrhea, stomach ache, carminative, expectorant, antiseptic, amoebiasis and anti-microbial applications. Some extended use of T. ammi also cures abdominal tumor and piles (Krishnamoorthy V and Madalageri MB., 1999). Problem of comfort dipsomania, hysteria, relieving flatulence, dyspepsia, spasmodic disorders, flatulence, common cold, acute pharyngitis, infections with worms and congested throat can be managed with ajwain formulation (Ranjan B et. al., 2011). The mode of action is due to inhibition of microbial growth and oxidation & hindrance of some enzymatic reactions. In addition T. ammi and other spices offer a promising alternative for food safety (Arora D.S. and Kaur G.J., 2007). Some studies claim that the phenolic compounds present in spices and herbs might play a major role in their antimicrobial effects (Hara-Kudo Y., et. al., 2004 and Horace D.G., 1982).

The spread of multi-drug resistant pathogens is one of the most serious threats to successful treatment of microbial diseases. An alarming increase in bacterial strains resistant to existing antimicrobial agent population seeks a new effective treatment against pathogens. Over the time, spices have evoked interest in natural products to heal many infectious diseases (Parekh et al., 2005). Spices are some of the most commonly used natural antimicrobial agents in foods (Hirasa and Takemasa, 1998; Nevias et al., 2004) and spices are the common dietary adjuncts which contribute to the taste, flavor and aroma to foods as well as a stop signal to stabilize the foods from the microbial deterioration (Kizil and Sogut, 2003). Natural compounds in spices were found to possess antimicrobial activity (Shelaf 1983). Spices plays key role in the food spoilage and effects of these natural compounds in combination and or as crude were shown to have significant effects on micro-organisms (Mandalari G. et. al., 2007 and Lai P.K. and Roy J., 2004). Essential oils and extracts of certain plants have been proved to have antimicrobial effects (Burt S., 2004). Spices are rich source of biologically active antimicrobial compounds which are effective against treatment of both Gram positive and Gram negative bacterial strains (Lia and Roy, 2004; Russel, 1991).

Bacteria have the genetic ability to transmit and acquire resistance to several drugs which is called as multi drug resistant (MDR) pathogens (Soulby J., 2005). Resistance to drugs is higher in developing countries than developed one because of extensive and indiscriminate use of antibiotics (Akrum M., 2007) and people’s ability to self medicate without a prescription from a physician. Among the wide range, beta (β)-lactams are the most varied and widely used antibiotics (Bronson JJ and Barrett JF., 2007) and its resistance due to production of β-lactamases which degrade the basic structure of (β)-lactum. A property production of β-lactamases has been attributed to the spread of plasmid-mediated extended spectrum β-lactamases (ESBLs) (Sanders CC and Sanders WE Jr., 1987). Antibacterial activity of spices against several species of bacteria have been demonstrated, which includes some serotypes of Salmonella, such as S. typhimurium (Lachowicz et al., 1998; El-Gayyar et al., 2001) S. enteritidis, S. infantis (Alzoreky and Nakahara, 2002), and S. anatum (Swetiwathana et al., 1999).

There are considerable variations in resistance of different microorganism to a same spice and for the same microorganism to different spices (Arora and Kaur, 1999). Seeds of T. ammi (ajwain) contain phyto-chemicals such as pinene, cymene, limonene and terpine. In past practices volatile oils has been suggested to either inhaled or applied topically over the skin, which act by means of their lipophilic fraction reacting with the lipid parts of the cell membranes, and modify the activity of calcium ion channels (Buchbauer G and Jirovetz L., 1994). The presence of
terpenes, glycosides and sterols in plant has been found to be responsible for anti-inflammatory properties whereas, the phenolic constituents of ajwain are mainly responsible for the antiseptic and antitussive properties (Ray B., 1996 and Brull S. and Coote P., 1999).

The current study was carried out to investigate the bactericidal and synergistic effect of T. ammi extracts on antibacterial efficacy of antibiotics often used to treat MDR pathogens.

Material and Methods:
Collection of clinical samples:
Clinical samples of urine, pus, blood and sputum sample were collected from different pathology laboratories of Nagpur (MS), India.

Isolation of Staphylococcus sp. from various clinical Samples:
A sample was immediately transferred to sterile nutrient broth for enrichment under aseptic condition and incubated at 37°C for 48 hrs. After 48 hours, loopful of culture from enriched nutrient broth was plated on selective media, crystal violet agar so as to get well isolated colonies. Suspected colonies of Staphylococci showing typical cultural characteristics on selective media were picked up and were maintained on nutrient agar slant for further identification.

