

On The Classification of Root Systems Up to Their Cartan Matrices

KEYWORDS

D. H. Banaga	M. A. Bashir
College of Science and Humanity Studies, Shaqra'a University	College of mathematical Science and Statistic, Elneilain University, Sudan

ABSTRACT
The root systems are known to provide a relatively uncomplicated way of completely characterizing simple and semi-simple Lie algebras. The goal of this paper is to show that root systems may be themselves completely characterized 'up to isomorphism' by their Cartan matrices.

1. Preliminaries:-

i. A Lie algebra may be understood as a vector space with an additional bilinear operation known as the Commutator [,] defined for all elements and satisfying certain properties.
ii. A Lie algebra is called simple if it's only ideals are itself and 0 , and specifically the derived algebra: $\{[x, y]$ $x, y \in \mathfrak{g}\}=[\mathfrak{g}, \mathfrak{g}] \neq 0$.
iii.Let the Lie algebra g be semi-simple decomposable as the direct product of simple Lie algebra.
vi. a Lie algebra \mathfrak{g} is called nilpotent if there exists a decreasing finite sequence $\left(\mathfrak{g}_{i}\right)_{i \in[0, k]}$ of ideals such that $\mathfrak{g}_{0}=\mathfrak{g}, \mathfrak{g}_{k}=0$ and $\left[\mathfrak{g}, \mathfrak{g}_{i}\right] \subset \mathfrak{g}_{i+1}$ for all $i \in[0, k-1]$.
v. Given a real Lie algebra g_{R} the Killing form on $\mathrm{g} \times \mathrm{g}$ is defined by

$$
B(X, Y)=-\operatorname{Tr}(\operatorname{ad} X \circ \operatorname{ad} Y) \in R
$$

2. Cartan sub-algebras:

Definition (2.1):
A Cartan sub-algebra \mathfrak{b} of a Lie algebra \mathfrak{g} is nilpotent Lie sub-algebra that is equal to its centralizer, such that $\{X \in \mathfrak{g}:[X, \mathfrak{h}] \subset \mathfrak{h}\}=\mathfrak{h}$.
For semi-simple Lie algebra \mathfrak{g}, a subalgebra $\mathfrak{h} \subset \mathfrak{g}$ being Cartan is equivalent to \mathfrak{h} being a maximal abelian subalgebra.

3.Root decomposition and root systems:-
 Definition (3.1):

A root system is finite set of non-zero vectors $\Delta \subseteq \mathbb{E}$ satisfies the following :
(R1) If $\alpha \in \Delta$, then $\lambda \alpha \in \Delta$ if and only if $\lambda= \pm 1$
(R2) If $\alpha, \beta \in \Delta$, then $\sigma_{\alpha} \cdot \beta \in \Delta$ where $\sigma_{\alpha}: \mathbb{E} \rightarrow \mathbb{E}$ is reflection

Each element of Δ is called a root.

