RESEARCH PAPER

Physics

KEYWORDS

Static Sphere of Dust of Uniform Densityusing Anisotropic Line Element

Dust, Perfect fluid, Newtonian approximation

C.D.Marathe

Department of Physics, Dnyanasadhana College, Thane 400604, Maharashtra, India

ABSTRACT The Schwarchild problem of static sphere of perfect fluid is solved without using the relation $T_{k}^{k} = 0$. Hence solution for a static sphere of dust of uniform density has been obtained by putting pressure P = 0 in the solution for the fluid. A new field equation is discussed.

Introduction:

We shall first solve the Schwarzchild problem i.e the problem of static sphere of perfect fluid without using equation $T^{\rm k}_{\rm :k}=0~_{\rm Or}$

$$\frac{d\mathbf{P}}{dr} = (\rho + \mathbf{P})\frac{\mathbf{v}'}{2} \quad \dots \quad (A)$$

Condition (A) is used as a field equation in the books by Naralikar¹ and Tolman². Eddington³ has given the solutions and shown that the solutions satisfy Einstein's field equations and boundary conditions. There is however a misunderstanding that condition (A) which arises because of the relation $T_{;k}^{k} = 0$ is necessary condition to solve Einstein's field equations. As a matter of fact Einstein has converted the equations. As a matter of fact Einstein has converted the equations $T_{;k}^{k} = 0$ into an identity. $T_{;k}^{k} = 0$ Hence we first show that Einstein's field equations can be solved without using $T_{;k}^{k} = 0$ and then show that solutions for a static sphere of dust of uniform density can be obtained from corresponding solutions of a static sphere of perfect fluid by merely putting pressure P = 0

Einstein's field equations for a static sphere of perfect fluid:

The line element is given by

$$ds^{2} = -e^{\lambda}dr^{2} - r^{2}d\theta^{2} - r^{2}Sin^{2}\theta \cdot d\phi^{2} + e^{\nu}dt^{2}$$

The field equations are given by

$$\begin{split} &8\pi P=e^{-\lambda} \left(\frac{v'}{r}+\frac{1}{r^2}\right)-\frac{1}{r^2} \ (1)\\ &8\pi P=e^{-\lambda} \left(\frac{v''}{2}-\frac{\lambda' v'}{4}+\frac{v'}{4}+\frac{v'-\lambda'}{2r}\right) (2)\\ &8\pi \rho=e^{-\lambda} \left(\frac{v'}{r}-\frac{1}{r^2}\right)+\frac{1}{r^2} (3) \end{split}$$

In these equations $\rho=\rho_0\,+\,3P\,$ and is regarded as constant inside the fluid.

One can integrate equation (3) by using integrating factor $-\ r^2$ to give

$$\begin{split} rn^{-1} &= r - \frac{8\pi\rho}{5}r^2 + k \\ g(r^2 &= l - \frac{8\pi\rho}{3}r^2 + \frac{k}{r} \\ k &= 0 \, \text{(g regularity in } r = 0 \\ \text{Hence } e^+ &= (l - ar^2) \text{ with} \\ a &= \frac{8\pi\rho}{3} \, (4) \end{split}$$

From equations (1) and (2) one obtains on subtraction

$$\frac{v''}{2} - \frac{\lambda'v'}{4} + \frac{\lambda'}{4} + \frac{v' - \lambda'}{2r} - \frac{v'}{r} + \frac{e^{\lambda} - 1}{r^2} = 0$$
(5)

From equation (4) one can show that $\frac{e^{-\lambda}-1}{r^2} = \frac{\lambda'}{2r}$ (6)

From (5) and (6) one gets

$$\frac{v'}{2} - \frac{v'\lambda'}{4} + \frac{v'^2}{4} - \frac{v'}{2r} = 0 (7)$$
Now substitute $e^v = w^2$ or
 $v = 2Logw$
Equation (7) reduces to
 $w'' - \frac{w'ar}{1 - ar^2} - \frac{w'}{r} = 0$

Further substitution of $\mathbf{q} = \mathbf{w}'$ gives

$$q' - q\left\{\frac{\alpha r}{1 - \alpha r^2} + \frac{1}{r}\right\} = O(8)$$

Equation (8) can be easily integrated to give where \boldsymbol{k}_1 is the constant of integration.

give
$$q = \frac{dw}{dr} = \frac{k_i r}{\sqrt{1 - \alpha r^2}}$$
 where k_i is the

constant of integration.

