
30 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 8 | August 2015 | ISSN - 2249-555XReseaRch PaPeR

Processing Flows of Information
at Emergency Situation

C. KAMAL N. ARAVIND KUMAR
M TECH (cse), DEPARTMENT OF CSE

MLR Institute of Technology, Dundigal, Hyderabad.
Assistant professor, Department of CSE, MLR Institute

of Technology, DUNDIGAL, Hyderabad.

Engineering

Keywords floods, earthquakes, hurricanes, and man-made disasters

ABSTRACT During natural disasters or emergency situations, an essential requirement for an effective emergency
management is the information sharing. In this paper, we present an access control model to enforce

controlled information sharing in emergencysituations. An in-depth analysis of the model is discussed throughout the
paper, and administration policies are introduced to enhance the model flexibility during emergencies. Moreover, a
prototype implementation and experiments results are provided showing the efficiency and scalability of the system.

1 INTRODUCTION
In the last years, natural catastrophic events, e.g., floods,
earthquakes, hurricanes, and man-made disasters, e.g., air-
plane crashes, terrorist attacks, nuclear accidents, highlight
the need for a more efficient emergency management. In
particular, attacks of September 5, 2001, have shown that
the lack of effective information sharing resulted in the
failure to intercept the terrorist attacks [1]. This example
points out the need of a more efficient, timely and flex-
ible information sharing during emergency management.
Indeed, during an emergency there is often the need to
access resources that are not allowed during the normal
system operations. However, such downgrading of object
security classification should be controlled and temporary.
To cope with these requirements in [5], we propose an Ac-
cess control model to enforce controlled information shar-
ing in emergency situations. Our model is able to Enforce
flexible information sharing within a single organization
through the specification and enforcement of Emergency
policies. Emergency policies allow the instantiation of tem-
porary access control policies (tacps) that override regular
policies during emergency situations. More precisely, each
emergency is associated with one or more tacp templates,
describing the new access rights to be enforced during
specific emergency situations. In general, in emergency
management scenarios the response plans are defined by
experts on the field based on regulations and laws and
based on reports resulting by the emergency preparedness
phase, during which emergency managers conduct a risk
assessment .We believe that all these documents repre-
sent a solid base from which emergencies, emergency pol-
icies, and emergency obligation scan be specified.

In this paper, we propose an extended version of the mod-
el in [5]. One of the main extensions concerns administra-
tion policies. Indeed, this is a crucial task in every appli-
cation scenarios, but in case of emergency management
is even more strategic due to the need of areal-time ad-
justment of the authorization state upon the modification
of security requirements. Moreover, these specification of
emergency policy requires both a security expert as well as
an expert of the domain of the consider emergencies. This
is captured in our model through the definition of proper
scopes that limit the right to stream emergency policies
only to specific emergencies.

The paper also presents an in-depth analysis of the
checks performed by our system to ensure policy correct-

ness, which where only roughly sketched in [5]. Finally, the
prototype Implementation presented in [5] has been ex-
tended to Implement the correctness validity checks and
administration policy enforcement. We also report new
performance tests on the prototype, more extensive, and
detailed than those presented in [5].The remainder of the
paper is organized as follows: Section 2 presents an over-
view of the model [5]. Policy correctness is analyzed in
Section 3. Section 4 presents administration policies. The
prototype implementation and performance evaluation
is provided in Section 5. Section 6surveys related work,
whereas Section 7 concludes the paper.

2 EMERGENCY INFORMATION SHARING
To enforce flexible information sharing during
emergencies, normally authorized. Moreover, it is often
the case that specific actions should be performed to man-
age the Emergency. To fulfill both these requirements, the
mode presented in [5] supports tacps to be activated dur-
ing emergencies and obligations that have to be fulfilled
when an emergency is detected. The connection of an
emergency with the corresponding tacps and obligations
is modeled by emergency policies. A language, called
Core Event Specification Language (CESL), is used to de-
fine events describing the beginning/ending of an emer-
gency. The formal syntax of CESL operators is reported
in [5].