Identification of Isolates:
Isolates were identified on the basis of morphological, cultural & biochemical characteristics and the results were compared with Bergey's Manual of Determinative Bacteriology 9th edition as well as confirmed by biochemical identification using Vitek 2 System.

Preparation of inoculums:
A loopful of culture from slants was inoculated into the screw cap tube containing 5ml sterile nutrient broth and incubated at 37°C for 24hrs. Again loopful of culture from same broth was transferred to fresh 5ml of sterile nutrient broth and incubated at 37°C for 6-8 hrs. Turbidity was adjusted according to 0.5 McFarland standards which were then used as an inoculum which corresponds to size of 1.5×10^8 CFU/ml. This suspension was used as inoculums.

Antibiotic Susceptibility Test:
Antimicrobial susceptibility testing was performed by the disc diffusion method with commercially available discs (HiMedia, Mumbai, India) of Rifampicin (RIF) 5 mcg, Amikacin(AK) 30 mcg, Ampicillin (AMP) 10 mcg, Sparfloxacin (SPX) 5mcg, Cefamandole (FAM) 30 mcg, Cefepime(CPM) 30 mcg, Cefonicid(CID) 30 mcg, Cefotaxime(CTX) 30 mcg, Cefotizoxime(CZX) 30 mcg, Cephalothin(CEP) 30 mcg, Erythromycin(E) 15 mcg, Gatifloxacin(GAT) 5 mcg, Gentamicin(GEN) 10 mcg, Linezolid(LZ) 30 mcg, Moxifloxacin(MO) 5 mcg and Oxacillin(OX) 1 mcg. Selected antibiotic discs placed over plates seeded with 100 ml broth culture (0.5 McFarland standards) over surface of Hi sensitivity test agar and Brull S. and Coote P., 1999).

The spice, Seeds of T. ammi (ajwain) were purchased from local market of Nagpur (MS). The seeds were dried under shade, pulverized with hand mortar and pestle, filled in air tight bottle and stored in refrigerator till its use.

Preparation of herb extracts:
Hot extract (Soxhlet extract):
Over 25 g of powdered herb were filled in Soxhlet thimble and refluxed in Soxhlet apparatus with 250 ml of desired solvent for 24 hrs. Solvent were used in a sequence with increasing order of polarity of the solvent, petroleum ether (60-80°C), chloroform, acetone, methanol and water. Before every extraction, material inside the thimble was exposed to air to evaporate preceding solvent absorbed in material. After 24 hrs solvent is recovered till approximately 55 -60ml of extract remained in round bottom flask. The solvents were then evaporated at appropriate temperature for each solvent until a very concentrated extract (less than 50 ml) was obtained and final volume was make up to 50 ml in volumetric flask.

Cold extract:
25 g of powdered herb were tide loosely in nylon cloth (400 mesh) and immersed in 100 ml of solvent in 250 ml stoppered conical flask and kept at 25°C under 150 rpm in rotary B.O.D incubator for 24 hrs. Successive extraction of same powdered material was carried out in selected series of solvents as used in hot extraction. Before every extraction, material was exposed to air to evaporate preceding solvent absorbed in material. After 24 hrs solvent is evaporated at room temperature to obtain final volume of 50 ml.

Total 10 extracts were prepared and they were abbreviated and hereafter referred by their abbreviation. They are Hot Ajwain Acetone extract (HAAT), Cold Ajwain Acetone extract (CAAT), Hot Ajwain Methanol extract (HAME), Cold Ajwain Methanol extract (CAME), Hot Ajwain Chloroform extract (HACF), Cold Ajwain Chloroform extract (CACF), Hot Ajwain Water extract (HAW), Cold Ajwain Water extract (CAW), Hot Ajwain Petroleum ether 60-80°C extract (HAPE) and Cold Ajwain Petroleum ether 40°C- 60°C extract (CAPE).

Cold and hot concentrated extract was prepared in sufficient volume (50 ml) and preserved at 48°C in sealed vials for further use to avoid batch to batch variations.

Sterility testing of Plant extracts:
100 µl of hot and cold extract were spread on Nutrient Agar (NA) and Potato Dextrose Agar (PDA) plates, and checking for growth of bacteria in 48 hrs at 37°C and at 25°C and fungal contaminants after 1 week of incubation at room temperature (Sule LO., 2008) to ensure absence of any microbial contamination.

