Results of Non Homogeneous Indefinite Quadratic Forms

KEYWORDS

Dr Urmila Rani

Assistant Prof in Mathematics, Post Graduate Govt. College for Girls, Sector 46, Chandigarh.

Let $Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a real indefinite quadratic form in n variables of determinant $D \neq 0$ and of type ($r, n-r$), $0<r<n$. Let $s=2 r-n$ denote the signature of Q . Blaney [1], has shown that there exists a constant $\lceil>0$, independent of Q and depending only on n and r, such that given any real numbers C_{1}, \ldots, C_{n} there exist integers X_{1}, \ldots, X_{n} satisfying
$0<Q\left(X_{1}+C_{1}, \ldots, X_{n}+C_{n}\right) \leq(\Gamma|D|)^{1 / n}$.
Let $\Gamma_{r, n-r}$ denote the infimum of all such number Γ.
The forms for which equality is necessary in (1) with 「 replaced by forms for which equality is necessary in (1) with $\left\lceil\right.$ replaced by $\Gamma_{\text {r,n-r }}$ and for some C_{1}, \ldots, C_{n} are called critical forms. The problem of finding positive inhomogeneous minimum is to determine $\Gamma_{r, n-r}$ for various n and r and to find the critical forms.

In this notation the following results are known
$\Gamma_{1,1}=4$, Davenport-Heilbronn [2],
$\Gamma_{2,1}=4$, Blaney[3] , and Barnes [4],
$\Gamma_{1,2}=8, \Gamma_{3.1}=16 / 3, \Gamma_{2.2=16}$, Dumir [5], [6], [7],
$\Gamma_{1.3}=16$, Dumir and Hans-Grill [8],
$\Gamma_{3.2}=16, \Gamma_{4.1}=8$, Hans- Gill and Madhu Raka [9], [10],
$\Gamma_{\text {r.n-r }}=2^{n} /(s+1)$ where $s=2 r-n=0,1,2,3$, Bambah, Dumir and Hans-Gill [12],[14].
$\Gamma_{2,3}=(7 / 4)^{5}, \Gamma_{r r+1}=2^{n-1}$, for $r \geq 3$, Bambah, Dumir and Hans-Gill Han [11]

Bambah, Dumir and Hans-Gill conjectured that (see [12] and [131).
$\Gamma_{r, n-r}=\left\{\begin{array}{c}\frac{2^{n}}{1 s_{0} \mid+1} \text { if } s \equiv s_{0}(\bmod 8) \text { and }\left|s_{0}\right| \leq 3 \\ \frac{2^{n}}{4} \quad \text { if } s \equiv 4(\bmod 8)\end{array}\right.$
with possibly some exceptions.
Flahive [15] proved the conjecture of Bambah, Dumir and Hans-Gill for $n \geq 21$.

Aggarwal and Gupta [16],[17],[18], determined $\Gamma_{r, r+2}$ and $\Gamma_{r, r+3}$ for r 3, and $\Gamma_{r+4, r}$ for $r \geq 1$, proving there by the conjecture of Bambah, Dumir and Hans-Gill in these cases.

Ranjeet Sehmi and Dumir [19] proved that $\Gamma_{2,5}=32$.
$\Gamma_{2,4}$ was obtained by Dumir, Hans Gill and Sehmi [20].

It follows from the work of Dumir, Hans-Gill and Woods[13], that for $n \geq 6, \Gamma_{\text {rn- }}$ depends only on n and signature $s(\bmod 8)$. Thus all values of $\Gamma_{r, n-r}$ are known except for $\Gamma_{1,4}$. It may be remarked here that $\Gamma_{r, n-r}$ is easier to obtain when the number of variables is large. It is conjectured that $\Gamma_{1,4}=8$. From Jackson [21], Margulis [22] and Watson[23], it follows that $\Gamma_{1,4}$ 32. In 1994 Dumir and Sehmi [24], showed that $8 \leq \Gamma_{1,4}^{1,4} \leq 16$. Madhu Raka and Urmila Rani [25] improve the upper bound to get that $8 \leq \Gamma_{1,4}<12$.

