
INDIAN JOURNAL OF APPLIED RESEARCH X 203

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

A Proposed Relan Algorithm for Booting Process
in Regional Language for Linux Based Mobile

Operating System

Mr. Milan S. Bhatt Dr. Prashant M. Dolia
Programmer, M. D. Gramseva Mahavidyalay, Gujarat

Vidyapith.
Associate Professor, Maharaja Krishnakumar Sinhji

Bhavnagar Univeristy, Bhavnagar

Keywords Linux, booting process, regional Language, Mobile Technology, Operating System,
RELAN.

Engineering

ABSTRACT The Information Technology, no any result for booting process in mobile technology with the use of re-
gional language. Information technology without doubt, has enormous power to improve how people

live and work. Thousands of tools – hardware, software, and embedded – are developed to make life of mankind an
efficient and convenient for mobile technology. A revolution is taking place today in the way of people, how to access,
learn, and interact with information looking booting process in regional language for the Linux based mobile Operat-
ing System. Research work is required to develop more assistive system in areas like proposed regional language algo-
rithm for booting process in Linux based Operating System.

1 Introduction
Most all the people are working with the mobile technol-
ogy in different way. Specific people are uses the different
mobile with specific operating system like Android, Win-
dows, Asha, and Blackberry etc. But now a days almost
booting process of operating systems in English Language.

So, ruler area people can’t understand English language
properly at starting of mobile at first time, So new pro-
posed booting process and its component and its process
(different messages) in regional language.

At the starting of the configuration of a new Mobile de-
vices, mobile operating system's gives the message to the
user in English language. So, specific domain regional lan-
guage people may not be understand the different mes-
sages which is given by the mobile operating system. So,
regional language people are easily understand the all the
messages which is given by the mobile, transferring in re-
gional language.

2 Language Processor for Booting Processing
Transferring the booting process of mobile devices Eng-
lish language to regional language booting process need
some language processor for representation of an algo-
rithm in a source language to and produces as output of
target regional language.

2.1 Assemblers: It is used to translate the program written
in Assembly language into machine code. An assembler
performs the translation process in similar way as compiler.
But assembler is the translator program for low-level pro-
gramming language, while a compiler is the translator pro-
gram for high-level programming languages.

2.2 Compilers: Language processors that map high-level
language instructions into machine code, e.g. Delphi,
GCC, Visual C++ etc. Implementation language and the
source text to be compiled is actually a new version of the
language processor itself, the process is called bootstrap-
ping. The compilation of the compiler itself does not need
to be done on the target machine, but instead it can take
place on another machine; this is called cross-compilation.

2.3 Pre-Processors: Language processors that map a su-
perset of high-level language into the original high-level
language, or perform simple text substitutions before
translation takes place.

2.4 Interpreters: Language processors that include an ex-
ecution component, i.e. they perform the operations speci-
fied in the source text, rather than re- expressing them in
another language; e.g. Matlab

2.5 Disassemblers: Language processors that attempt to
take object code at a low level and regenerate source
code at a higher level.

3 Language Translator
A language translator is a computer program that converts
a program written in a procedural language into machine
language that can be directly executed by the computer.
Computers can execute only machine language programs.
Programs written in any other language must be translated
into a machine language load module, which is suitable for
loading directly into primary storage.

The program translation model bridges the execution gap
by translating a program written in a PL, called the source
program (SP), into an equivalent program in the machine
or assembly language of the computer system, called the
target program (TP).

A program must be translated before it can be executed.

• The translated program may be saved in a file. The
saved program may be executed repeatedly.

• A program must be re translated following modifications.

Language Processing = Analysis of Source Programme +
Synthesis of Target Programme

204 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

[Fig. - 1 Language Processing]

[Fig. - 2 Conceptual Structure of Language Processing]

4 Gujarati Morphology
Identification, analysis and description of the structure of
words. Study of structural variations of words.

INFLECTIONS in a word are structural changes, usually
through affixes, to express Number, Tense, Case, Gender,
Person, etc.

dog – dogs goose – geese hunt – hunted
his – hers

WORD FORMATIONS includes a group of words that have
a specific meaning when they appear together.

mother in law future plan

Now trying to Language Processing implemented of Guja-
rati Language in two character for one word and maximum
two suffixes. There is some basic rule for Gujarati language
which is I implemented in my RELAN algorithm.

