Study of Antibacterial Activity of β-Sitosterol Isolated From The Leaves of Nyctanthes Arbor Tristis

KEYWORDS
Antibacterial, sitosterol, Nyctanthes arbor tristis, leaves.

Dr. Subhadra Rajpoot
Amity University Greater Noida Campus

Dr. Preeti Singh
Amity University Greater Noida Campus

ABSTRACT
Nyctanthes arbor tristis Linn. belonging to family Oleaceae is a well known medicinal plant. The stem bark extracts of the plant were tested for their in vitro antimicrobial activity by cup plate method. The test organisms were Staphylococcus aureus, Micrococcus luteus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. The zone of inhibition and Minimum Inhibitory Concentration (MIC) of the extracts were determined and compared with the standard drugs ciprofloxacin and fluconazole. The chloroform extract was found to have both antibacterial and antifungal activity whereas the petroleum ether and ethanol extracts possess only antibacterial activity.

The antibacterial potential of a sitosterol isolated from the ethanolic extract of leaves of Nyctanthes arbor tristis was evaluated on gram-positive (Staphylococcus aureus) and gram-negative (Escherichia Coli, Pseudomonas aeruginosa) bacteria. The compound was analysed for its antibacterial potential in terms of zone of inhibition of bacterial growth and showed the significant antibacterial activity against gram-negative bacteria.

Introduction:
Nyctanthes arbor tristis Lin is a small scented ornamental tree known across the country for its fragrant white. It is a large shrub growing to 10 m tall, with flaky grey bark, stiff whitish hair, young branches and rough leaves, commonly known as Night Jasmine or Parijata [1,2]; Herbal medicine has become an integral part of standard healthcare based on a combination of time honored traditional usage and ongoing scientific research. Literature survey shows that the extract of different parts of the plant has been reported to possess antibacterial activity. The ethanolic and hydro-alcoholic extracts of the leaves were investigated for its antibacterial performance against both antibiotic resistant and nonresistant strains of Staphylococcus aureus [3]. A benzo-furanone derivative, 3,3a,7,7a-tetrahydro-3a-hydroxy-6(2H) benzo-furanone, isolated from the flowers showed significant antibacterial activity against both gram positive and gram negative bacteria.[4]. The antibacterial potential of different parts of the plant was evaluated gram-positive (Staphylococcus aureus) and gram-negative (Escherichia Coli, Pseudomonas aeruginosa) bacteria.[5]. The zone of inhibition and minimum inhibitory concentration (MIC) of the extracts of stem bark of the plant were determined and compared with the standard drugs ciprofloxacin and fluconazole. The chloroform extract was found to have both antibacterial and antifungal activity whereas the petroleum ether and aqueous extracts of the leaves investigated for its antibacterial activity of a sitosterol isolated from the leaves of Nyctanthes arbor tristis in view of its diverse pharmacological applications in ancient and modern system of medicine.

2. Materials And Methods:
Collection and authentication of plant material:
The plant Nyctanthes arbor tristis was collected from the local areas of Muzaffarnagar (UP) and identified by the courtesy of Dr. Veena Chandra Scientist. The leaves were washed thoroughly with distilled water and dried in shade at room temperature and mechanically crushed. The stem bark of N. arbor tristis Lin. was collected from Sonipat, India in June, 2008. The bark was shade dried at room temperature (30-40 °C). The plant was authenticated at the National Institute of Science Communication and Information Resources (NISCAIR), New Delhi, under voucher specimen number NISCAIR/RHMD/Consult/-2008-09/1058/89.

Extraction and isolation of β-sitosterol:
Microorganisms:
The test organisms were Staphylococcus aureus (MTCC 737), Micrococcus luteus (MTCC 1106), Bacillus subtilis (MTCC 441), Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Candida albicans (MTCC 3017) and Aspergillus niger (MTCC 1344). The microorganisms were availed from M.T.C.C. Institute of Microbial Technology, Sector 39-A, Chandigarh-160036, India. ST No: 02/ST/Sci & Tech/STC/Chd/2002. Invoice No. 6kg of dried leaves were extracted with ethanol for 24 hours. The extract was distilled under vacuum to give a dark green brown mass (68gm) and designated as NLE (Nyctanthes arbor tristis leaves ethanol extract). Ethanolic

INDIAN JOURNAL OF APPLIED RESEARCH
extract, NLE was partitioned successfully with petroleum ether, Chloroform and methanol. The percentage yield of the fractions were 15%, 80% and 5% respectively. Chloroform extract (NLEC) was obtained in good yield and it gave positive test for the presence of steroids, terpenoids, alcohol, iodides, flavanoids and glycosides. This fraction was chromatographed over acolumn of silica gel (60-120mesh, 1.5kg). The column was eluted with solvent system of increasing polarities. Fractions eluted with petroleum ether (100%), petroleum ether (75-25 & 50-50 respectively), showed a single spot on TLC plate with same Rf value. These fractions were added together to give one fraction. This fraction gave pink colour, changing to blue and the green in the Liebermann-Burchard test indicating its steroidal nature[10]. On TLC plate this fraction appeared as brown colour spot on spray with 50% H2SO4 with developing phase ethylic acetate : toluene (1:9) RF 0.53 (Lit-137-138UC)[12]. RF value and melting point corresponded to the literature value of sitosterol. Structure of the isolated compound was elucidated on the basis of melting point determination and using various spectroscopic techniques (IR, NMR & Mass) and confirmed with available data [13,14].