Another problem of study is of isolation of \boxtimes Davenport and Heilbronn [2], proved that $\Gamma_{1,1}$ is not isolated i.e. if Q is not equivalent to the critical forms at which $\boxtimes_{1,1}$ is attained and of $0<\Gamma<\Gamma_{1,1}$, then the inequality
$0<\mathrm{Q}\left(\mathrm{X}_{1}+\mathrm{C}_{1}, \mathrm{X}_{2}+\mathrm{C}_{2}\right) \leq\left(\lceil|\mathrm{D}|)^{1 / 2}\right.$.
Is not solvable in integers x_{1}, x_{2} for some Q and for some real c_{1}, c_{2}. A form is called incommensurable if it is not a multiple of a rational form. It follows from Margulis [22] that an incommensurable form in $n 3$ variables, takes arbitrarily small values. Watson [23] had proved that if a form in $n 3$ variables takes arbitrarily small values, then the inequality (1) is solvable with arbitrarily small Γ. For rational forms and $n \geq 3$ Vulakh [26] had proved that $\Gamma_{r, n-r}$ is isolated i.e. if Q is not equivalent to the critical forms, then (1) is solvable for some $\Gamma, 0<\Gamma<\Gamma_{r, n-r}$.
If $\Gamma_{r, n-r}^{(k)}$ denote the $\mathrm{k}^{\text {th }}$ successive inhomogeneous minima for positive values of indefinite quadratic forms of type $(r, n-r), n 3$, then $=r_{r, n-r}^{(1)}=r_{r, n-r}^{\square i}$.

In this notation Bambah, Dumir and Hans-Gill [11] proved that $r_{23}^{(2)}=16$. Dumir and Hans-Gill [27] obtained $r_{1,2}^{(2)}=$ $27 / 4$. Flahive [15] has obtained the second minima for forms of signature $0, \pm 1, \pm 2$ in $n \geq 21$ variables. In 1922 Dumir and Sehmi [281,.[29] obtained $\mathrm{r}_{3,2}^{(2)}=8$ and extended this result to obtain $\mathrm{r}_{r+1, r}^{(2)}=2^{n-2}$ for all $\mathrm{r} \geq 2$. Raka Madhu [30], obtained the first four minima for ternary forms of type $(2,1)$ for the class of zero forms. Madhu Raka and Urmila Rani [31], [32] proved that $r_{2,1}^{(2)}=8 / 3$, and $r_{3,1}^{(2)}=4$. They [33] also proved that $\mathrm{r}_{r+2, r}^{(2)}=2^{2 r}$ for all $\mathrm{r} \geq 1$. Madhu Raka and Urmila Rani [34] obtained first five minima for positive values of zero quaternary quadratic forms of type $(2,2)$

