

Yamuna is a prominent water resource in India and it stretches over 1370 Km in northern India. Along downstream it stretches only 22 Km in Delhi whereas suffers 70% of pollution load there. For river water pollution control in Delhi an action plan was implemented called Yamuna Action Plan in different phases [1]. During Yamuna Action Phase-I (YAP-I) in order to achieve clean Yamuna objective various components was identified. Government of India and Delhi Government had realized that all the important polluting sources should to be addressed simultaneously. Sewage, which is a major source of pollution, was tackled separately; however, other sources of pollution like industries, dairy farms waste, washing/bathing activities, crematoria's ash disposal etc. significantly contribute for pollution load. A comprehensive study was carried out by Municipal Corporation of Delhi (MCD) to identify and quantify the dairy waste generated and discharge in Yamuna, in Delhi, in YAP -II [2]. The observations indicated that the dairy waste is a significant source of pollution of the Yamuna and urge for its management is realized.

Although dairying as business contributes significantly in GDP of India, and its role is most important in supplementing food and nutrition. But existence in urban environment brings lot of negative impact on health and sanitation. In Delhi, India there exist a number of authorized and unauthorized dairy units. These dairies generate high quantity of solid liquid and gaseous waste and lack of management of the waste generated from dairy activities, is causing serious environmental consequences. The sanitary and hygiene conditions in both authorized and unauthorized dairies sectors in Delhi is extremely poor, as the dairy owners has little concern for the situation. Approximately 1170 tons of cattle dung generated from all authorized dairy farms is flushed along with dairy waste water in nearby urban water bodies which finally opens into the Yamuna River [2]. The biological analysis conducted for water discharged from dairy farms is tabulated in Table 1 shows the stake of explosiveness of the situation.

## The major problems from dairy activities can be addressed as

- Discharge of waste water in water bodies without treatment and ground water table depletion due to high consumption of water for flushing of waste.
- High methane emissions and environment pollution by dumping of animal waste in surroundings.
- Unorganized Institutional structure of stakeholders and

lack of management

- Lack of motivation in dairy stakeholders, financial resources and waste management plan.
- Inadequate infrastructure of dairy farm and overcrowding of animals in dairy sheds.

## SWOT analysis done by us for these dairy stakeholders and dairy sector depicts;

**Strength**: The centralized human resource machinery is fashioned in a simplified hierarchy and there is no overlapping of duties. They have a well defined chain of command and trained work force to execute technologies and equipments for swift functioning.

**Weakness**: The use of advance technologies for practicing was lacking. Red tapism delays in functioning and there is no participatory policy formulation and implementation. Lack of updated procurement system.

**Opportunities**: The stakeholders can coordinate with NGOs/voluntary organisations to ease out the work. They can also collaborate with private partners for updating work methods, acquiring managerial and professional skills with government support.

**Threats**: The lack of coordination among the dairy owners/ groups and government and because of traditional work style and status-quo tendency their role can be transferred or hijacked by new agencies.

Therefore we had concluded that strengthening of institutional organization for dairy operation and maintenance is of prime importance. However, the focus of all efforts and initiatives shall be for the betterment of environment and use of technology for waste management, energy generation and sustainability of the dairy operation.

Ironically, one solution for all problems is technology implementation for waste treatment and its conversion into energy. High rate biomethanation power generation plant installation for waste to energy generation can be a feasible approach for waste treatment. The success models of such biogas induced mixing arrangement (BIMA) technology had been already established in India [3]. Simultaneously, waste minimization can reduce the flushing activities and save ground water and electric energy. The wastewater can be discharged after tertiary treatment in water bodies. Therefore Municipal Corporation of Delhi, Delhi Devel-

## **RESEARCH PAPER**

## Volume : 5 | Issue : 8 | August 2015 | ISSN - 2249-555X

opment Authority, Delhi Jal Board, Delhi Pollution Control Committee, Project Management Consultants and Dairy association representatives should coordinate and act aggressively for implementation of dairy farm waste management plan.

In nutshell dynamic attempts shall be initiated to solve various emerging predicaments in dairy areas. These attempts shall encompass all stakeholders, while for dairy operators enhancement of their literacy level, sensitizing them towards their rights and responsibilities, awareness of running policies and programs, creation of a positive ambience and attitude for developmental activities is required. Moral- ethical, skills (with new patterns) and reorientation training for MCD functionaries to collaborate with emerging partners and creation of new frameworks as recommended (Information Dissemination Cell, IDC Model) [4] is of great importance.

In our view the Indian Ministry of Environment and Forests (MoEF) may consider promulgating rule under Section 3 of Environment (Protection) Act, 1986 to regulate dairy waste in the similar line as biomedical waste or hazardous waste. The central/state pollution control boards must take legal measures strictly against the defaulting stakeholders causing environmental pollution under acts i.e. water pollution act (prevention and control of water pollution, 1974), Air Pollution Act (Prevention and control of air pollution, (1981), Environmental protection Act, 1986, National Environmental tribunal act (1995) [5].The offenders should be strictly fined/tipped or punished.

