
INDIAN JOURNAL OF APPLIED RESEARCH X 251

Volume : 5 | Issue : 4 | April 2015 | ISSN - 2249-555XReseaRch PaPeR

A Study on Improving Software Fault Detection
Capability using Log Enhancement

Umadevi.K Brintha Rajakumari.S
PG Scholar, Department of Computer Science and

Engineering, Bharath University, Chennai, India.
Assistant Professor, Department of Computer Science

and Engineering, Bharath University, Chennai, India

Engineering

ABSTRACT In many software systems logging has been implemented inaccurately, their effectiveness during the
maintenance period to identify the failures and address them quickly is very less. This in turn increases

the software maintenance cost and reduces reliability of the system as many errors are unreported. This paper aims
at proposing and studying a rule based approach to make the logs more effective. The source code of the target sys-
tems gets reverse engineered and acts as the primary input for this approach to introduce the automated logs into the
source code. This is instrumented by a logger code driven by a set of predefined rules which are woven around the
life cycle of the system entities. The validity of the approach is verified by means of a preliminary fault injection experi-
ment into a real world system.

Keywords fault detection, logging, fault diagnosis

INTRODUCTION
Failures are inevitable in software systems and are cost-
ing companies and consumers large amounts of money.[5]
System and application logs are the primary mechanism of
debugging when some failure occurs. It is important that
the log reporting has to be accurate in order to identify
the cause of failure by the production support engineers.
Though many systems in real time tend to have robust
logging, failure detection is still a challenge especially in
large systems which nowadays invariably exists in complex
environment interacting with multiple other systems. Unan-
ticipated data conditions and environmental settings may
cause logical errors and other failures to appear for the
first time when they are into production. Failure detection
issues are not only common for just released systems but
also for decade long systems which are running successful-
ly where small patches towards enhancements could cause
difficult to trace issues. Such problems often require quick
turn around and accurate fixes which is not possible if the
logs are inaccurate. Whatever be the reason for the failure,
inaccurate logging is necessarily a problem that needs to
be holistically addressed, the solution is multidimensional
in nature involving log formats, what to log, where to log
and how. This research work is providing the approach on
the solution on where and how to parts and does not fo-
cus on the log formats. The approach partially helps pro-
active identification of certain issues in situations where
no exception is thrown. Abnormal execution in real time
systems tend to break the flow of control and escape the
error handling code many a times.

The logging rules have been tailored and tested against
an object oriented system and their validity has been as-
sessed by a preliminary manual testing. Reverse engineer-
ing or the system expertise knowledge has to be used for
such already running systems to identify the critical system
entities.

BACKGROUND WORK
Detailed study has been carried out on various techniques
by us as part of the study work [2] but discussed a few
briefly here. There are various log based solutions but
most of them compliments each other for addressing dif-
ferent sub areas.

As part of [7] solution, each point of logging is identified
and the control flow and data flow is tracked till that point
within the function. The variables involved in the condition
and each memory location involved are the information
suggested to be added to the log point.

SVM technique is used [9] to predict faults from log files.
Random Indexing is used to represent sequences of op-
erations extracted from log files, Support vector machine is
used classify them as either failure or success.

Spectrum based fault localization technique [10] is sug-
gested which can be applied on a program without much
knowledge about the program hence suits best for the
testing schemes.

The rules based approach[1] suggests automated log in-
sertion in a structured way. The important locations for
logging are function start and end, start and end of an
entity life cycle, interaction start and end. Any abnormal-
ity on this flow to be automatically detected and alerted.
This work remains as the main motivation for the current
study, similar approach enhanced and studied in different
technology context along with reverse engineering.

PROPOSED SOLUTION
Log enhancements are carried out in two steps, initial step
of identifying the components and their call tree to imple-
ment the functionality (reverse engineering) and the sub-
sequent step being the code enhancement based on the
predefined set of rules. The aim of the reverse engineering
process is mainly to understand the entities present in the
system and how they are related to each . The entity infor-
mation is subsequently used by the log generation com-
ponent. The proposed logging approach leverages a sepa-
rate logger framework which is decoupled from the system
code and is designed to get executed asynchronously to
ensure the system performance is intact. The framework
proactively checks for potential hangs and infinite loops. A
simple architecture representation is depicted in Figure 1.
Code generation environment is used to revere engineer
and insert the logging code into the files. The application
binary has to be kept in the file repository and fed to the
reengineering component.

252 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 4 | April 2015 | ISSN - 2249-555XReseaRch PaPeR

Figure 1. Solution Architecture

Log generation takes the entity and the call graph informa-
tion as the input. For each entity log generation compo-
nent checks the applicable rules and transforms the code to
have the log code inserted. Logging is done using Logbus-
ng framework[4]. It consists of a daemon and a bus service.
Once an event is received the library adds information such
as process id, entity and writes to a shared memory. The
rules are defined in such a way that each entry and exit
points of each method and entity lifecycle and most impor-
tantly in every block where there may be a potential error.

CODE INSTRUMENTATION
The Rule based logging framework consists of two major
modules. The reverse engineering component does the
job of deriving entity list and call graph from the system
binary under study. For each entity found in the entity list,
log generator inserts logs as driven by the rules configura-
tion. Log framework is an external component library used
as part of this project as is without any modification.