REFERENCE

1. Blaney, H. 'Indefinite quadratic forms in n variables', J.London Math. Soc., 23(1948) 153-160. |2. Davenport,H. and Heilbronn,H. 'Asymmetric inequalities for non homogeneous linear forms.' J.London Math. Soc.22(1947) 53-61. | 3. Blaney. H. 'Indefinite ternary quadratic forms. 'Quart. J. Math. Oxford Ser (2) 1 (1950)262-269. | 4. Barnes.E.S. 'The positive values of inhomogeneous ternary quadratic forms.' J. Austral. Math. Soc, 2(1961) 127-132. | 5. Dumir.V.C. 'Asymmetric inequalitiesfor non homogeneous ternary quadratic forms.' Proc. Camb. Phil. Soc.63 (1967) 291-303. | 6. Dumir.V.C. 'Positive values of inhomogeneous quadratic forms I.' J. Austral. Math. Soc. 8 (1968) 87-101. | 7. Dumir.V.C. 'Positive values of inhomogeneous quadratic forms II.' J. Austral. Math. Soc. 8 (1968) 287-303. | 8. Dumir.V.C. and Hans Gill.R.J. 'On Positive values of nonhomogeneous quaternary quadratic forms of type (1,3).' Indian Journal of Pure Appl. Math. 12 (1981) 814-825. | 9. Hans Gill.R.J and Madhu Raka 'Positive values of inhomogeneous 5 -ary quadratic forms of type (3,2).' J. Austral. Math. Soc. (Series A)29 (1980) 439-450. | 10. Hans Gill.R.J and Madhu Raka 'Positive values of inhomogeneous quinary quadratic forms of type (4, 1).' J. Austral. Math. Soc. (Series A)31 (1981) 175-188. | 11. Bambah R.P. Dumir.V.C. and Hans Gill.R.J. 'Positive values of nonhomogeneous indefinite quadratic forms II.' J. Number Theory 18(1984)313-341. | 12. Bambah R.P. Dumir.V.C. and Hans Gill.R.J. 'Positive values of nonhomogeneous indefinite quadratic forms.' Proc. Col. In Classical Number Theory, Budapest (Hungary) (1981) 111-170. | 13. Dumir.V.C. , Hans Gill.R.J. and Woods.A.C. ' Values of non homogeneous indefinite quadratic forms .' J. Number Theory 47 (1994) 190-197 | 14. Bambah R.P., Dumir.V.C. and Hans Gill.R.J. ' On a conjecture of Jackson on non homogeneous quadratic forms.' J. Number Theory 16(1983) 403-419. | 15. Flahive. M. 'Indefinite quadratic forms in many variables.' Indian J. Pure Appl. Math. 19(10)(1988) 931-959. | 16.Aggarwal.S.K. and Gupta,D.P. 'Positive values of inhomogeneous quadratic forms of signature (-2).' J. Number Theory 29(1988) 138-165. | 17. Aggarwal.S.K. and Gupta,D.P. 'Least Positive values of inhomogeneous quadratic forms of signature (-3).' J. Number Theory $37(1991) 260-278$. | 18. Aggarwal.S.K. and Gupta,D.P. 'Positive values of inhomogeneous quadratic forms of signature 4.' J. Indian Math Soc. 57(1991) 1-23. | 19. Dumir.V.C. and Ranjeet sehmi ' Positive values of non-homogeneous indefinite quadratic forms of type (2,5).' J. Number Theory 48(1994) 1-35. | 20. Dumir.V.C. , Hans Gill.R.J. and Ranjeet Sehmi, 'Positive values of non-homogeneous indefinite quadratic forms of type (2,4).' J. Number Theory 55(1995) 261-284. | 21.Jackson.T.S., 'Gaps between values of quadratic forms.' J. London Math Soc.(2) 3 (1971) 47-58. | 22. Margulis.G.A. ' Indefinite quadratic forms and unipotent flows on homogeneous spaces.' Camp. Rend. Acad. Sc. (Paris) (1987) 249-253. | 23. Watson.G.L., Indefinite quadratic polynomials.'Mathematika, 7 (1960), 141-144. | 24 . Dumir.V.C. and Ranjeet Sehmi ' Positive values of non-homogeneous indefinite quadratic forms of type (1,4).' Proc. Indian Acad. Sci. 104(1994) 557-579. | 25. Madhu Raka and Urmila Rani, " Positive values of non-homogeneous indefinite quadratic forms of type (1,4).' Proc. Indian Acad. Sci. (Math. Sc.)107 (4) (1997) 329-361. | 26. Vulakh, L.Ya. 'On minima of rational indefinite quadratic forms.' J. Number Theory 21(1985)275-285. | 27. Dumir.V.C. and Hans Gill.R.J. ' The second minima for non-homogeneous ternary quadratic forms of type (1,2).'A.V. Prasad memorial Volume, Ranchi University Mathematical Journal 28(1997) 65-75. | 28. Dumir.V.C. and Ranjeet sehmi ' Positive values of non-homogeneous indefinite quadratic forms of type (3,2).' Indian Journal of Pure Appl. Math. (7)23 (1992) 827-853. | 29 . Dumir.V.C. and Ranjeet sehmi ' Positive values of non-homogeneous indefinite quadratic forms of signature +1 .' Indian Journal of Pure Appl. Math. (7)23 (1992) 855-864. | 30. Madhu Raka ' Inhomogeneous minima of a class of ternary quadratic forms .'J. Austral. Math. Soc. (series A) 55(3) (1993) 334-354. | 31 . Madhu Raka and Urmila Rani, ' Positive values of inhomogeneous indefinite ternary quadratic forms of type (2,1).' Hokkaido Mathematical Journal 25 (1996) 215-230. | 32. Madhu Raka and Urmila Rani, ' Positive values of non-homogeneous indefinite quadratic forms of type (3,1).' Osterreichische Akad. Der Wiss. Math. Natur. KI.203(1994/95)175-197. | 33. Madhu Raka and Urmila Rani, ' Positive values of non-homogeneous indefinite quadratic forms of signature 2. ' Osterreichische Akad. Der Wiss. Math.Natur. KI.203(1994/95)199-213. | 34. Madhu Raka and Urmila Rani, ' Inhomogeneous minima of a class of quaternary quadratic forms of type (2,2).' Contemporary Mathematics Mathematics, 210 (1998) 275-298. |