Hence
$$w = k_2 \sqrt{1 - \alpha r^2} + k_3$$
 where k_2

and k_3 are constants of integration.

$$\therefore e^{v} = A - B\sqrt{1 - \alpha r^{2}} \quad \dots \qquad (9) \text{ with}$$
$$\alpha = \frac{8\pi\rho}{3}$$

This solution agrees with the solution given by Tolman⁴. The constants of integration A and B can be found by using boundary conditions.

a) P=0 at the boundary r=a and P can be obtained from equation (1)

b) e^{ν} is continuous at r = a .We use the same exterior solution as Schwarchild exterior solution i.

exterior solution i.e.
$$e^v = \left(1 - \frac{2m}{r}\right)$$

where $m \equiv Newtonian mass \equiv \left(\frac{4\pi\rho a^2}{3}\right)$
and $\rho = \rho_0 + 3P$

Using these boundary conditions one gets the same solution as

$$e^{v} = \left[\frac{3}{2}\sqrt{1-\alpha a^{2}} - \frac{1}{2}\sqrt{1-\alpha r^{2}}\right]^{2}$$
 (10)

Result and Discussion:

Here we have not used the relation $T_{;k}^{k} = 0$.

For dust P=0 Hence LHS of equations (1) and (2) are zero but equation (5) remains unaltered. Similarly $^{\rho}$ in equation (3) is equal to $^{\rho_0}$ for dust and is regarded as constant for static sphere of dust. The corresponding solutions for static sphere of dust are altered accordingly. One has to replace $^{\rho=\rho_0+3P}$ for fluid by $^{\rho=\rho_0}$ for dust. Thus in equation (4) and (10) $^{\alpha}$ becomes $^{\frac{49}{4}\frac{R}{3}}$ for dust. The constant m for exterior solution becomes $^{\frac{49}{4}\frac{R}{3}}$ for dust.

Kelkaret al⁵ have shown that a star (perfect fluid) of uniform density can rotate with any shape according to Einstein but rotating star has unique ellipticity of shape according to Newton. Further a star of spherical shape can rotate according to Einstein. In this paper we have shown that static sphere of dust can exist according to Einstein's theory. For radial motion of a star see Kelkaret al6. The star can move with uniform velocity according to Einstein but is accelerated inward according to Newton.

Conclusion:

These calculations done by us give strong motivation forsuggesting a change in Einstein's field equation.

We now give new field equations as

1) $T^{\,\rm k}_{;\rm k}=0$ This is an independent equation which gives hydrodynamics of the fluid.

2) $R_{\bf k}\equiv -4 p_{0}g_{\bf k}+\eta_{\bf k}$ where $\eta_{\bf k}$ is a small correction term.

η_{iie}is given⁷ by

$$\eta^{ik} = 4\pi P \left[\frac{dx^{i}}{ds} \frac{dx^{j}}{ds} - g^{ik} \right]$$

so that $g^{ik}\eta_{ik} = 0 = \eta_{ik}g^{ik}$ and

$$\eta_{ik} \ll 4\pi \rho_0 g_{ik}$$

This last condition ensures the Newtonian approximation of the field namely

 $R_{4}=-\frac{1}{2}\nabla^{2}g_{4}=-4\mathfrak{p}$ as shown by Eddington⁸. Similarly $T_{;k}^{k}=0$ gives Newtonian approximation of the dynamics of fluid as shown by Eddington⁹. One will have to take the equation of state of the fluid as an additional equation. This equation will prevent the collapse of star to a point. The factor 4π in the expression for η_{k} has been obtained by Kelkar and Shrivastav¹⁰ using the principles of least action and the energy momentum aspect.

[1] J.V.Naralikar: Lectures on General Theory of Relativity and Cosmology | The Macmillan Company of India Limited 1978 | [2] R.C.Tolman: Relativity, Thermodynamics and Cosmology | Oxford, At The Clarendon Press, 1934 | [3] A.S.Eddington: The Mathematical Theory of Relativity Cambridge, At The University Press, 1963 | [4] Tolman: Ref.[2] article 96 eqn 96.7 and 96.8 pp 246 | [5] V. B. Kelkar, V. D. Deshpande. J. J. Rawal and M. K. Shrivastav. | "Rotation of a star of uniform density using Einstein's field equations" | Bull. Cal. Math. Soc., 93 (3) pp 197-204(2001). | [6] V. B. Kelkar and M. K. Shrivastav, and S. Shrivastav. | "statility of a star against radial motion- Comparison between Newton and Einstein" | Bull. Cal. Math. Soc., 92, (5), pp 385-388(2000) | [7] Ph.D thesis of ManojShrivastav, University of Mumbai 1999 | [8] Eddington: Ref.[3] article 46, eqn 46.2 and 46.5 pp 111 | [9] Eddington: Ref.[3] article 55 eqn 55.4 pp 123 | [10] Shrivastav: Ref [7]