A simple dependency finder tool has been used in this project
to identify the list of entities and their call graph[3]. Appropri-
ate filter has been developed that gets only the components
needed for the needed scope by mentioning the package and
class patterns. A set of rules are defined as in table 1. The ex-
planation of what each rule means and how log bus behaves
for each can be found from [1]. Each rule at this table is ex-
tended to define templates to take care of various semantics.
The rule EXC inserted try catch blocks in methods which does
not use throws class and does not have any in the original
code. At the catch block a SER log is placed. For each rule
that matches, the construct is inserted by the code parser. At
run time the log messages are expected to be posted as mes-
sages to the log bus using log4x. The bus will process the
message and direct to the output type configured.

Each rule definition has information on event code, event
type and where to insert the log code. Appropriate code
transformation tool may be used here to avoid the com-
plexities in handling input and output streams of data.

Rule Rule Log code Description
1 SST Service Start
2 SEN Service End
3 SER Service Error
4 IST Interaction Start
5 IEN Interaction End
6 HTB Heart beat
7 EXC Unhandled Exception

Table 1. Rule Log code descriptions

CASE STUDY
The case study undertaken was planned to be executed
on Tomcat as it is commonly used for business purpose, it
is Java technology based and functionality of Apache web
server is a subset functionality of this. Similar approach
should hold good for C# as well. The windows environ-
ment hosted all these components and the results were
tested using manual injection of faults in selective classes.
The environment used JDK 7 along with Apache Tomcat
7.0.x and log4j. Eclipse 4.4 Luna was used as the devel-
opment and build environment. The bootstrap process (the
server start) has been taken to study the case.

The call graph was generated for the bootstrap classes
and logging code has been added. The added code was
reviewed and any tool related errors were corrected. The
code was executed and logs are saved.

The faults used in the study are designed based on the
study work carried out by Duraes[6]. A series of such faults
were injected into the code one at a time and logs were
taken for each execution. The same faults were added to
the as-is code (without proposed solution) one by one and
logs were saved. Both of them are compared and the ana-
lyzed results are summarized in table 2.

EXPERIMENTAL RESULTS

Original Code

Fault category
No. of Faults
injected

No. De-
tected

No. Non-
detected

Assignment 12 8 4

Algorithm 15 2 13

Checking 2 0 2

Interface 2 0 2

Code with Proposed Solution

Fault category
No. of Faults
injected

No. De-
tected

No. Non-
detected

Assignment 12 11 1

Algorithm 15 14 1

Checking 2 2 0

Interface 2 2 0
Table 2. Fault detection metrics

Figure 2. Fault Detection statistics

INDIAN JOURNAL OF APPLIED RESEARCH X 253

Volume : 5 | Issue : 4 | April 2015 | ISSN - 2249-555XReseaRch PaPeR

REFERENCE [1] Marcello Cinque, Domenico Cotroneo, Antonio Pecchia, “Event logs for the Analysis of Software Failures : A Rule based Approach” IEEE
Transactions on Software Engineering Vol 39, no 6. June 2013 | [2] K. Umadevi, S.Brintha Rajakumari, K.Ramya (2015), “Software Fault Detection

and Diagnostic Techniques: | A Review and Current Trends” International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE), 41-46. |
[3] http://depfind.sourceforge.net/ | [4] http://sourceforge.net/projects/logbus-ng/. | [5] http://www.information-management.com/infodirect /2009_133/downtime_
cost-10015855-1.html | [6] Duraes, J.A.; Madeira, H.S., "Emulation of Software Faults: A Field Data Study and a Practical Approach," Software Engineering, IEEE
Transactions on , vol.32, no.11, pp.849,867, Nov. 2006 | [7] Ding Yuan,Jing Zheng, Soyeon Park, Yuanyuan Zhou, Stefan Savage" Improving Software Diagnosability
via Log Enhancement", Proceedings of the sixteenth international conference on Architectural support for programming languages and operating systems , ACM
New York, NY, USA ©2011 | [8] Ariel Rabki, Wei Xu, Avani Wildani,Armando Fox, David Patterson and Randy Katz," A graphical representation for identifier structure
in logs", Proceeding SLAML'10 workshop on Managing systems via log analysis and machine learning | | | [9] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko
Terho, and Jelena Vlasenko, " Failure prediction based on log files using Random Indexing and Support Vector Machines," J. Syst. Softw. 86, 1 (2013), 2-11 | [10] P.
Zoeteweij, R. Abreu, and A.J.C. van Gemund, “Software fault diagnosis,” in IFIP Int’l Conf. on Testing of | Communicating Systems: Hand-Outs for the Tutorial Day of
TestCom/FATES. Tartu University Press, 2007, pp. 1–26. |

The results indicate that the suggested approach reveals
94% of the faults overall whereas the original code detects
35% of the faults.

CONCLUSION
Most of the applications in today’s world are written in
object oriented languages. It is important to have a well
defined approach to have sound defect detection capabil-
ity of these applications. This work aims at improving the
logging pattern for software applications. The rules and
semantics are defined in XML format so that they can be
handled with configuration alone. The approach best suits
systems that are bigger in nature and also product kind
of systems which continuously evolves and numerous dot
release and patches could get in on a weekly basis. The
study detects 94% of the faults injected and the approach
proved to be successful. The study carried out is prelimi-
nary in nature and has to be scaled up using fault injection
tools in future so that improved detection accuracy can be
analyzed using high volume testing.