Theorem (3-2):-

1- We have the following decomposition for \mathfrak{g}, called the root decomposition
$\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha} \quad$ where $\mathfrak{g}_{\alpha}=\left\{x \mid[h, x]^{i}=\langle\alpha, h\rangle x\right.$ for all $h \in \mathfrak{h}\}$
$\mathrm{R}=\left\{\in \mathfrak{h}^{*}-\{0\} \mid \mathfrak{g}_{\alpha} \neq 0\right\}$
The set is called the root system of \mathfrak{g}, and sub spaces g_{α} are called the root sub spaces.
2- $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$ (here and below, we let $\mathfrak{g}_{0}=\mathfrak{h}$)
3- If $\alpha+\beta \neq 0$, then $\mathfrak{g}_{\alpha}, g_{\beta}$ are orthogonal with respect to the Killing form K.
4- For any α, the Killing form gives a non-degenerate pairing $\mathfrak{g}_{\alpha} \otimes \mathfrak{g}_{-\alpha} \rightarrow \mathbb{C}$. in particular, restriction of K to bis non-degenerate.
Example (3-3):-
Let $\mathfrak{g}=\mathfrak{b l}(n, \mathbb{C}), \mathfrak{h}=$ diagonal matrices with trace 0 . Denote by $e_{i}: \mathfrak{h} \rightarrow \mathbb{C}$ the functional which computes $i^{\text {th }}$ diagonal entry of h :
$e_{i}:\left[\begin{array}{ccc}h_{1} & 0 & \ldots \cdot \\ 0 & h_{2} & \ldots . \\ 0 & \cdots & h_{n}\end{array}\right] \mapsto h_{i}$
Then one easily sees that $\sum e_{i}=0$, so
$\mathfrak{h}^{*}=\oplus \mathbb{C} e_{i} / \mathbb{C}\left(e_{1}+\cdots \cdots \cdots+e_{n}\right)$.
It is easy to see that matrix units $E_{i j}$ are eigen vectors for $\operatorname{ad} h, h \in \mathfrak{h}:\left[h, E_{i j}\right]=\left(h_{i}-h_{j}\right) E_{i j}=\left(e_{i}-e_{j}\right)(h) E_{i j}$. Thus, the root decompstion is given by
$\mathrm{R}=\left\{e_{i}-e_{j} \mid i \neq j\right\} \subset \oplus \mathbb{C} e_{i} / \mathbb{C}\left(e_{1}+\cdots \cdots \cdots+e_{n}\right)$.
$g_{e_{i}-e_{j}}=\mathbb{C} E_{i j}$.
The Killing form on \mathfrak{b} is given by
$\left(h, h^{\prime}\right)=\sum_{i \neq j}\left(h_{i}-h_{j}\right)\left(h_{i}^{\prime}-h_{j}^{\prime}\right)=2 n \sum_{i} h_{i} h_{i}^{\prime}=2 n \mathrm{tr}$ (hh')

From this, it is easy to show that if $\lambda=\sum \lambda_{i} e_{i}, \mu=$ $\sum \mu_{i} e_{i} \in \mathfrak{h}^{*}$, and λ_{i}, μ_{i} are chosen so that $\sum \lambda_{i}=\sum \mu_{i}=0$ (which is always possible), then the corresponding form on \mathfrak{h}^{*} is given by
$(\alpha, \mu)=\frac{1}{2 n} \sum_{i} \lambda_{i} \mu_{i}$

Lemma (3-4):-

1. Let $\alpha \in R$, then $(\alpha, \alpha)=\left(H_{\alpha}, H_{\alpha}\right) \neq 0$.
2. Let $\in \mathfrak{g}_{\alpha}, f \in \mathfrak{g}_{-\alpha}$ be such that $(e, f)=\frac{2}{(\alpha, \alpha)}$, and let $h_{\alpha}=\frac{2 H_{\alpha}}{(\alpha, \alpha)}$
Then $\left\langle h_{\alpha}, \alpha\right\rangle=2$ and the elements e, f, h_{α} satisfy the relations of Lie algebra $\mathfrak{s l}(2, \mathbb{C})$. We will denote such a sub algebra by $\mathfrak{s l}(2, \mathbb{C})_{\alpha} \subset \mathfrak{g}$.

Proof:-

Assume that $(\alpha, \alpha)=0$; then $\left\langle H_{\alpha}, \alpha\right\rangle=0$. Choose $\in \mathfrak{g}_{\alpha}, f \in \mathfrak{g}_{-\alpha}$ such that $(e, f) \neq 0$ (from definition (3-1)). Let $h=[e, f]=(e, f) H_{\alpha}$ and consider the algebra \mathfrak{a} generated by $, f, h$.
then we see that $[e, h]=\langle h, \alpha\rangle e=0,[h, f]=-\langle h, \alpha\rangle f=$ 0 , so \mathfrak{a} is solvable Lie algebra. from Lie theorem, we can choose a basis in g such that operators ad $e, \operatorname{ad} f, \mathrm{ad} h$ are upper triangular. Since $h=[e, f], \mathrm{ad} h$ will be strictly upper-tringular and thus nilpotent. But since $h \in \mathfrak{h}$, it is also semisimple. Thus $h=0$. On the other hand, $h=(e, f) H_{\alpha} \neq 0$. This contradiction proves the first part of the theorem.
The second part is immediate from definitions and lemma (3.4).