Testing of Synergistic activity:
100 µl of extract was transferred to sterile petri plates and 15ml of sterilized molten Hi-sensitivity test agar maintained 55°C in constant temperature water bath was then poured in a plate, then plate is rotated for about 30 to 35 seconds to ensure even mixing of extract with the agar medium. Agar medium was then allowed to solidify. 100 µl of inoculum was added on solidified Hi-sensitivity test agar and spread over agar medium with the help of sterile disposable L-spreader. Four or five antibiotic discs were placed
over it equidistantly. Plates were kept undisturbed in a refrigerator for 1 hour. Then plates were removed from refrigerator and shifted to incubator maintained at 37°C for 18-24hrs. After incubation all plates were examined for zone of inhibition and Zone of inhibition was noted down. Zone of inhibition is then measured and classified as susceptible, intermediate, or on the basis of manufacturer’s interpretive table, CLSI standard.

Result and discussion:
Total 106 Clinical samples of urine, pus, blood and sputum were collected from different pathology laboratories of Nagpur (MS), India for isolation of Staphylococcus sp. Total 21 suspected isolates of Staphylococcus aureus were identified on the basis of morphological, cultural & biochemical characteristics and all of them were found to be Staphylococcus aureus. 17 isolates were associated with pus samples, 3 with urinary tract infection (UTI) and 1 was associated with blood. Percentage prevalence of Staphylococcus aureus in clinical samples are graphically illustrated in Graph 1. More than 80% Staphylococcus aureus were found associated with pus samples, 14 % and 5 % with Urine samples and blood samples respectively. Staphylococcus aureus interpreted to be the most common cause of skin infection and development of MDR against commonly used antibiotics making the case difficult to manage.

Graph 1: Graph showing % prevalence of Staphylococcus aureus in clinical samples.

These 21 isolates were preliminary screened for the selection of MDR using 16 different antibiotics. Antibiogram study of these isolates revealed that all these isolates are resistant to several antibiotics out of 16 antibiotics tested. Total 5 MDR isolates of Staphylococcus aureus namely P035, P036, P057, B072 and P068 were selected for further studies out of 21 isolates on the basis of their resistance to more than 70% antibiotics. Graph 2 illustrates the % resistance of each isolate to number of antibiotics.

Graph 2: Graph showing resistance of isolate to % number of antibiotics.

These isolates were resistant to Rifampicine, Amikacin, Am-

cillin, Sparfloxacin, Cefamandole, Cefonicid, Cefizoxime, Cephalothin, Erythromycine, Gentamicin, Linezolid, Moxi-
floxacin, Oxacillin and mostly intermediate to Cefepime. Total 10 extracts of ajwain were studied; HAAT, CAAT, HAME, CAME, HACF, CACF, HAW, CAW, HAPE and CAPE. The results of antibiogram and synergic effect of herbal extracts on susceptibility of MDR isolates are given in Table 1. All extract found to be potentiate the activity of all antibiotics except Cefamandole (FAM), Cefonicid(CID), Erythromycine(E) and Cefepime(CPM). These extracts found to potentiate the susceptibility of even sensitive antibiotic, Gatifloxacin(GAT). HACF extract exhibited higher synergic activity than others because of solubility of phytochemicals at that particular polarity, on Rifampicine(RIF), Amikacin(AK), Ampicillin(AMP), Sparfloxacin(SPX), Cefizoxime(CZX), Cephalothin(CEP), Gentamicin(GEN), Linezolid(LZ), Moxifloxacin(MO) and Oxacillin(OX). Synergistic study of extracts of T. ammi seeds and antibiotics on susceptible of resistant Staphylococcus isolates showed that most of the extracts exhibited potentiating effect on antibiotics.