Definition 2.1 (Emergency description):
An emergency emg is a tuple (init, end, time-out, identi-
fier), where init and endure emergency events specified
in CESL, such that init denotes the event triggering the
emergency and end is the optional event that turns off
the emergency, time-out is the time within the emergen-
cy expires even though end has not occurred. Identifier is
an attribute belonging to both the schemes of the event
type corresponding to init and end events. Note that the
identifier plays a key role in that it ensures the connection
between in it and end events (see [5] for further details)
as shown in the following example; which also illustrates
the reference scenario used throughout the paper. This has
been chosen to show how our model works in a challeng-
ing domain, where the number of emergencies and related
emergency policies is large and the level of policy granu-
larity is high. Even if we are aware that this is not a typical
domain for emergency management (e.g., disaster man-
agement), we decide to select it because it gives us the
opportunity to provide more complex examples of emer-

INDIAN JOURNAL OF APPLIED RESEARCH X 31

Volume : 5 | Issue : 8 | August 2015 | ISSN - 2249-555XReseaRch PaPeR

gency descriptions and policies.

Example 2.1 (Reference scenario).
Patients are hospitalized at home, in a special clinic or in
a hospital. Each of these structures provides patient treat-
ments through specialized equipment able to ensure a
real-time monitoring of patient vital signs. Data gathered
by the monitoring equipment are collected by the CEP to
automatically detect emergency situations. More precisely,
we suppose that, every 30 seconds, each sensor sends
the systolic pressure of patients to the monitoring system
in the Vital Signs stream of tuples (pressure,…, patient id).
Hypertension emergency can be defined as follows:

Hypertension Emergency {
init: VS1 v1;
VS1 ¼ _(pressure > 140)(Vital Signs);
end: VS2 v2;
VS2 ¼ _(pressure _ 120)(Vital Signs);
timeout: 1;
identifier: patient_id;}
The emergency starts when the diastolic pressure of a
Patient is higher than 140 mmHg, and it ends when the
Pressure of the same patient (i.e., with the same
patient_id) returns to less than or equal to 120 mmHg.
When the Hypertension Emergency is detected for pa-
tient 1,the following emergency instance is created.
HypertensionEmergencyInstance1 {
emg: Hypertension Emergency;
identifier: 1;}

The HypertensionEmergencyInstance1 is deleted when Hy-
pertension Emergency ends for patient 1. Our model en-
forces controlled information sharing during emergencies
through tacps. More precisely, because different instances
of the same emergency might require different tacps, we
associate with an emergency a tacp template, that will be
properly instantiated when an emergency is detected.

3 .EMERGENCY POLICY CORRECTNESS
The main function of emergency policies is the enforce-
ment of the corresponding tacps/obligations upon emer-
gency detection. More precisely, emergency policy en-
forcement consists of two main steps: 1) the creation/
deletion of the corresponding emergency instances and 2)
the consequent creation/deletion of instances of the cor-
responding tacps. As discussed in Section 5, emergency
activation/deactivation is

a time-consuming operation. Therefore, a particular atten-
tion has to be paid in properly defining the init and end
emergency events to ensure that, even if syntactically well-
defined, they will not imply a simultaneous activation and
deactivation of an emergency. In general, this type of error
occurs when the two sets of tuples satisfying in it and end

Events are not disjoint. Indeed, in this case, the arrival of
just one tuple may cause the simultaneous creation and
deletion of the corresponding emergency and tacp in-
stances. Let us consider, as an example, an emergency
specification, where nit: temp _ 37 and end: temp _ 39.
In this case, the arrival of tuple t such that t:temp ¼ 38
results in the simultaneous

Creation and deletion of the corresponding emergency

And tacp instances.2 We formally define this problem by
showing also the correctness and enforcement in the

following sections.

Here and in the following, we use dot-notation to indicate
fields of events, emergencies or policies.

4 EMERGENCY POLICY ADMINISTRATIONS
Emergency management is a complex task, that we be-
lieve requires distributing the rights of create/modify emer-
gency policies among different subjects, called emergency
managers. Indeed, people in charge of the planning of
response activities for emergency situations have a strong
expertise in issues dealing with the particular field originat-
ing the emergency. For example, in the hospital scenario
the head of cardiology ward has the best profile to indi-
cate, which Activities have to be performed for cardiology
emergencies, but not to determine the response plan for
a breathing emergency. we make use of the concepts of
emergency scope and tacp scope, which are formally de-
fined as follows:

Definition 4.1 (Emergency scope):
An emergency scope is at tuple (event, streams, opera-
tors), where event2 finit; end; both, streams is a set of
stream names, and operators is a setoff CESL operators.
Given an emergency description e and an emergency
scope emg_scope, we say that e is valid w.r.t. emg_scope,
if the init (end or both, respectively) event is defined on a
subset of the streams specified in emg_scope.streams, by
using a subset of CESL operators specified in emg_scope.
operators. Definition 4.2 (Tacp scope). A tacp scope is a
tuple (sbj, obj, priv, ctx, and obl) where: sbj, obj, and ctx
are subject, object, and context specification, respectively;
priv and obl are a set of allowed privileges and actions,
respectively.