Theorem (3-5):-

Let \mathfrak{g} be a complex semi simple Lie algebra with Cartan sub algebra \mathfrak{h} and root decomposition
$\mathfrak{g}=\mathfrak{h} \oplus \oplus_{\alpha \in R} \mathfrak{g}_{\alpha}$.
$1 \backslash R$ spans \mathfrak{h}^{*} as a vector space, and elements $h_{\alpha}, \alpha \in$ R, span \mathfrak{b} as a vector space
2\For each $\alpha \in R$, the root sub space g_{α} is onedimensional.
$3 \backslash$ For any two roots α, β the number $\left\langle h_{\alpha}, \alpha\right\rangle=\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$ is integer.
$4 \backslash$ For $\alpha \in R$, define the reflection operator
$s_{\alpha}: \mathfrak{b}^{*} \rightarrow \mathfrak{b}^{*}$ by

$$
s_{\alpha}(\lambda)=\lambda-\left\langle h_{\alpha}, \lambda\right\rangle \alpha=\lambda-\frac{2(\alpha, \lambda)}{(\alpha, \alpha)} \alpha
$$

Then for any roots $\alpha, \beta, s_{\alpha}(\beta)$ is also a root. In particular, if $\alpha \in R$, then $-\alpha=s_{\alpha}(\alpha) \in R$.
$5 \backslash$ For any root α, the only multiples of α which are also roots $\pm \alpha$.
6\ For roots $\alpha, \beta \neq \pm \alpha$, the subspace
$\mathrm{V}=\bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{\beta+k \alpha}$, is an irreducible representation of $\mathfrak{s l}(2, \mathbb{C})_{\alpha}$.
$7 \backslash$ If α, β are roots such that $\alpha+\beta$ is also a root, then $\left[g_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\beta+k \alpha}$.

Proof:-

$1 \backslash$ Assume that R does not generate \mathfrak{h}^{*}; then there exists a non-zero $h \in \mathfrak{h}$ such that $\langle h, \alpha\rangle=0$ for all $\alpha \in R$. But then root decomposition (1) implies that $\operatorname{ad} h=0$. However, by definition in a semi simple Lie algebra, the center is trivial: $z(\mathrm{~g})=0$.
The fact that h_{α} span \mathfrak{h} now immediately follows: using identification of \mathfrak{h} with \mathfrak{h}^{*} given by the Killing form, elements h_{α} are identified with non-zero multiples of α.
$2 \backslash$ Immediate from Lemma (3-4) and the fact that in any irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$, weight sub spaces are one-dimensional.
$3 \backslash$ Consider \mathfrak{g} as a representation of $\mathfrak{s l}(2, \mathbb{C})_{\alpha}$. Then elements of \mathfrak{g}_{β} have weight equal to $\left\langle h_{\alpha}, \alpha\right\rangle$. But from the fact that (V admits a weight decomposition with integer weights
$\left.\mathrm{V}=\bigoplus_{n \in \mathbb{Z}} \mathrm{~V}[n]\right)$ weights of any finite-dimensional representation of $\mathfrak{s l}(2, \mathbb{C})$ are integer.
$4 \backslash$ Assume that $\left\langle h_{\alpha}, \alpha\right\rangle=n \geq 0$. Then elements of g_{β} have weight n with respect to action of $\mathfrak{s l}(2, \mathbb{C})_{\alpha}$. By the same fact above, operator f_{α}^{n} is an isomorphism of the space of vectors of weight n with the space of vectors of weight $-n$. In particular, it means that if $v \in \mathfrak{g}_{\beta}$ is non-zero vector, then $f_{\alpha}^{n} v \in \mathfrak{g}_{\beta-n \alpha}$ is also non-zero. Thus $\beta-n \alpha=s_{\alpha}(\beta) \in R$.
$5 \backslash$ Assume that α and $\beta=c \alpha, c \in \mathbb{C}$ are both roots. By part (3) $\frac{2(\alpha, \beta)}{(\alpha, \alpha)}=2 c$ is integer, so c is a half-integer. same argument shows that $1 / c$ is also a half-integer. It is easy to see that this implies that $c= \pm 1, \pm 2$, $\pm 1 / 2$. Interchanging the roots if necessary and possibly replacing α by $-\alpha$, we have $c=1$ or $c=2$.
Now let us consider the sub space

$$
\mathrm{V}=\mathbb{C} h_{\alpha} \oplus \bigoplus_{k \in \mathbb{Z}, k \neq 0} \mathfrak{g}_{k \alpha} \subset \mathfrak{g}
$$

From Lemma (3-4) V is an irreducible representation of $\mathfrak{s l}(2, \mathbb{C})_{\alpha}$, and by part (2),
$\mathrm{V}[2]=\mathfrak{g}_{\alpha}=\mathbb{C} e_{\alpha}$. Thus, the map ad $e_{\alpha}: \mathfrak{g}_{\alpha} \rightarrow \mathfrak{g}_{2 \alpha}$ is zero. But the results of representation of $\mathfrak{s l}(2, \mathbb{C})$ show that in an irreducible representation, kernel of e is exactly the highest weight sub space. Thus, we see that V has highest weight $2: \mathrm{V}[4]=\mathrm{V}[6]=\cdots=0$.