The whatever agents having capacity to kill the microbes or arrest its multiplication, are called the antimicrobial agents and there are plenty of antimicrobial agents of which some are discovered or established and some are still hidden in the nature, many of them are in the plants. Zaika long before has reviewed the antimicrobial effectiveness of spices and herbs (Zaika L.L., 1975). The major phenolic compound present in T. ammi is thymol and has been proposed to have a germicidal, antispasmodic, and antifungal activity (Burt S., 2004). The clove oil and cinnamon oil have shown nearly an equal activity but, clove oil has maximum activity against Staphylococcus with diameter 30mm as compared to Gentamycin 19mm (Amit kumar et. Al., 2012). Microorganisms, despite of being small it causes a very profound damage to human body as well as to other living organisms. When acetone and aqueous extracts of T. ammi were tested against strains of Enterococcus faecalis, Staphylococcus aureus, Salmonella typhi, Salmonella typhimurium and Shigella flexneri by using agar diffusion assay, an inhibitory effect was observed (Gurinder JK Salan et. Al., 2008) which is in line with the present study. Last few decade witnessed an increase in the investigations on plants as a source of solution over human disease management and a search for more natural antimicrobials agents such as extracts from plants as inhibitory compounds. Methanolic extract of seed of T. ammi tested against bacte-

rial species of Pseudomonas aeruginosa and Basillus pumilus, Staphylococcus aureus and Staphylococcus epidermidis and showed significant antibacterial activity (Shahidi B., 2004). Several studies have been focused on the application of individual extracts derived from plants and some studies showed single extracts have more antimicrobial activity compared to the mixture of major components (Ibrahim S.A. et. Al., 2006). Ethanol and acetone extracts of the cinnamon and the methanol extracts of cinnamon and ajwain are found to be effective in inhibiting the growth of Pseudomonas sp., Bacillus subtilis and Staphylococcus aureus. Crude ethanol extracts of cinnamon and ajwain are found to be effective in inhibiting the growth of Pseudomonas sp., Bacillus subtilis and Staphylococcus aureus and E. coli whereas, crude acetone extract of cinnamon and T. ammi showed antimicrobial activities against Pseudomonas sp., Bacillus subtilis and Escherichia coli and not against Staphylococcus aureus (Masih usha et. al., 2012). Biomolecules of plant origin appeared to be one of the alternatives over the control of few MDR pathogens. Researchers across the globe have studied the antimicrobial activities of indigenous herbs and spices. Our study provides insight for exploitation of herbal extractives for potentiating the activity of antibiotics against MDR pathogens.
Conclusion:
Results in present revealed the combined use of plant extracts and antibiotics is useful in the treatment of infectious diseases, and also able to deal with MDR pathogen, Staphylococcus aureus which can solve the problem in treatment of emerging drug resistance associated diseases.

The different solvent extracts of T. ammi showed significant activity against MDR pathogens in combination with antibiotics which were previously least effective or ineffective. HACF extract exhibited higher synergistic activity than others because of solubility of phytochemicals at that particular polarity. This clears the view of validity of synergistic activity of plant extract with antibiotic which is a promising approach in the field of medical microbiology and provides a new hope for development of drug therapy. Further studies are needed to confirm the phenomenon of synergy between drugs and plant extracts and to avoid allergy and other side effects.

Acknowledgement:
We acknowledge University Grants Commission, New Delhi, India for financial support.

Table 1: Antibiotic and synergistic effect of herbal extracts and antibiotics on MDR Staphylococcus isolates.

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RIF</td>
</tr>
<tr>
<td>P035</td>
<td>11(R)</td>
</tr>
<tr>
<td>HAA</td>
<td>17 (S)</td>
</tr>
<tr>
<td>CAME</td>
<td>18 (S)</td>
</tr>
<tr>
<td>HACF</td>
<td>21 (S)</td>
</tr>
<tr>
<td>HAP</td>
<td>19 (S)</td>
</tr>
<tr>
<td>P036</td>
<td>12 (R)</td>
</tr>
<tr>
<td>HAA</td>
<td>20 (S)</td>
</tr>
<tr>
<td>CAME</td>
<td>21 (S)</td>
</tr>
<tr>
<td>HACF</td>
<td>22 (S)</td>
</tr>
<tr>
<td>HAP</td>
<td>19 (S)</td>
</tr>
<tr>
<td>P057</td>
<td>13 (R)</td>
</tr>
<tr>
<td>HAA</td>
<td>20 (S)</td>
</tr>
<tr>
<td>CAME</td>
<td>22 (S)</td>
</tr>
<tr>
<td>HACF</td>
<td>23 (S)</td>
</tr>
<tr>
<td>HAP</td>
<td>19 (S)</td>
</tr>
<tr>
<td>HAA</td>
<td>21 (S)</td>
</tr>
<tr>
<td>CAME</td>
<td>22 (S)</td>
</tr>
</tbody>
</table>

INDIAN JOURNAL OF APPLIED RESEARCH * 453

