Immunization Coverage in India: A Study by using NFHS-III Data

KEYWORDS

Vaccination, Chi-square Test, Immunization, India.

M.Mamatha
Research Scholar in Statistics, Kakatiya University, WARANGAL.

V.Nageswara Rao
Professor, Department of Mathematics, K L University, GUNTUR

ABSTRACT

Present study attempts to explore the coverage of vaccination status among children aged 0 to 9 months using the National Family and Health Survey (NFHS-III) data. Vaccines stimulate the body’s own immune system to protect the person against subsequent infection or disease. Immunization plays an important role in reducing child mortality and morbidity of any country. In India the maternal and child health is not promoted aggressively except in few cases which are either at high risk or only in reach of a certain set of people. Relatively more number of the urban than the rural is utilizing the immunization program. Coverage of all vaccines is better among the urban than rural and coverage of all vaccines is seen to be slightly higher among the male than to female. Coverage pattern of the Measles vaccine and Vitamin-A supplement is not up to the level of satisfaction among the child population.

1. Introduction:

Immunization is the process whereby a person is made immune or resistant to an infectious disease. Vaccination for children in India is carried out under the Universal Immunization Program. The Indian Academy of Pediatrics has also recommended its own schedule with newer vaccines.

The National Immunization schedule is as follows:

- At Birth:
 - BCG and Oral Polio vaccine
- 6,10 and 14 weeks
- DPT and Oral Polio vaccine
- 6 to 9 months
- Oral Polio vaccine
- 9 Months
- Measles vaccine

Immunization forms the major focus of child survival programmes by protecting the children from life threatening diseases, which are avertable throughout the world. Roughly three million children die each year of vaccine-preventable diseases with a disproportionate number of these children residing in developing countries. Immunization is one of the most cost effective public health interventions and largely responsible for reduction of under-5 mortality rate. The immunisation programme in India was flagged off in 1978 as Expanded Programme on Immunisation (EPI). It gained impetus in 1985 as the Universal Immunisation Programme (UIP) and was carried out in phased manner to cover all districts in the country by 1989-90 (MoHFW 2006-07: 58). In India, under the UIP, vaccines for six vaccine preventable diseases (tuberculosis, diphtheria, pertussis (whooping cough), tetanus, poliomyelitis, and measles) are available free of cost to all.

2. Data source and Methods:

Data was analyzed using SPSS software. The database for the present article is from the NFHS-III (2005-2006). The NFHS surveys were conducted by the Ministry of health And Family Welfare and International Institute for Population Sciences (IIPS), Mumbai as the nodal agency. We make use of Chi-square test to find out the results from the data.

2.1. Chi-square test:

One of the most useful non-parametric statistics is chi-square test. The formula for chi-square for testing the association between the categorical variables is

\[\chi^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \]

Where

- \(r \) = number of rows
- \(c \) = number of columns
- \(O_{ij} \) = Observed frequency or Actual number in cell (i, j)
- \(E_{ij} \) = Expected frequency in cell (i, j)
- \((r-1)(c-1)\) = degrees of freedom

We use the P-value for making a decision. It is defined as “the probability that the null hypothesis is true”. For a fixed level of significance ‘\(\alpha \)’ (usually 0.05 or 0.01, more rarely 0.10), we reject null hypothesis if the P-value is smaller than \(\alpha \), otherwise we fail to reject null hypothesis at level \(\alpha \).

We can compute P-value by using the following formula

\[P\text{-value} = \left[0.5^{d.f.} / \Gamma(d.f./2) \right] \times (\chi^2)^{(d.f./2)-1} \times e^{-\chi^2/2} \]

Where

- \(\Gamma\) - Gamma value
- d.f. - degrees of freedom
- \(\chi^2 \) - Chi-square value

3. Principal findings:

In a community with higher immunisation coverage, chances of unvaccinated children getting exposed to disease germs passed around by other unvaccinated children are less. Since vaccination of one child confers health benefits for others it has to reach all the corners of the country.

This paper tries to find out the determinants of immunisation coverage rate among children aged 0 to 9 months,
spread in urban & rural along with male & female population.

The vaccination pattern is observed to be almost similar in male and female population and the level of education of the parent is seen to be a significant factor for protecting their children by giving vaccines. The proportion of vaccinated is comparatively high among the urban than to the rural population. Though the government of India is carrying the immunization programme by providing the vaccines for free of cost still it is observed that the vaccination is greatly influenced by the poor and rich disparity.

The coverage of vaccination is seen to be least among the Tripura (54.6%) and Arunachal Pradesh (61.6%) and observed to be highest in Tamil Nadu (98.7%) and Goa (97.6%) states. The coverage of vaccines is seen to be roomy in most of the states, with the Indian capital Delhi having 83.4% of vaccination. The coverage is seen to be far reaching all the south Indian states of India. Statistically significant association is observed between the ever-vaccinated with Type of place of residence, sex, level of education, and wealth index.