This means that
$\mathrm{V}=\mathrm{g}_{-\alpha} \oplus \mathbb{C} h_{\alpha} \oplus \mathrm{g}_{\alpha}$, so the only integer multiples of α which are roots are $\pm \alpha$. In particular, 2α is not a root.
Combining these two results, we see that if $\alpha, c \alpha$ are both roots, then $c= \pm 1$.
6 \backslash Proof is immediate from $\operatorname{dim} \mathfrak{g}_{\beta+k \alpha}=1$.
$7 \backslash$ We already know that $\left[g_{\alpha}, g_{\beta}\right] \subset g_{\beta+k \alpha}$.since $\operatorname{dimg}_{\beta+k \alpha}=1$, we need to show that for non-zero $e_{\alpha} \in \mathfrak{g}_{\alpha}, e_{\beta} \in \mathfrak{g}_{\beta}$, we have $\left[e_{\alpha}, e_{\beta}\right] \neq 0$. This follows from the previous part and the fact that in an irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$, if $v \in \mathrm{~V}[k]$ is non-zero and $\mathrm{V}[k+2] \neq 0$, then $e . v \neq 0$.

Definition (3.6):

A root system is irreducible if it cannot be decomposed into the union of two root systems of smaller rank.

Example(3.7):

Let us Classify all systems of rank 2 , observe that

$$
\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \frac{2(\alpha, \beta)}{(\beta, \beta)}=4 \cos ^{2} \theta
$$

Where θ is the angle between α and, this must be an integer, thus there are not many choices for ? θ

$\cos \theta$	0	$\pm \frac{1}{2}$	$\pm \frac{1}{\sqrt{2}}$	$\pm \frac{\sqrt{3}}{2}$
θ	$\frac{\pi}{2}, \frac{\pi}{3}$	$\frac{2 \pi}{3}, \frac{\pi}{4}$	$\frac{3 \pi}{4}, \frac{\pi}{6}$	$\frac{\pi}{6}, \frac{5 \pi}{6}$

Choose two vectors with minimal angle between them. If the minimum angle is $\frac{\pi}{2}$, the system is reducible. (notice that α and β can be scaled independently). If the minimal angle is smaller than $\frac{\pi}{2}$, then $r_{\beta}(\alpha) \neq \alpha$, so the difference $\alpha-r_{\beta}(\alpha)$ is nonzero integer multiple of β. (in fact, a positive multiple of β since $\theta<\frac{\pi}{2}$).

4.The Weyl group :

Definition (4.1) :
Choose a base Δ for Φ. Then the simple reflections are defined to be $\sigma_{\alpha_{i}}$ where α_{i} are the simple roots (elements of Δ).

Lemma (4.2):

If $\alpha \in \Delta$, the simple reflection σ_{α} sends α to $-\alpha,-\alpha$ to α and permutes all of the other positive roots.
Proof:

Suppose that β is a positive root not equal to α. Then β is not equal to a scalar
multiple of α. So, in the expansion of β as a positive linear combination of simple roots:
$\beta=\sum k_{i} \alpha_{i}$ where, say, $\alpha=\alpha_{1}$, one of the other coefficients, say $k_{2}>0$. Then
$\sigma_{\alpha}(\beta)=\beta-\langle\alpha, \beta\rangle \alpha=\left(k_{1}-\langle\alpha, \beta\rangle\right) \alpha_{1}+k_{2} \alpha_{2}+\cdots \cdots$ $\cdots+k_{n} \alpha_{n}$ is a positive root since $k_{2}>0$.

