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ABSTRACT Cytotoxicity assay is important in screening of lead compounds in final stage of drug discovery process. 
In the present study QSAR analysis of in vitro vero cell cytotoxicity of 57 antitubercular compounds be-

longing to chiral pentaamines, bis-cyclic guanidines, bis-cyclic thioureas and bis-cyclic piperazines scaffolds was per-
formed.  Three chemometric tools (FA-MLR, Stepwise MLR, PLS) were applied on freely online available PaDEL 2D 
descriptor (an open source) for the model development. All the models were statistically robust both internally (Q2: 
0.877-0.918) and externally (Q2F1: 0.933-0.942; Q2F2: 0.933-0.941; Q2F3: 0.866-0.883, CCC: 0.958-0.966). All the 
models satisfy the external validation parameters proposed by Tropsha, Roy and Nicola (2002, 2008 and 2011). All 
the models highlight the importance of hydrogen bonding as important property for cytotoxicity. The first theoretical 
model of in vitro vero cell cytotoxicity for antitubercular agents may be helpful for drug development process.

Introduction
Among the reemerging diseases tuberculosis remains one 
of the major concerns in recent times for the developing 
countries which was announced long before in 1993 by 
WHO. The reemergence is due to the fact that the disease 
is co-infected with the human immunodeficiency virus (HIV) 
and there is 5-15% increase of infection annually [1, 2].

There were an estimated 8.7 million new cases of tuber-
culosis (TB) (13% co-infected with HIV) and 1.4 million 
people died from TB, including almost one million deaths 
among HIV-negative individuals and 430000 among peo-
ple who were HIV positive in 2011. Globally, 3.7% (2.1-
5.2%) of new cases and 20% (13-26%) of previously treated 
cases are estimated to have multi drug resistant (MDR) 
TB [3]. Totally drug resistant (TDR) TB is a generic term 
for  TB  strains that are resistant to a wider range of drugs 
than strains classified as  extensively drug resistant (XDR) 
TB [4]. The major obstacles to the global control of this in-
fectious disease include the difficulties to detect and cure 
a sufficient number of cases to interrupt transmission. 

QSAR models can serve as an important tool for auto-
mated pre-virtual screening for in silico activity prediction, 
optimization of the lead, data mining and combinato-
rial library design. QSAR studies on various scaffolds were 
performed by different researcher groups to generate hit 
molecules, with improved activity, in the process of rational 
design of more potent antitubercular agents [5, 6, 7, 8, 9, 
10, 11, 12, 13, 15, 16].

Cytotoxicity assays were performed to screen the poten-
tial ligands in pharmaceutical industry. It is the toxic prop-
erties of any substance to cells. The choice of cytotoxic-
ity depends on the use either to choose cytotoxic agents 
(for cancer therapy) or least cytotoxic agent for therapeutic 
use. The in vitro vero cell cytotoxicity assay is being per-
formed by different researcher groups for screening new 
antitubercular agents as well as to find the selectivity index 
(SI) which is the ratio of measured IC50 in vero cell to MIC 
[17, 18]. Compounds with MIC value less than 1 µg/mL 
seems to be good lead compound and interesting com-
pounds  are those with an MIC ≤ 6.25 µg/mL and an SI  ≥ 
10 [19]. Computational approaches in designing, screening 
and finding optimal interactions at active sites by molecu-

lar docking were performed by different groups consider-
ing the MIC values. Till the date there is no availability of 
theoretical cytotoxicity models for antitubercular agent for 
screening. Therefore there is a need to explore the proper-
ties associated with cytotoxicity.

For the present study we have taken the in vitro vero cell 
cytotoxicity data of some chiral pentaamines and bis-het-
erocyclic compounds showing good antitubercular activity 
[20]. The study was done taking by 2D descriptors avail-
able on PaDEL software (open source) using FA-MLR, 
Stepwise MLR and FA-PLS techniques. This study provides 
significant insight on the applicability of such statistical 
models in identifying the features relevant for cytotoxicity.