The waste discharge and disposal from dairying activities have strong local and global environmental impacts by GHG emissions. Besides that 1170 tons/day of animal waste generated from them technically have 32034 m<sup>3</sup> (approx.) of biogas generation potential [4] which can produce electricity of approx. 3.7 MW (Table 1) by following waste to energy generation success models [3]. This can certainly contribute to the sustainance of environment and Delhi dairying (approx \$100 million, turnover) business.

| Parameters                       | Result analysis                        |         |                                  |         |                                  |                            |                             |       |        |         |                                               |               |
|----------------------------------|----------------------------------------|---------|----------------------------------|---------|----------------------------------|----------------------------|-----------------------------|-------|--------|---------|-----------------------------------------------|---------------|
|                                  | Shahdara South<br>Zone- Dairy<br>Farms |         | Civil Lines Zone-<br>Dairy Farms |         | Rohini<br>Zone-<br>Dairy<br>Farm | Central Zone<br>Dairy Farm | Nazafgarh Zone- Dairy Farms |       |        | arms    | Nazafgarh Zone<br>Unauthorized Dairy<br>Units |               |
|                                  | Gazipur                                | Gharoli | Bhalswa                          | Jharoda | Shahbad Daulatpur                | Madanpur Khadar            | Masood-pur                  | Goela | Nangli | Kakrola | Raja Park                                     | Harijan Basti |
| РН                               | 7.04                                   | 7.12    | 7.34                             | 7.11    | 7.32                             | 8.34                       | 7.18                        | 7.58  | 7.07   | 7.07    | 6.68                                          | 6.86          |
| Total Suspended solids<br>(mg/l) | 3420                                   | 436     | 620                              | 2480    | 290                              | 780                        | 2280                        | 340   | 4260   | 1890    | 19400                                         | 2700          |
| Total Dissolved solids (mg/l)    | 2992                                   | 1908    | 2500                             | 3400    | 3200                             | 3760                       | 3500                        | 2210  | 4952   | 5560    | 8500                                          | 2800          |
| COD (mg/l)                       | 9265.2                                 | 4612.2  | 1283.5                           | 1944.8  | 238                              | 2489.8                     | 5142.8                      | 739.1 | 3449.4 | 4408.1  | 14284.9                                       | 2123.4        |
| BOD (mg/l)[3 days at 27°C]       | 4170                                   | 2070    | 490                              | 740     | 90                               | 1040                       | 2300                        | 280   | 1560   | 1980    | 6400                                          | 890           |
| Mass BOD load (Ton/day)          | 19.2                                   | 22.2    | 0.53                             | 0.68    | .013                             | 4.97                       | 3.28                        | 0.85  | 5.6    | 2.01    | 0.1                                           | 0.01          |
| Chloride (mg/l)                  | 520.3                                  | 394.2   | 639.8                            | 1119.6  | 839.7                            | 985.5                      | 591.3                       | 699.8 | 1576.8 | 2034.1  | 1169.8                                        | 974.8         |
| Color, Hazen units               | 6484                                   | 1050    | 1130                             | 1490    | 40                               | 3590.4                     | 15718.1                     | 2010  | 4420   | 2620    | 24600                                         | 4300          |
| Ammonic Nitrogen (mg/l)          | 199.3                                  | 276.8   | 109.1                            | 61.9    | 71.26                            | 264.3                      | 210.3                       | 77.05 | 160.3  | 176.5   | 157.03                                        | 76.23         |
| Total Nitrogen (mg/l)            | 382.3                                  | 425.22  | 125.94                           | 198.32  | 91.85                            | 309.5                      | 417.87                      | 83.96 | 304    | 212.1   | 516.6                                         | 256.9         |
| Oil & Grease (mg/l)              | 108                                    | 78      | 25                               | 39      | 36                               | 56                         | 90                          | 28    | 52     | 64      | 18                                            | 8             |
| Sodium (Na) mg/l                 | 146                                    | 130     | 451                              | 825     | 775                              | 306                        | 141                         | 387   | 453    | 497     | 253                                           | 255           |
| Temperature (°C)                 | 21.2                                   | 20.4    | 32.2                             | 30.2    | 32.4                             | 21.4                       | 21.5                        | 30.1  | 21.1   | 21.1    | 31.3                                          | 31.5          |
| Turbidity (NTU)                  | 615                                    | 145     | 48                               | 29      | 50                               | 2460                       | 1160                        | 56    | 1440   | 1010    | 6890                                          | 760           |
| Coliforms (MPN in100 ml)         | 39500                                  | 22700   | 5000                             | 100000  | 750000                           | 1900                       | 1700                        | 16000 | 63100  | 1700    | 900000                                        | 110000        |

**REFERENCE** [1] Sharma D. and Kansal A. The status and effects of Yamuna Action Plan YAP, 2011, http://fore.research.yale.edu/files/Sharma\_and\_Kansal-Yamuna\_Action\_Plan.pdf | [2] Municipal Corporation of Delhi 2013, Master plan, feasibility study and pilot plant implementation of Dairy Farm Waste Management in Delhi under Yamuna Action Plan.l. [3] Patankar M, Patwardhan A, Verbong G. A promising niche: waste to energy project in the Indian dairy sector. Environ Sci Policy. 2010,13(4):282-90. | [4] Sharma D.K., Bhargav U., Li Fengting. Dairy Farm Waste Management; an approach for river water restoration, environment improvement and waste to energy generation, in Delhi, India, Int. J. Scientific Research, Vol. 3, Issue 6, June 2014. | [5] Ministry of Environment and forests, GOI, http://envfor.nic.in/division/water-pollution. |