Definition (4.3):

If we given a root system $\Delta=\left\{\alpha_{1}, \ldots \ldots \ldots, \alpha_{N}\right\}$, we call the group generated by the $r_{\alpha_{i}}$'s the Weyl group , denoted \mathcal{W}. which consists all reflections r_{α} generated by elements α of root system.
For a given root, the reflection r_{α} fixes the hyperplane normal to α and maps $\alpha \rightarrow-\alpha$. and we can write it as $r_{\alpha}(\beta)=\beta-\langle\alpha, \beta\rangle \alpha$.
The hyperplanes fixes by the elements of \mathcal{W} partition Einto Weyl chambers. for a given base Δ of E, the unique Weyl chamber containing all vectors γ such that:
$(\gamma, \alpha) \geq 0 \forall \alpha \in \Delta$, is called the fundamental Weyl chamber.

Proposition (4.4):

LetW be a crystallographic reflection group in a finite dimensional real vector space. Then, there is a root system Φ in V with Weyl group \mathcal{W}.

Proof:

Note that if \mathcal{W} is irreducible, then the root system Φ is unique up to
isomorphism if and only if \mathcal{W} is not of type $\quad B_{n}, n \leq$ 3.

Let C be a chamber of \mathcal{W} with walls $L_{1}, \ldots \ldots \ldots, L_{n}$. Then, there is a unique root $\alpha_{i} \in \Phi$ orthogonal to L_{i} and lying in the same half-space delimited by L_{i} as C.

The set $\Delta=\left\{\alpha_{i}\right\}_{1 \leq i \leq n}$ is called a basis of Φ.
Let $\Phi^{+}=\left\{\alpha \in \Phi \mid \alpha=\sum \alpha_{i} n_{i}, n \geq 0\right\}$, (the positive roots) and
$\Phi^{-}=\left\{\alpha \in \Phi \mid \alpha=\sum \alpha_{i} n_{i}, n \leq 0\right\}$, (the negative roots).

Lemma (4.5) :

Let C be the set of all $x \in E$ with the property that $(x, \beta)>0$ for all positive roots β. Then C is a Weyl chamber.We call C the fundamental chamber.

Proof:

Clearly C is convex and therefore connected. Also Cis disjoint from all hyperplanes
β^{\perp}. Therefore, C is contained in some Weyl chamber C_{0}. Suppose that $y \in C_{0}$ then, since C_{0} is connected, there is a path $\gamma(t)$ in C_{0} connecting $x \in C$ to. This path does not cross any of the hyper planes. Therefore, by the intermediate value theorem, the sign of $(\gamma(t), \beta)$ remains unchanged. Since it starts as positive, it remains positive. So, $\in C$, proving that $C=C_{0}$ is a Weyl chamber.

5. Dynkin Diagram:
 Definition (5.1):

The Dynkin diagram of root system of rank n is defined to be a graph with n vertices labeled with the simple roots α_{i} and with edges satisfying:
1.No edge connected roots α_{i}, α_{j} if they are orthogonal (equivalently, if $c_{i j}=0$)

$$
0 \quad 0
$$

2. A single edge connecting α_{i}, α_{j} if α_{i}, α_{j} are roots of the same length which are not orthogonal (equivalently, $c_{i j}=c_{j i}=-1$)

$$
0-0
$$

3. A double edge pointing from α_{i} to α_{j} if α_{i}, α_{j} are not perpendicular and $\left\|\alpha_{i}\right\|^{2}=2\left\|\alpha_{j}\right\|^{2}$

$$
o_{i} \Longrightarrow o_{j}
$$

4. A triple edge pointing from α_{i} to α_{j} if α_{i}, α_{j} are not perpendicular and $\left\|\alpha_{i}\right\|^{2}=3\left\|\alpha_{j}\right\|^{2}$

$$
o_{i} \Longrightarrow \equiv o_{j}
$$

6. Cartan Matrix:

Definition (6.1):
A Cartan matrix is an $n \times n$ matrix $\left(A_{i j}\right)$ with integer coefficients which satisfies the conditions:
i. $A_{i i}=2, i=1,2, \ldots, n$,
ii. $A_{i j} \leqq 0$ if $i \neq j$,
iii. $A_{i j}=0$ if and only if $A_{j i}=0$

We say that $\left(A_{i j}\right)$ has a null root if there exists a nonzero column vector $\left[d_{i}\right]=\left[d_{1}, d_{2}, \ldots ., d_{n}\right]$ such that $\left(A_{i j}\right)\left[d_{i}\right]=0$, where each d_{i} is non-negative integer. We call $\left(A_{i j}\right)$ symmetrizable if there exists a nonsingular diagonal matrix D such that the product $\left(A_{i j}\right) D$ is a symmetric matrix.