Materials and methods
1. Data set
In the present study we have considered in vitro vero cell 
cytotoxicity (IC50 µg/ml) of 57 anti-tubercular compounds 
(Table 1) from chiral pentaamines, bis-cyclic guanidines, 
bis-cyclic thioureas and bis-cyclic piperazines [20]. The vero 
cell IC50 values in μg/ml unit of selected data set com-
pounds were firstly converted to mole/ml unit and further 
converted to -logIC50 (known as pIC50) (Table 2) to reduce 
the skewness of the data and used as response variable for 
subsequent QSAR analysis. 

Table 1: Structural features of selected data set com-
pounds
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(A): Structural features of chiral pentaamines
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(B): Structural features of bis-cyclic guanidines and bis-
cyclic thioureas
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*denotes test set compounds

Table 2: Observed vero cell cytotoxicity values of chiral 
pentaamines, bis-cyclic thioureas, bis-cyclic guanidines 
and bis-cyclic piperazines compounds 
Compound 
no.

pIC50
# (ob-

served)
Compound 
no.

pIC50
# (ob-

served)
1 8.779 30 8.805

2 8.781 31 8.823

3 8.189 32 8.807

4* 8.678 33* 8.830

5* 8.764 34 8.793

6* 7.223 35 8.793

7 7.469 36* 8.848

8* 7.227 37 8.832

9 7.275 38 8.800

10 7.293 39 8.803

11* 7.310 40* 8.864

12 7.692 41* 8.798

13 7.681 42 8.834

14 7.675 43* 8.857

15 7.387 44 8.860

16 7.638 45 8.872

17* 7.664 46* 8.895

18 7.904 47 8.882

19 8.274 48* 8.889

20 8.787 49 8.907

21* 8.825 50 8.925

22 8.839 51 8.907

23 8.858 52 8.948

24 8.857 53* 8.960

25* 8.854 54* 9.028

26 8.824 55 9.197

27 8.810 56 9.331

28 8.803 57* 9.317

29* 8.782

*denotes test set compounds, #unit: mole/ml
 
2. Descriptors
Descriptors are chemical information about a molecular 
structure with a numeric representation. The structures of 
selected data set compounds were sketched and AM-1en-
ergy minimized using CS Chemoffice software package [21] 
and saved in .mol format which is one of the suitable input 
format for PaDEL and used as input structure for descrip-
tor calculations. Only freely available online PaDEL 2D de-
scriptors were considered for the present study [22].

Initially 727 descriptors were calculated using PaDEL soft-
ware version 2.12 [22]. Then we deleted the descriptors 
with high intercorrelation (0.95), as well as zero and con-
stant value descriptors. Finally pruned 213 descriptors 
were chosen for QSAR analysis of selected data set. Addi-
tionally we used the MICs (minimum inhibitory concentra-
tions) of compounds converted to –logMIC as descriptor. 

Model development
The creditability of QSAR analysis is basically depends on 
the selected data set, appropriate descriptors, the statisti-
cal methods used for analysis of data set and most impor-
tantly validation strategies adopted for developed model 
[23]. Initially we have divided the whole data set in to test 
set (with 19 compounds, comprising approximately 33% 
of total compounds) and training set (with 38 compounds, 
comprising approximately 67% of total compounds). K-
means clustering on standardized descriptors matrix was 
used as a tool for the division of the compounds in to test 
and training set [24]. It is a non hierarchical clustering tech-
nique to classify objects based on characters in to K num-
ber of group (where, K is positive integer number). 

