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ABSTRACT In the present investigation The unsteady two-dimensional magnetohydrodynamics (MHD) stagnation 
point flow and heat transfer over a stretching sheet with suction/injection is studied. By using similarity 

transformation the governing partial differential equations are converted into nonlinear ordinary differential equations 
using a similarity transformation and then solved numerically. Results for the skin friction coefficient, local Nusselt num-
ber, velocity, and temperature profiles are presented for different values of the governing parameters like as Magentic, 
Prandtl number and Eckert number have been discussed in detail with Graphical representation.
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INTRODUCTION
The study of flow and heat transfer over a stretching/
shrinking sheet receives considerable attention from many 
researchers due to its variety of application in industries 
such as extrusion of plastic sheets, wire drawing, hot roll-
ing and glass fiber production. First of all Sakiadis etc [1, 
2] performed the pioneering work of boundary layer flow 
over a continuous moving surface and similarity solu-
tions were obtained for the governing equations. Crane 
[3] studied the flow over a linearly stretching sheet in an 
ambient fluid and  gave a closed-form solution for stead 
two-dimensional flow of an incompressible viscous fluid 
caused by the stretching of an elastic sheet, which moves 
in its own plane with a velocity which varies linearly with 
distance from a fixed point. P.S. Gupta and A.S. Gupta [4] 
extended the work of Crane [3] by investigating the ef-
fect of mass transfer on a stretching sheet with suction or 
blowing for linear surface velocity subject to uniform tem-
perature. Chaim [5] studied stagnation poiny flow towards 
the stretching sheet. Mahapatra and Gupta [6,7] investi-
gated the steady two-dimensional magnetohydrodynam-
ics (MHD) stagnation point flow and heat transfer toward 
a stretching surface. of an incompressible viscous electri-
cally conducting fluid toward a stretching surface. They 
obtained the exact similarity solution of the Navier-Stokes 
equations and observed that the flow displays a boundary-
layer structure when the stretching velocity of the surface 
is less than the free stream velocity. Wang [8] investigated 
the steady two-dimensional flow and axisymmetric stagna-
tion point flow with heat transfer over a shrinking/sretching 
sheet and found that solutions do not exist for the larger 
shrinking rates. Nik Long et al. [9,10]  found that the solu-
tion is unique over the stretching sheet. Ishak, Nazar etc 
[11] studied MHD stagnation point flow towards a stretch-
ing sheet with prescribed surface heat flux. Bhattacharyya 
[12,13] Heat transfer analysed in unsteady boundary layer 
stagnation-point flow and towards a  shrinking/stretching 
sheet. Recently Jat, Chand [14] studied the viscous dissipa-
tion and radiation effects on MHD flow and heat transfer 
over stretching sheet. Further, Jat et al. [15] studied the 
above problem with micro polar fluid.

Formulation
Consider the unsteady stagnation point flow over a 
stretching or shrinking sheet immersed in an incom-
pressible viscous fluid of ambient temperature T∞

It is assumed that the free stream velocity is in the form 
1( , ) (1 )U x t ax tλ −

∞ = −  , the sheet is stretched with veloc-
ity 1( , ) (1 )wU x t bx tλ −= −   and the surface heat flux is 

1( , ) (1 )wT x t T cx tλ −
∞= + − . The x-axis runs along the sheet 

and y-axis is measured normal to it. These assumptions 
along with the boundary-layer approximations and neglect-
ing the viscous dissipation, the governing equations are 
given by
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With the boundary condition

wu U= ,  wv V= ,   wT T=  ,   at 0y =
   

(4)

u U∞→ ,   T T∞→ ,    as   y →∞                                                                      

where u  and v   are velocity components in x  and y  
directions; respectively, υ   is kinematic viscosity; α  is 
thermal diffusivity; T is fluid temperature. Introducing the 
following similarity

transformations
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where η  is similarity variable and ψ is stream function 
defined as 

yu ψ∂
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thus we have
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There for, the mass transfer velocity  wV  can take the form
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where prime denotes differentiation with respect to η . 
With these values of u  and v ,  (1) is identically satisfied 
whereas (2) and (3)  reduce to the following nonlinear ordi-
nary differential equations

                                
''' '' '2 '2 '' '11 1 ' (1 ) 02f ff f A f f M fη 

 
 

+ + − + − − + − =                  (8)                                  

                                   
'' ' ' ' ''21 1 0Pr 2f f A Ecfθ θ θ θ ηθ 

 
 

+ − − + + =                        (9)

The boundary conditions (5) becomes

0(0)f f= ,

' (0) bf a ε= = , 

(0) 1θ = ,

( ) 0θ ∞ → ,
' ( ) 1f ∞ →                                                       (10)

Where ( )b aε =  is the ratio of stretching shrinking sheet ve-
locity parameter and free stream velocity parameter, 0 0f >  
and 0 0f <  are the suction and injection parameters, respec-
tively, Pr ν