We represent Cartan matrices by diagrams which are a slight modification of the diagrams introduced by Coxeter to classify the discrete groups generated by reflections.

Diagrams with weighted arrows (6.2):

We represent the $n \times n$ matrix $\left(A_{i j}\right)$ by a diagram in the following way:
(i) The diagram has n vertices.
(ii) For $i \neq j$ we draw $\left|A_{i j}\right|$ arrows from the vertex j to vertex i. Each such arrow will be called a (j, i) arrow.
(iii) To simplify the diagram, when $\left|A_{i j}\right|=\left|A_{j i}\right|=1$ we simply draw a line from i to j.
Cartan matrix is called indecomposable if the corresponding diagram is connected.

Indecomposable Cartan matrices with null$\operatorname{roots}(6.3)$:

A null root is by definition a non-negative solution of the homogeneous system of linear equations:
$\sum_{i=1}^{n} A_{i j} x_{i}=0, \quad i=1,2, \ldots . ., n$.
Because $A_{i i}=2$ and $A_{i j} \leqq 0$ if $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$ is a null root we have
$\sum_{j \neq i}\left|A_{i j}\right| d_{i}=2 d_{i}, i=1,2, \ldots \ldots, n$.

Finite Cartan matrices (6.4):

Let V_{0} be a vector space over the rational field Q with basis $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ and V the subspace spanned by $\alpha_{1}, \ldots, \alpha_{n}$. Given an $n \times n$ Cartan matrix we define linear transformations $S_{i}, S_{i}^{*}, 1 \leqq i \leqq n$, acting on V by $\alpha_{j} S_{i}=\alpha_{j}-A_{i j} \alpha_{i}$ and $\alpha_{j} S_{i}^{*}=\alpha_{j}-A_{j i} \alpha_{i}$ introduce a pairing

$$
(\ldots): V \times V \rightarrow Q
$$

Defined on our basis by $\left(\alpha_{i}, \alpha_{j}\right)=A_{j i}$. It is immediate that $\alpha S_{i}=\alpha-\left(\alpha, \alpha_{i}\right) \alpha_{i}$ and $\alpha S_{i}^{*}=\alpha-\left(\alpha_{i}, \alpha\right) \alpha_{i}$, and its follow from this that S_{i}, S_{i}^{*} are reflections on V. That is $S_{i}^{2}=i d=S_{i}^{* 2}$ and S_{i}, S_{i}^{*} fix a hyperplane of V pointwise.
Let W (respectively W^{*}) denote the group generated by the elements S_{i} (respectively S_{i}^{*}) for $1 \leqq i \leqq n$. W is called Weyl group of $\left(A_{i j}\right)$ so that W^{*} is Weyl group of the Cartan matrix $\left(A_{i j}\right)^{t}$ where t denotes transpose. Notice that $\left(\alpha S_{k}, \beta S_{k}^{*}\right)=(\alpha, \beta)$ for $\alpha, \beta \varepsilon V$ and hence by iteration
$\left(\alpha S_{i_{1}}, \ldots, S_{i_{r}}, \beta S_{i_{1}}^{*}, \ldots, \beta S_{i_{r}}^{*}\right)=(\alpha, \beta)$ for $\alpha, \beta \varepsilon V, r \geqq$ 1 and arbitrary indices $i_{1}, \ldots, i_{r} \varepsilon\{1, \ldots ., n\}$.

Definition (6.5):

Let $\left(A_{i j}\right)$ be an $n \times n$ Cartan matrix and W its Weyl group. The elements of the set

$$
\Delta=\left\{\alpha_{i} \omega \mid 1 \leqq i \leqq n, \omega \varepsilon W\right\}
$$

are called the roots of $\left(A_{i j}\right)$, and Δ is called root system of $\left(A_{i j}\right)$. If the Cartan matrix for which Δ is finite then we call finite Cartan matrix.

Conclusion:

We have shown that there exists a one-to-one correspondence between root systems and Cartan matrices, Given a root system $\left(\alpha_{i}\right), 1 \leq i \leq n$, we assign a Cartan matrix by $\left(\alpha_{i j}\right)=\left\langle\alpha_{i}, \alpha_{j}\right\rangle$.
Conversely, for a Cartan matrix $A_{i j}$, the root system corresponding to it is assign by Δ described as in definition (6.5).
Moreover we determined the diagram corresponding to a Cartan matrix.