Initially models were developed from the training set 
compounds considering the model fitting parameters like 
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squared correlation coefficient (R2), explained variance 
(R2a) and F value at specific degree of freedom (df)  indi-
cating the robustness of models [24]. The predictive ability 
of the equation for internal validation was evaluated by a 
well-known method of Leave-one-out (LOO) cross-valida-
tion R2 (Q2) [25, 26, 27]. In addition predicted residual 
sum of squares (PRESS) was also checked. For the exter-
nal validation the parameters Q2F1, Q2F2, Q2F3 [28, 29, 
30] and metric of 2

mr  [ 2
m(LOO)r , 2

m(overall)r  and 2
m(test)r ] [31, 32] and 

CCC [33] were calculated. Different metric for 2
mr  were cal-

culated using online available link [34].

For the modeling three chemo metric tools (FA-MLR, Step-
wise MLR and FA-PLS) were used [35, 36, 37, 38]. The FA 
was performed using the statistical software SPSS [36, 39]. 
K-means clustering, stepwise regression, standardization of 
the variables and PLS were performed using statistical soft-
ware MINITAB [40].

Results and discussions
Initial division of data set was done by using K means clus-
tering techniques and the PCA score plot (Figure 1) shows 
uniform distribution of test set compounds within the do-
main of training set.

FA-MLR
The factor analysis of the data matrix shows 10 factors 
could explain 95.083% of the variance of the total data 
matrix (all descriptors along with the response variable). 
The response variable is highly loaded with factor 1 (which 
in turn highly loaded in SHBint5, maxHBint2, SHBint2, 
maxHBint5, maxHBint8, mindNH, SdNH, maxdNH, min-
HdN and SHBd) while it is moderately

Fig.1. PCA score plot of first three components of the 
descriptor matrix shows distribution of training and test 
set compounds in 3D space

loaded with factor 2 (highly loaded in nBonds, WTPT-1, 
VAdjMat, Zagreb, SP-2). The best predictive equation was 
obtained in the combination of maxHBint2 (maximum E-
state descriptor of strength for potential hydrogen bonds 
of path length 2) and nBonds (number of bonds excluding 
bonds with hydrogen) descriptors.

According to standardized coefficient maxHBint2 contrib-

ute more than nBonds. The standard errors of regression 
coefficients are given within parenthesis. The leave-one-out 
predicted variance was found to be 87.7%. Two variables 
maxHBint2 and nBonds in equation (1) could explain 
88.3% of the variance (adjusted coefficient of variation) of 
the vero cell toxicity. The test set compounds were exter-
nally predicted applying equation (1), the predicted R2 

(Q2
F1) for the test set was found to be 0.942. The absence 

of high intercorrelation (r) was found among predictor vari-
ables.

Eq. 1 explains that the compounds having greater value 
for nBonds descriptor will show higher vero cell toxicity 
due to positive contribution of nBonds descriptor towards 
vero cell toxicity. The hydrogen bonding descriptor max-
HBint2 contribute negatively towards vero cell cytotoxic-
ity. Bis-cyclic guanidines (compound no. 7, 9, 10, 12, 13, 
14, 15, 16) and bis-cyclic thioureas (compound no. 18, 19) 
were observed with positive value for maxHBint2 descrip-
tor among the all training set compounds showing less cy-
totoxicity value. The chiral pentaamines (compound no. 2, 
3) and bis-cyclic piperazines (compound no. 20, 22, 23, 24, 
26, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 42, 44, 45, 47, 
49, 50, 51, 52, 55, 56) were found to be with zero value 
for maxHBint2 descriptor therefore these compounds show 
greater pIC50 value in comparison to bis-cyclic guanidines 
and bis-cyclic thioureas.