Out of the total population 12.4% are still not been vaccinated. Non-utilization of vaccines is found to be 9.1% among the total urban and 14.2% among the total rural population. The non-coverage rate of vaccines is observed to be slightly high in female (12.9%) than the male (12%) child.

Although coverage with recommended vaccines for each new birth cohort remains high, vigilance is needed to maintain these levels. Difficulty in accessing the immunization services in terms of distance, costs, and time can still be the main barrier in some parts of the rural. Statistically significant differences in vaccination coverage levels between the male and female child population was determined for individual vaccines. The coverage of the Measles and vitamin-A supplement is significantly low among the male and female children. Though the primary response of coverage for the vaccines of DPT as well as Polio was exceptionally admirable among the male and female children, but decreased radically for the subsequent doses. The dropout rate of DPT vaccine in male shows that, the dropout from the first dose to second dose of DPT is 9.5% and second dose to third dose is still more with 16% and the dropout rate from the first dose to second dose of Polio is 6.7% and second dose to third dose is still more with 12%. The dropout rate of DPT vaccine in female shows that, the dropout from the first dose to second dose of DPT is 11% and second dose to third dose is still more with 15% and the dropout rate from the first dose to second dose of Polio is 5.7% and second dose to third dose is still more with 12%. Hence the dropout rate of DPT vaccines is more in female than to male. The coverage of the series of Polio vaccines is better compared to the series of DPT vaccines among the urban, rural and also in male, female child population.

When we considered the coverage of individual vaccines among male and female, it is seen to be slightly high among the male children than to the female children of India. Statistically significant differences in vaccination coverage levels between the male and female child population was determined for individual vaccines. The coverage of the Measles and vitamin-A supplement is significantly low among the male and female children. Though the primary response of coverage for the vaccines of DPT as well as Polio was exceptionally admirable among the male children but decreased radically for the subsequent doses. The dropout rate of DPT vaccine in male shows that, the dropout from the first dose to second dose of DPT is 9.5% and second dose to third dose is still more with 16% and the dropout rate from the first dose to second dose of Polio is 6.7% and second dose to third dose is still more with 12%. The dropout rate of DPT vaccine in female shows that, the dropout from the first dose to second dose of DPT is 11% and second dose to third dose is still more with 15% and the dropout rate from the first dose to second dose of Polio is 5.7% and second dose to third dose is still more with 12%. Hence the dropout rate of DPT vaccines is more in female than to male. The coverage of the series of Polio vaccines is better compared to the series of DPT vaccines among the urban, rural and also in male, female child population.

4. Conclusion:
Evaluation of efforts to increase the coverage should be enhanced in the rural population. For the health benefits to continue, high levels of vaccination coverage must be attained for each new birth cohort irrespective of male and female child and must be monitored to ensure protection from disease. Monitoring of vaccination should be encouraged at all levels to achieve the control over the diseases through the vaccination.

<table>
<thead>
<tr>
<th></th>
<th>Urban Total %</th>
<th>Rural Total %</th>
<th>Pearson Chi-Square value</th>
<th>Male Total %</th>
<th>Female Total %</th>
<th>Pearson Chi-Square value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinated</td>
<td>10225</td>
<td>11286</td>
<td>91</td>
<td>18139</td>
<td>21234</td>
<td>85</td>
</tr>
<tr>
<td>Received DPT 1</td>
<td>14932</td>
<td>18618</td>
<td>80</td>
<td>20629</td>
<td>30047</td>
<td>69</td>
</tr>
<tr>
<td>Received DPT 2</td>
<td>13731</td>
<td>18600</td>
<td>74</td>
<td>18025</td>
<td>30005</td>
<td>60</td>
</tr>
<tr>
<td>Received DPT 3</td>
<td>11999</td>
<td>18600</td>
<td>65</td>
<td>14758</td>
<td>30005</td>
<td>49</td>
</tr>
</tbody>
</table>
Received POLIO 0 11510 18619 62 11451 30051 38 2712.903 12182 25297 48 10779 23373 46 28.710
Received POLIO 1 16926 18607 91 25887 30026 86 630.252 22386 25278 89 20427 23355 87 24.371
Received POLIO 2 16018 18583 86 24109 29987 80 690.360 21036 25243 83 19091 23327 82 25.127
Received POLIO 3 14261 18583 77 20905 29987 70 689.778 18481 25243 73 16685 23327 72 23.629
Received MEASLES 11532 18582 62 14435 29987 70 974.866 13857 25224 55 12110 23310 52 45.190
Received BCG 15634 18618 84 21665 30053 72 1187.354 19687 25298 78 17612 23373 75 42.139
Received Vitamin A 9213 18613 49 11810 30033 39 635.747 11126 25285 44 9897 23361 42 15.641
df-4 & Asymp. Sig. (2-sided)= 0.00

REFERENCE