α
=  is the Prandtl number, and A a

λ=  is unsteadiness 
parameter. The quantities of physical interest to be ob-
tained are the skin friction coefficient '' (0)f  and the local 
Nusselt number 'üθ−  which are defined as
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And dimensionless parameters are
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where the surface shear stress wτ  and the surface heat flux 
wq  are defined as

0
w

y

u
yτ µ

=

 
  
 

∂=
∂

, 

0
w

y

Tq yκ
=

 
  
 

∂= −
∂

                                               
(12)             

with and κ  being the dynamic viscosity and thermal con-
ductivity, respectively. Using the

similarity variables equation (4)  we obtain

1/2 ''1 Re (0)2 xfC f= ,               

1/2 '(0)
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x

x

Nu θ= −
                                            (13)

where Rex
U x
υ
∞=  is the local Reynolds number. 

Results and Discussions
The set of non linear ordinary differential equation (8) and 
(9) with boundary conditions (10) were solved numerically 
using Runga-Kutta forth order algoritm with a systematic 
guessing of ''(0)f  and '(0)θ  by the shooting technique until 
the boundary conditions at infinity are satisfied. The step 
size η∆ =0.001 is used while obtaining the numerical so-
lution and accuracy up to the seventh decimal place i.e. 

71 10−× , which is very sufficient for convergence. In this 
method, we choose suitable finite values of η →∞  say 
η∞ which depend on the values of the parameter used. 
The computation are done by generating a program in 
Matlab. For the validation of numerical results, the case 
A=0 and Pr.=0.7 with no effect of suction or injection (f0=0) 
are considered firstly and compared to those of Wang[10] 
and M.Suail [20]. These quantitative comparisons are 
shown in table 1 for the variation of k and found to be in 
favorable agreement. The computation through employed 
numerical scheme has been carried out for various val-
ues of the parameters such as Unsteadiness parameter A, 
Permeability parameter K, Magnetic parameter M, Prandtl 
number Pr and Eckert number Ec. It is observed from the 
figures that the boundary conditions are satisfied asymp-
totically in all the cases, which supporting the accuracy of 
the numerical results obtained. The velocity profile ' ( )f η  for 
different values of the unsteady parameter A is shown in 
fig.3. It is observed that the velocity increases with the in-
creasing values of unsteady parameter A. It is interesting 
to note that the thickness of boundary decreases with in-
creasing values of A. This is due to the fluid flow caused 
solely by the stretching sheet. velocity profile ( )  for dif-
ferent values of the magnetic parameter M is shown in 
fig.4. It is observed that velocity increases with the increas-
ing values of magnetic parameter M. As M increases, the 
Lorentz force, which opposes the flow, also increases and 
leads to enhanced deceleration of the flow, and from fig.4, 
we observed that velocity decreases for increasing values 
of permeability parameter K. The temperature profiles for 
different values of A, Pr, Ec and M are presented in fig-
ure 5 to figure 8. From fig.5, we observed that tempera-
ture of the fluid is decreases with the increasing values of 
unsteady parameter A. Temperature at a point of surface 
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decreases significantly with the increases of A i.e. rate of 
heat transfer increases with increasing values of A. Physi-
cally, it means that the temperature gradient at the surface 
increases as A increases, which imply the increases of heat 
transfer rate 

' ( )θ η−  at the surface. From fig.7 and fig.8, 
we observed that temperature of the fluid is increases 
as magnetic parameter Ec and Eckert number M increas-
es. It is observed from the fig.6 temperature of the fluid 
is decreases with the increasing values of Prandtl num-
ber Pr, this is because of the increase in Prandtl number 
Pr, indicates the increase of the fluid heat capacity or the 
decrease of the thermal diffusivity hence cause a diminu-
tion of the influence of the thermal expansion to the flow. 
Which implies momentum boundary layer is thicker than 
thermal boundary layer.

Table.1  Variation of ''(0)f  with k when f0=0

A K Wang[8] M. Suali[10] Present

0 3 -4.276545 -4.276542

2 1.887307

0.5 0.713296

0.2 1.05113 1.051130 1.051132
0.1 1.14656 1.146561 1.146563
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Figure.1 The velocity profiles f’(η )  for different values 
of f0 when A=0.01, k=0.1
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Figure.2 The velocity profiles f’(η )  for different values 
of k
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Figure.3 The velocity profiles f’(η )  for different values 
of A
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Figure.4 The velocity profiles f’(η )  for different values 
of M
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Figure.5  Temprature profile for various values of A 
when fo=0.1, K=0.1
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Figure.6 Temprature profile for various values of Pr 
when f0=0.01, K=0.1
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Figure.7 Temprature profile for various values of Ec 
when M=0,K=0.1,Pr=0.7
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Figure.8 Temprature profile for various values of M 
when K=0.1, Pr=0.7,Ec=0.1
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