STEPWISE

The best combination of descriptors according to specified 
stepping criteria (F to enter 4, F to remove 3.9) were 
found to be maxHBint8 (maximum E-state descriptor of 
strength for potential hydrogen bonds of path length 8), 
SHBint9 (sum of E-state descriptor of strength for potential 
hydrogen bonds of path length 9) and minHbd (minimum 
E-state for strong hydrogen bonds donars). The electro 
topological state (E-state) hydrogen bonding descriptors of 
the eq. 2 contribute negatively towards vero cell toxicity. It 
is clear that the stepwise equation is mainly governed by 
the E-state descriptors of hydrogen bonding. According to 
the relative importance of descriptors maxHBint8 contrib-
ute mostly towards vero cell toxicity and it was observed 
that all bis-cyclic piperazines (compound no. 20, 22, 23, 
24, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 42, 44, 45, 
47, 49, 50, 51, 52, 55, 56) and all chiral pentaamines (com-
pound no. 2, 3) in training set having zero value for maxH-
Bint8 descriptor thus these compounds show greater val-
ues of vero cell toxicity in comparison to bis-cyclic 
guanidines and bis-cyclic thioureas. All the bis-cyclic guani-
dines and bis-cyclic thioureas were found to be with a defi-
nite positive value and compound no. 19 having least val-
ue for maxHBint8 descriptor thus it contributes greater 
towards vero cell toxicity in comparison to rest of the bis-
cyclic guanidines (compound no. 7, 9, 10, 12, 13, 14, 15, 
16, 18)  and bis-cyclic thioureas (compound no. 20). Bis-cy-
clic piperazines (compound no. 2, 3) with a definite posi-
tive value for SHBint9 and minHbd descriptors showed 
higher toxicity value due to zero value of maxHBint8 which 
contributes mostly towards vero cell toxicity. The statistical 
parameters of the equation 2 along with other models are 
listed in Table 3 which indicates robustness of the model. 
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FA-PLS
For FA-PLS initial reduction of number of descriptors was 
done using factor analysis. From pool of 213 descriptors 
we reduced the number of descriptors to 107 by select-
ing the variables in highly loaded factors. The final equa-
tion (Eq. 3) was obtained with one component, optimized 
with Q2 and showed good internal and external parameters 
which are listed in Table 3.

 
The E-state atom type descriptors namely SHBd (sum of E-
states for strong hydrogen bond donars), SHBint2 (sum of 
E-state descriptors of strength for potential hydrogen 
bonds of path length 2), SHBint8 (sum of E-state descrip-
tors of strength for potential hydrogen bonds of path 
length 8), SHdNH (sum of atom-type H E-state: =NH) and 
maxHBint8 were obtained in FA-PLS equation and all these 
descriptors have negative contribution to the vero cell tox-
icity. Bis-cyclic guanidines (compound no. 7, 9, 10, 12, 13, 
14, 15, 16) with higher value for SHBd, SHBint2, SHBint8, 
SHdNH and maxHBint8 descriptors were found to be less 
toxic to vero cell.  And on the contrary chiral pentaamines 
(compound no. 2, 3), bis-cyclic thioureas (compound no. 
18, 19) and bis-cyclic piperazines (compound no. 20, 22, 
23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 42, 44, 
45, 47, 49, 50, 51, 52, 55, 56) with zero or lesser value for 
E-state atom type descriptors (SHBd, SHBint2, SHBint8, 
SHdNH and maxHBint8)showing high value of vero cell 
toxicity.

All chiral pentaamines and bis-cyclic piperazines in training 
set were found to be with zero value for E-state descrip-
tors of strength for potential H-bond (SHBint2, SHBint8, 
maxHBint8) and atom type H E-state: =NH (SHdNH) de-
scriptor  hence showing greater vero cell toxicity in com-
parison to bis-cyclic guanidines and bis-cyclic thioureas. 
In addition, bis-cyclic thioureas were also having zero val-
ue for SHdNH descriptor due to absence of imine (=NH) 
group and hence showing greater vero cell toxicity in com-
parison to bis-cyclic guanidines.

The E-state descriptor for strong H-bond donor (SHBd) 
was found to be with greater values for all bis-cyclic guani-
dines in comparison to chiral pentaamines, bis-cyclic thio-
ureas and bis-cyclic piperazines, thus bis- cyclic guanidines 
showing lesser vero cell toxicity among all compounds in 
training set.

