Comparative Analysis of Traditional Inverter and Z-Source Inverter for PV System

KEYWORDS
Impedance-source inverter, Renewable energy sources, PV system, solar cell,

S. Kamalakkannan
Research scholar, Sathyabama University, Chennai, India

Dr. D. Kirubakaran
Professor and Head, St.Joseph's Institute of Technology, Chennai, India

ABSTRACT
In this paper two different inverters: traditional inverter and Z-source inverter for photo voltaic (PV) system were investigated. Total power of each of these inverters was calculated. For purposes of power comparison the inverters are interfaced with PV system. The input from PV system is given as input to single input DC-DC converter. The regulated output voltage from DC-DC converter is taken to three phase inverters with load arrangements. The power levels in both the cases are compared through simulation results and they are made known to substantiate the qualities of traditional inverter and Z-source inverter systems for PV system. This comparison shows that the Z-source inverter is very promising for PV system.

I. Introduction
Renewable energy sources gain their energy from existing flow of energy, from on-going natural processes, such as sunshine, wind, flowing water and geothermal heat flow as has been shown (R.Gules, J.De Pellegrin Pacheco, H.Leaes Hey and J.Imhoff , IEEE 2008) . As the PV energy from sunshine has the greatest potential of all the sources of renewable energy, it is the most feasible alternative energy source with a disadvantage of high unpredictability. However, PV power has to be utilized in effective manner. Hence different systems were developed with various topologies of converters and controllers. Due to the advancements of Power Electronics and Digital Control Techniques, control and execution of renewable energy systems are made promising as John Marshal (IJERA 2012) mentioned. Some of the available topologies are detailed in this paper.

II. Photovoltaic System
PV generation of electricity is clean, inexhaustible source of power. A photovoltaic system uses one or more solar panels to convert PV energy in to electricity. It consists of photovoltaic module, mechanical, electrical connections and mounting for regulating and/or modifying the electrical output.

When photovoltaic cells becomes exposed to light beam the current is generated. According to the nonlinear output and principles of PV power generation different simulation models are obtainable by the MATLAB/Simulink software packages. An equivalent circuit of PV cell as John Marshal (IJERA 2012) mentioned is developed for basic analysis of PV cell. The circuit contains a constant current source as the current is considered as constant, and the voltage changes based on the photovoltaic cells exposure to light beam. The equivalent circuit model is shown in figure1 and the cell electrical characteristics as John Marshal (IJERA 2012) mentioned are shown in figure2.

III. Fundamentals and Configurations of Traditional and Z-source Inverter
A. Traditional Inverter:
The traditional voltage source inverter shown in figure3 consists of a diode rectifier, DC link and inverter bridge. To get better power factor, either an AC or DC inductor is generally used. The traditional voltage source inverters are characterized by low efficiency due to switching losses and EMI generation. Here power MOSFET switches and anti parallel diodes are used in the main circuit. This arrangement provides bidirectional current flow and unidirectional voltage blocking capability. Hence inverter presents negligible switching losses and EMI generation at the line frequency. Here the amplitude of output voltage does not depend on the load. However the amplitude of output current depends upon the load.
B. Impedance Source Inverter:
For renewable energy systems the foremost dispute is the output voltage difference of the input energy source. This inverter can provide buck-boost operation. Impedance source inverter deploys an impedance network coupled with the inverter main circuit. With a distinct impedance network consisting of inductors and capacitors, the impedance source inverter uses the shoot through state by firing on both the upper and lower switches in the same phase legs to boost the DC voltage without DC/DC converter. F Z Peng and Yi Huang found.

The network also forms a second order filter that handles undesirable voltage sags of the DC voltage source. The inductors and capacitors can be optimally designed to lower the cost and size of inverter circuitry.

IV. Simulation Results
Case I: Traditional Inverter for PV System:

Traditional voltage source inverter using solar cell is shown in figure 5.
Figure 9. Output phase current of inverter

Case II: Z-Source Inverter for PV System: Impedance-source inverter consisting of pair of capacitors and inductors using photovoltaic energy is shown in figure 10.

Figure 10. Impedance-source inverter using PV cell

Output voltage of PV panel near about 25V shown in figure 11 is boosted twice the PV panel output and is shown in figure 12. Regulated and boosted output voltage of boost converter is converted in to three phase AC using impedance-source inverter. The output voltage and output current of impedance source inverter are shown in figures 13 and 14 respectively. Through the photovoltaic based impedance-source inverter system the simulated value of power in watts is 31 which is to some extent higher than the traditional voltage source inverter using solar cell.

Figure 11. Output voltage of solar cell

Figure 12. Output voltage of Boost converter

Figure 13. Output volatge of inverter

Figure 14. Output current of inverter

V. Conclusion
A comparison of traditional voltage source and Z-source inverter using solar cell has been executed. The comparison results show that the Z-source inverter can increase power level over traditional inverter. Thus, Z-source inverter increase output power greatly. With these results the Z-source inverter offers consistency since shoot through can no longer destroy the inverter. The existing traditional inverter suffers the shoot through consistency problem. In summary, Z-source inverter is very promising for photovoltaic system. This work explains a scheme implemented on photovoltaic system with impedance-source inverter to extract maximum energy from renewable energy resources. Simulation models of photovoltaic system are developed and the output power obtained under different cases and conditions are compared. The future scope of this work is to realize a hardware model of the system.
REFERENCE