Given a tacp template tacp and a tacp scope a cp_
scope, we say that tacp is valid w.r.t. a tacp_scope if: the
subject(object, respectively) specification of tacp identi-
fies a subset of subjects (objects, respectively) identified
by tacp_scope.sbj(tacp_scope.obj, respectively), the set
of values for a context attribute identified by a context
specification of a tacp is a subset of the values identified
by tacp_scope.ctx and theprivileges (obligations) in tacp.
priv (tacp.obl) is a subset of those privileges (obligations,
respectively) identified in tacp_scope. Priv(tacp_scope.obl).
Based on emergency and tacp scopes, we can now formal-
ize the emergency administration policies, as follows:

4.2 Administration Policy Enforcement
The enforcement of emergency administration policies is
carried out each time a user defines or modifies an emer-
gency policy, with the aim of verifying whether the new
policy satisfies at least an administration policy. In case an
emergency policy is not valid w.r.t. the specified adminis-
tration policies, a set of rewriting strategies are applied,
aiming to redefine the invalid emergency policy so as to
make it valid w.r.t. at least one of the specified administra-
tion policies. Every time an emergency policy is rewritten,
awarding is sent to the emergency manager who has de-
fined the policy to inform him about the rewriting opera-
tion and, in

case of bad rewriting, to manually correct the policy. In
case an emergency policy is not valid w.r.t. any adminis-
tration policy and rewriting is not possible, the emergency
policy is discarded and the policy issuer is warned. When a
user defines/modifies an emergency policy, the validity of
the new emergency policy is verified by Algorithm 2.

32 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 8 | August 2015 | ISSN - 2249-555XReseaRch PaPeR

Algorithm 2.ValidateEmergencyPolicies
input: ep, the new emergency policy to be validated
input: u, the user which is trying to define ep
output: ep, ; or a list of valid rewritten emergency poli-
cies
1 Let EAPR be the Emergency Administration Policy
Base;
2 rwEPs¼ ;;
3 for each eap 2 EAPR do
4 <r, np> ¼ Check EmergencyPolicy (u, ep, eap);
5 if r ¼ Valid then returns ep;
6 if r ¼ ValidAfterRw then
7 rwEPs ¼ rwEPs[{np};
8 Warn (u, ep, eap);
9 end
10 if rwEPs¼ ; then Warn (u, ep);
5 return rwEPs;

Algorithm 2 takes as input an emergency policy ep and
the user u who is trying to define it. Algorithm 2 check
Sep against each administration policy eap in the Emer-
gency Administration Policy Repository EAPR (Lines 3-9)
by using the Check EmergencyPolicy function(line 4). This
function takes as input u, ep, eap and returns a pair <r,
np> with one of the following values:<Valid, ep>, if ep is
valid w.r.t. eap, <Invalid, ; > , if ep is not valid w.r.t. eap,
<ValidAfterRw, np>, where np is are written emergency
policy, if ep is not valid but there writing strategy can be
applied. If r = Valid, then Algorithm 2 returns ep (line 5). If
r = ValidAfterRw, then the rewritten emergency policy np
is stored into the rwEPs set (line 7) and user u is informed
that the emergency policy he/she has defined has been re-
written (line 8). In case ep is not valid, when Algorithm 2
has analyzed all the emergency administration policies, it
returns rwEPs, which could be empty or contain the setoff
rewritten emergency policies (line 5). In case rwEPs is emp-
ty, the ep emergency policy is not inserted into the policy
base and the user u is warned about the wrong definition
of ep (line 10).

Function CheckEmergencyPolicy (u, ep, eap)
1 Let np = (tacp, emg, obl) be initialized empty;
2 EmgChk = ChkEmgScope (ep:emg, eap:emg scope);
3 <r, np.tacp> = RwTacp (ep:tacp, eap:tacp scope);
4 if u 2 eap: adminsbj ^ ep: obl _ eap: obl ^
EmgChk ¼ true ^ r ¼ Valid then
5 return <Valid, ep>;
6 if u 62 eap:adminsbj _ ep: obl \ eap: obl ¼ ; _
EmgChk ¼ false _ r ¼ Invalid then
7 return <Invalid, ;> ;
8 np.emg ¼ ep:emg;
9 np.obl ¼ ep: obl \ eap: obl;
10 return <ValidAfterRw, np>;