Further test on external validation
The external validation statistics of the developed mod-
els were further verified by using different external valida-
tion parameters proposed by Golbraikh and Tropsha {i.e., 
(i) Q2 > 0.5, (ii) r2 > 0.6, (iii) 2

0r  or /2
0r is close to r2, such 

that   [(r2- 2
0r )/ r2]   or  [(r2- /2

0r )/ r2]  < 0.1 and   0.85 £ k 
£1.15 or 0.85 £ k/ £1.15}  [38, 41] and Roy et al [average 

2
mr  ( 2

mr ) should be > 0.5 & delta 2
mr  (∆ 2

mr ) should be < 0.2 
] [39, 42] and by Insubria group [concordance correlation 
coefficient (CCC) with cut off value of 0.85] [33, 40]. All the 
developed models satisfy all the statistical criteria (listed in 
Table 3, 4 and 5) as proposed by the above authors.

Table 3: Statistical quality and different validation met-
rics of developed model

Type of 
statistical 
method

R2 Q2 Q2
F1 Q2

F2 Q2
F3 CCC

FA-MLR 0.890 0.877 0.942 0.941 0.883 0.966

Stepwise 0.947 0.918 0.933 0.933 0.866 0.958

FA-PLS 0.888 0.877 0.936 0.936 0.872 0.963

 
Table 4: External validation characteristics of developed 
model according to Golbraikh and Tropsha [41]

Parameters
Types of statistical method

FA-MLR Stepwise FA-PLS

r2 0.950 0.943 0.952

2
0r 0.943 0.933 0.939

/2
0r 0.928 0.911 0.917

(r2- 2
0r )/r2 0.007 0.011 0.014

(r2- /2
0r )/r2 0.023 0.034 0.037

k 1.100 1.116 1.138

k/ 0.864 0.845 0.836

Table 5: Validation characteristics of developed model 
according to r2m metrics [42, 43]

Parameters Type of statistical method
FA-MLR Stepwise FA-PLS

2
m(test)r 0.868 0.847 0.842

/2
m(test)r 0.807 0.774 0.774

2
m(test)r 0.838 0.811 0.808

∆

2
m(test)r 0.061 0.073 0.068

2
m(LOO)r 0.868 0.901 0.877

/2
m(LOO)r 0.770 0.862 0.770

2
m(LOO)r 0.819 0.881 0.824

∆
2
m(LOO)r 0.099 0.039 0.107

2
m(overall)r 0.879 0.904 0.868

/2
m(overall)r 0.782 0.829 0.770

2
m(overall)r 0.830 0.867 0.819

∆

2
m(overall)r 0.097 0.074 0.098

 
Overview and conclusion
For the robustness and statistical significance of the devel-
oped models initial division of dataset was done for train-
ing and test set compounds selection by using K means 
clustering techniques. Three chemometric tools (FA-MLR, 
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Stepwise MLR, and FA-PLS) were used for model building. 
All the models are statistically robust both internally (Q2: 
0.877-0.918) and externally (Q2

F1: 0.933-0.942; Q2
F2: 0.933-

0.941; Q2
F3: 0.866-0.883) and satisfy the criteria of accept-

able QSAR model proposed by different groups [31, 32, 
33]. 

The models of cytotoxicity (FA-MLR, Stepwise MLR, FA-
PLS) indicates the importance of hydrogen bonding pa-
rameters (maxHBint2 maxHBint8 SHBint9 minHbd SHBd, 
SHBint2, SHBint8, SHdNH). All the models indicate less hy-
drogen bonding potentials of compounds responsible for 
greater cytotoxicity towards vero cell. Bicyclic guanidines 
and thioureas show less cytotoxicity contrary to bicyclic 
piperazines and chiral pentaamines based on their hydro-
gen bonding potential. Cytotoxicity assays were performed 
in final stage of lead screening and the theoretical model 
could be helpful in designing and drug development pro-
cess.
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