Microorganisms

The test organisms were *Staphylococcus aureus* (MTCC 737), *Micrococcus luteus* (MTCC 4141), *Escherichia coli* (MTCC 443), *Pseudomonas aeruginosa* (MTCC 1688), *Candida albicans* (MTCC 3017) and *Aspergillus niger* (MTCC 1344). The microorganisms were availed from M.T.C.C. Institute of Microbial Technology, Sector 39-A, Chandigarh-160036, India. ST No: 02/ ST/Sci & Tech/STC/Chd/2002. Invoice No. 00001.

Composition of culture media

The media used for growth of bacteria were, 1. Nutrient broth medium 2. Nutrient agar medium. The media were sterilized by autoclaving at15 lb/sqinch pressure at 121°C for 15 minutes.

Nutrient broth medium

- **Beef extract-** 10.0g
- **Peptone-** 10.0gm
- **Sodium Chloride –** 5.0g
- **Distilled Water –** 1000ml

The pH was adjusted to 7.2-7.4

All the weighed ingredients were mixed in water and heated on water bath stirring till agar completely dissolved. Most of the agar dissolved to give a clear liquid.

Nutrient agar medium

- **Beef extract-** 10.0g
- **Peptone-** 10.0gm
- **Sodium Chloride –** 5.0g
- **Agar –agar –** 1-2%(w/v)
- **Distilled Water –** 1000ml

The pH was adjusted to 7.2-7.4

Preparation of test solution

The test solution of the compound was prepared in chloroform and filter paper disc soaked in chloroform was used as control one. Streptomycin was used as standard.

Antibacterial activity

The antibacterial activity of β-sitosterol isolated from the ethanolic extract of leaves of *Nyctanthes arbortristis* was evaluated by agar well diffusion method[15]. Twenty Four hours broth cultures of the bacteria used for the assay. A sterile cotton swab was dipped in to the bacterial suspension and evenly streaked over the entire surface of sterile nutrient agar plate to obtain uniform inoculums. Wells were punched on the seeded plates using sterile borer (8mm). The plates were allowed to dry for 5 min. The compound (200 and 300µl) was dispensed in to each well using sterile micropipette. The plates were incubated overnight at 37°C. Antibacterial activity was determined by measuring the diameter of zone of inhibition (mm).

3. Result

Antibacterial potential of the compound was assessed in terms of zone of inhibition of bacterial growth. The results of the antibacterial activity was presented in table 1. The antibacterial activity of the compound increased linearly with increase in volume of extract 200µl and 300 µl volume of the compound showed significant antibacterial activity against the microorganism tested. The results revealed that the gram negative (*Escherichia Coli, Pseudomonas aeruginosa*) bacteria were more sensitive as compared to those of gram positive bacteria. The growth inhibition zone measured ranged from 15 to 25mm for all the sensitive bacteria.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>4 5 8 9 7 9 13 15 1 2 4 5 26 NA</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>4 6 7 8 5 6 8 10 2 3 5 32 NA</td>
</tr>
<tr>
<td>M. luteus</td>
<td>3 5 5 6 6 8 11 16 2 3 6 7 14 NA</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>4 5 8 7 9 11 14 19 6 8 11 12 25 NA</td>
</tr>
<tr>
<td>E. coli</td>
<td>3 4 6 6 8 9 11 13 4 5 6 7 22 NA</td>
</tr>
<tr>
<td>C. albicans</td>
<td>- - - - 3 6 8 11 - - - NA 13</td>
</tr>
<tr>
<td>A. niger</td>
<td>- - - - 4 6 8 10 - - - NA 14</td>
</tr>
</tbody>
</table>

PE = Petroleum ether extract, **CH** = Chloroform extract, **ETH** = Ethanol extract, **Cipro** = ciprofloxacin, **Fluco** = fluconazole, **S. aureus** = *Staphylococcus aureus*, **B. subtilis** = *Bacillus subtilis*, **M. luteus** = *Micrococcus luteus*, **P. aeruginosa** = *Pseudomonas aeruginosa*, **E. coli** = *Escherichia coli*, **C. albicans** = *Candida albicans*, **A. niger** = *Aspergillus niger*, NA = Not Applicable
4. DISCUSSION
The interest in medicinal and aromatic plants has been shown all over the world because of safe and effective constituents of plant products and in particular the presence of active principles of medicinal plants. Table 1 shows the result of antimicrobial activity against the tested microorganisms. Isolated compound, a sitosterol showed higher zone of inhibition against Pseudomonas aeruginosa as compared with the other tested bacteria. In the present study observed antibacterial activity of the isolated compound justifies the traditional use of the plant for the treatment of different bacterial infections. Thus further test is recommended on large number of bacterial strains to decide their potential as candidates in development of antibacterial drugs.

REFERENCE