Function Check EmergencyPolicy. These function first
checks if the emergency description ep:emg is valid w.r.t.
the emergency scope eap:emg scope (line 2) through func-
tion ChkEmgScope. Then, it calls unction Rw Tacp (line 3),
which takes as arguments the tacp template contained into
theinput emergency policy and the tacp scope of the input
Administrative policy and returns a pair <r; np:tacp> that
can have one of the following values: <Valid; ep:tacp>,
if ep.tacp is valid w.r.t. eap.tacp_scope, <Invalid; ;>, if
ep.tacp is not valid w.r.t. eap.tacp_scope, <V alidAfterRw;
np:tacp>,

Where np.tacp is a rewritten tacp, if ep.tacp is not valid
w.r.t. eap.tacp_scope, but it can be rewritten into the val-
id policy np.tacp. Then, CheckEmergencyPolicy verifies

whether the user is among the authorized users in eap,
obligations specified in ep are a subset of those author-
ized in eap and both the tacp template and the emergen-
cy description contained into the input emergency policy
are valid w.r.t. The corresponding scope (line 4). If all these
conditions are satisfied, then CheckEmergencyPolicy re-
turns <Valid; ep>(line 5), otherwise it checks if there is at
least a condition to

consider ep not rewritable into a valid policy, that is, if u is
not among the authorized users in eap, or obligations re-
quired in ep are disjoint from obligations allowed in eap,or
Check Emergency Scope returns false or Rw Tacp returns
Invalid (line 6). If at least a condition holds, then Check-
EmergencyPolicy returns <Invalid; ;> (line 7).

Function ChkEmgScope.
Function Chk Emg Scope takes as input an emergency
emg and an emergency scope and returns true or false
whether emg is valid or not w.r.t. scope. Depending on
scope.event content, the function checks if the streams
over which init/end or both of them is defined are a subset
of the streams contained in the scope and if the operators
used in init/end or both of them are a subset of the scope
operators. In case these checks succeed, the Function re-
turns true, otherwise it return false.5Function RwTacp (t,s)

1 Let n ¼ (sbj, obj, ctx, obl) be initialized empty;
2 rw ¼ false;
3 <res, np.sbj> ¼ RwTacpSbj (t.sbj,s.sbj);
4 if res ¼ Invalid then return <Invalid, ;>;
5 if res ¼ ValidAfterRw then rw = true;
6 <res, np.obj> ¼ RwTacpObj (t.obj,s.obj);
7 if res ¼ Invalid then return <Invalid, ;>;
8 if res ¼ ValidAfterRw then rw ¼ true;
9 if t.priv \ s.priv= ; then return <Invalid, ;>;
10 if t.priv 6_ s.priv then
5 rw ¼ true;
12 np.priv ¼ t.priv \ s.priv;
13 end
14 <res, np.ctx> ¼ RwTacpExp (t.ctx,s.ctx);
15 if res ¼ Invalid then return <Invalid, ;>;
16 if res ¼ ValidAfterRw then rw = true;
17 if t.obl \ s.obl= ; then return <Invalid, ;>;
18 if t.obl 6_ s.obl then
19 rw ¼ true;
20 np.obl ¼ t.obl \ s.obl;
21 end
22 if rw ¼ false then return <Valid, t>;
23 else return <ValidAfterRw, np>;

5 .PROTOTYPE IMPLEMENTATION AND TESTS:
The prototype is implemented in Java on top of a Stream
Base CEP platform [28]. We describe how the prototype
works during the three most important phases:1) specifica-
tion of emergency descriptions, tacp templates and emer-
gency policies; 2) emergency activation/deactivation; and
3) user access.

5.1 Performance Evaluation
In this section, the performance results of the prototype
system are discussed. The experiments were run on an In-
tel Core i7 2.00-GHz CPU machine with 4-GB RAM, run-
ning Windows 7. The prototype implements the architec-
ture explained in Fig. 1; therefore, we carried out tests on
every step of the emergency life cycle. In this section, we
report results on overall time for emergency activation/
deactivation and user access time. We refer to Appendix
D, available in the online supplementary material, for tests

INDIAN JOURNAL OF APPLIED RESEARCH X 33

Volume : 5 | Issue : 8 | August 2015 | ISSN - 2249-555XReseaRch PaPeR

on each single step (i.e., event detection time, emergen-
cy creation time, tacp creation time, emergency deletion
time, tacp deletion time) and for comparison between PP
detection time and activation/ deactivation time. Before
presenting the experimental results, we provide details on
the data set.

