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ABSTRACT LEHMANNAND CASELLA (1998) provide a detailed discussion on equivariant estimation of the param-
eters of location, scale, location-scale models. EDWIN PRABAKARAN and CHANDRASEKAR (1994) de-

veloped simultaneous equivariant estimation approach and illustrated the method with examples urtherLEO ALEXAN-
DER(2000) studied the simultaneous Equivariant estimation of the parameters in invariant models based on various 
censored samples. In this paper, we consider uniform models and obtain minimum risk equivariant estimators of the 
parameters based on type II censored samples. 
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1. Introduction

Equivariance is a desirable property 

used for restricting the class of 

estimators whenever the model

possesses symmetry. ZACKS (1971) 

and LEHMANNAND CASELLA (1998) 

provide a detailed study of the problem of 

equivariant estimation for certain models. 

In the case of location-scale model, 

LEHMANNAND CASELLA (1998) 

develops marginal Equivariant procedure 

for estimating the parameters.EDWIN 

PRABAKARAN and CHANDRASEKAR 

(1994) have proposed a simultaneous 

Equivariant estimation for estimating the 

parameters of a location-scale model. For 

a detailed discussion on simultaneous 

equivariant estimation and related results 

the reader is referred to EDWIN 

PRABAKARAN (1995).

In this paper, by invoking the above 

procedures, we obtain optimal estimators 

for the parameter(s) of uniform model 

under Type II censoring. The paper is 

organized as follows: section 2 deals with 

the problem of Equivariant estimation for 

the uniform location model considering

three different loss functions namely 

Squared error loss function, Absolute 

error loss function and Linex loss 

function.

1.1 Preliminaries

Suppose N randomly selected units were 

placed on a test simultaneously, the 

failure times of the first n units to fail were 

observed. Thus the number of completely 

determined life spans is n and the 

number of censored ones is (N-n). letXi:N,

i=1,2,…,n denote the failure times of the 

completely observed items. Then the joint 

probability density function (pdf) of 

),...,,( ::2:1 NnNN XXX (BAIN, 1978) is
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Here θf and θF denote the common pdf 

and the distribution function of the 

failure times of the units selected 

randomly, which are put to test. Further 

n is assumed to be known in advance.

2. Location model

Suppose ),...,,( 21 ′= NXXXX is a 
random sample from uniform population 
with joint pdf
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Let NnNN XXX ::2:1 ... ≤≤≤ be the times of 
the first n units to fail and assume that 
the experiment was stopped as soon as 
the n-th item failed. The joint pdf of the 
first n observations, according to (1.1), 
is given by

{

)1.2...(.;1::1,

)}:(1
)!(

!
):,...,:1(

RNnxNx

nN
Nnx

nN

N
NnxNxg

∈+≤≤≤

−
−−

−
=

ξξξ

ξξ

Note that the above pdf belongs to a 
location model. We are interested in 
deriving MRE estimator of ξ by 
considering three loss functions.

Case (i) :Suppose the loss is squared 
error, we obtain MRE estimator of ξ .
Take =)(0 Xδ .2/)( ::1 NnN XX + Cleary 0δ
is an equivariant estimator which is a 
function of the sufficient statistics 

),( ::1 ′NnN XX Further 0δ is not complete 
sufficient. Since we are interested in the 
evaluation of conditional distribution 
under 0=ξ , take 0=ξ in (2.1). In order 
to find )|( 00

* yδEv = , consider the 
transformation

=1Y 2/)( ::1 NnN XX + and

.,...,3,2,:1: niXXY NNii =−=
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The Jacobian of the transformations is 
J=1. Thus the joint pdf of 

)...,,,( 21 ′= nYYYY is given by 
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Also, the joint pdf of )...,,( 2 nYY is given 
by
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Thus the conditional pdf of 
),...,( 210 nYYgivenY=δ is given by 
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Setting ,)1()2/( 21 uyyy n−=− we get 

,)1()2/(1 uyyy nn −+=

So,
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Therefore the MRE estimator of ξ is
given by
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Moreover, when the loss is squared 
error, the MRE estimator )(* Xδ can be 
evaluated more explicitly by the Pitman 
form (LEHMANN AND CASELLA 1998 
p.154). 

Therefore the Pitman estimation of ξ , in 
view of (2.1), is given by
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This estimator coincides with the one 
given in (2.4).

Remark 2.1. If n=N, the above 
estimator reduces to 

,2/)1()( ::1
* −+= NnN XXXδ

which is same as the estimator obtained 
for the complete sample case (LEHMAN 
AND CASELLA, 1998).

Case (ii): If the loss is absolute error,
then we obtain MRE estimator of ξ by 
considering 0δ = median of conditional 

distributions of )(0 Xδ given yY = . Take 

=)(0 Xδ .2/)( ::1 NnN XX + ,so that .2
1

0 =v

Therefore the MRE estimator of ξ is
given by 
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Case (iii): Consider the location 
invariant Linex loss function (VARIAN,
1975) .
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In order to find *v , take 
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in view of (2.3). 
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Therefore the MRE estimator of ξ is
givenby
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If n=N,  then from  (2.2)
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Therefore the MRE estimator of ξ is
given by 
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