5.1.1 Data Set
To carry out the experiments on emergency detection, Ac-
tivation, and deactivation, we developed an emergency
events generator. By means of this generator, we can cre-
ate a specific number of init and end events by varying
their complexity, which is measured in terms of number of
operators (i.e., selection, aggregation and join operators)
contained into the event.

As shown in Fig. 2, in case of complexity 1, the generated
event takes as input a unique stream, over which it evalu-
ates one selection and two aggregations. From this unique
input stream, it generates both in it and end events. With
a complexity of two, the event contains two input streams,
two selections, four aggregations, and two join operators.
In general, in case of complexity n, the number of input-
streams is n, the number of selections is n, the number of
aggregations is 2n, and the number of join operators is P
nffiffiP i¼1 2i (see, as an example the case of complexity4
in Fig. 2).

Fig. 1.System architecture.

Fig. 2.Emergency event complexity.

Fig. 3activatiom/deactivation time

5.1.2 Activation and Deactivation Overall Time
The overall activation time represents the time elapsed
Between the detection of an emergency and the effective
activation of the corresponding emergency policy. This is
given by

1. The time needed to retrieve the emergency related to
the triggered init event (emergency retrieval time),

2. The time for the creation of the corresponding

Emergency instance (emergency instance creation time),3.
the time necessary to retrieve the tacp template Related
to the emergency (tacp template retrieval Time), and4.
the time to create the corresponding tacp instance(tacp
instance creation time).The overall deactivation time repre-
sents the time elapsed between the detection of a tuple
satisfying an end event and the effective deactivation of
the corresponding emergency policy.

Similar to activation.time. Emergency activations and deac-
tivations. During experiments, the tuples rate varies from
1.000 to 10.000 tuples per Second, which means that the
number of activated Emergencies per hour varies from
3.600.000 to 36 million? Considering, for instance, that the
daily volume of 95 calls for New York city is 30.000 [7], we
believe that our experimental numbers are large enough
to guarantee high performance in a real emergency man-
agement system.

6 RELATED WORKS
Our model enforces fine-grained access control with attrib-
ute-level granularity. Many models have been pro-posed in
the literature, in support of fine-grained access control, for
instance models derived from ABAC or the XACML stand-
ard . A remarkable model supporting fine-grained ac-
cess control in a healthcare domain is C-TMAC presented.
This approach allows team-based access control by also
integrating contextual in formation. In [5], we intention-
ally gave a high-level definition of the paper, we adopt
RBAC-A. We believe the above-mentioned models can be
adopted in our system instead of RBAC-A. However, none
of them support emergency detection through CEP tech-
nology, which is a total novelty in access control systems.

7 .CONCLUSIONS:
In this paper, we proposed an extension of the emergency
access control model presented in [5] with the possibil-
ity of defining administration policies, i.e., which subjects
are enabled to define emergency policies and over which
scope. Moreover, we have implemented an extended ver-
sion of the prototype presented in [5], and we have car-

34 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 8 | August 2015 | ISSN - 2249-555XReseaRch PaPeR

ried out an extensive set of test to check what is the im-
pact of emergency policies into an access control system.
A set of correctness checks have also been defined to
avoid useless activation/deactivation of emergencies.

REFERENCE [1] “The 9/5 Commission Report,” technical report, Nat’l Commission on Terrorist Attacks upon the United States, July 2004. | | [2] J.G. Alfaro,
“N.: Management of Exceptions on Access Control Policies,” Proc. 22nd IFIP TC-5 Int’l Information Security Conf. (IFIPsec ’07), pp. 97-108,

2007. | | [3] C. Ardagna, S. De Capitani di Vimercati, S.Foresti, T. Grandsons, S. Jajodia, and P. Samarati, “Access Control for Smarter Healthcare Using Policy Spaces,”
Computers and Security, vol. 29, pp. 848-858, 2010. | | [4] M.Y. Becker, “A Formal Security Policy for an NHS Electronic Health Record Servce,” Technical Report
UCAM-CL-TR-628, | | [5] B. Carminati, E. Ferrari, and M. Guglielmi, “Secure Information Sharing on Support of Emergency Management,” Proc. IEEE Third Int’l Conf.
Privacy, Security, Risk and Trust (PASSAT), and IEEE ThirdInt’l Conf. Social Computing (Social Com), pp. 988-995, Oct. 2011.