The Gujarati alphabet consists of 47 letters ordered ac-
cording to phonetic principles (below each one the stand-
ard transliteration is shown followed by its International
Phonetic Alphabet equivalent). In below table there are 11
vowels used in Gujarati language.

Gujarati has three genders (masculine, neuter rand femi-
nine), two numbers (singular and plural) and three cases
(nominative, oblique/vocative and locative) for nouns. The
gender of a noun is determined either by its meaning or
by its termination. The nouns get inflected on the basis of
the word ending, number and case.

The Gujarati adjectives are of two types – declinable and
indeclinable. The declinable adjectives have the termina-
tion –ũ in neuter absolute. The masculine absolute of these
adjectives ends in -o (◌) and the feminine absolute in -ī (◌).
For example, the adjective (sārũ - good) takes the form
(sārũ), (sāro) and (sārī) when used for a neuter, masculine
and feminine object respectively. These adjectives agree
with the noun they qualify in gender, number and case.
The adjectives that do not end in -ũ in neuter absolute
singular are classified as indeclinable and remain unaltered
when affixed to a noun.

The Gujarati verbs are inflected based upon a combina-
tion of gender, number, person, aspect, tense and mood.
There are several postpositions in Gujarati which get
bound to the nouns or verbs which they post position. e.g.
-nũ (: genitive marker), -mā̃(: in), -e (◌: ergative marker),
etc. These postpositions get agglutinated to the nouns or
verbs and not merely follow them.

Gender Singular () Plural ()
Masculine (saar + o) or (sāro) (saa + i) or (sārā)
Feminine (saar + i) or (sārī) (saar + i) or (sārī)

Neuter (saar + uN) or (sārũ) (saar + āN) or (sārã)

5 RELAN Algorithm
Step 1: Generate an object of obtain the optimal split po-
sition for each only two stem and only one suffix Gujarati
word in the word list provided for training face data input
stream and buffer_reader classes respectively ''data_input_
stream', 'buff_read'.

File_writer guj_char= new File_writer(“/usr/src/linux-
source—2.6.8/kernel/guj_char.c”;

Buffer_writer guj_char = new buffer_writer(guj_char);

{ stem1 + suffix1, stem2 + suffix2, stem3 + suffix3,
................ , steml + suffixl }

guj_char -> guj_word [2] [N] array // separating char-
acter from text.

f(i) = i * log (freq(stemi)) + (L – i) * log (freq(suffixi))

where i : Split position (Varies from 1 to L)

 L : Length of the Word

STEP 2: Repeat Step 1 until the optimal split positions of
all the words remain unchanged.

Loop { f(i) = i * log (freq(stemi)) + (L – i) * log
(freq(suffixi)) }

STEP 3: Generate signatures using the stems and suffixes
generated from the training phase.

1St Loop { // To get every character from string [f(i)]

INDIAN JOURNAL OF APPLIED RESEARCH X 205

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

2nd Loop { // To get suffix from the string [f(i)]

} // 2nd Loop

} // 1st Loop

STEP 4: Discard the signatures which contain either only
one stem or only one suffix.

Class buff_read closed

 boolean stem;

 boolean suffix;

 write to “guj_char.c ”;

 if (guj_char==”stem”);

 write to “guj_char.c ”

 else if (guj_char==”suffix”);

 write to “guj_char.c ”

 close();

6 Applying RELAN Algorithm in booting process
The bootloader is the first software program that runs
when a computer starts. It is responsible for loading and
transferring control to the Linux kernel.

The grub.conf file is available in /boot/grub/grub.conf.
Also the /boot/grub/grub.conf file can also be referenced
via the symbolic link file named /etc/grub.conf.

The kernel in the /boot directory is named vm-
linuz-2.6.8-1.521, its RAM disk image file is named ini-
trd-2.6.8-1.521.img, and the root partition.

1. Configuring Kernel: Configuring the kernel with the
used of terminal as a sudo or root user.

$ make gconfig: - X windows (Gtk) based configuration
tool, works best under Gnome Desktop.

2. Compiling Kernel

 $ make

 $ make modules

 $ make modules_install (check user is root or su)

3. Install Kernel

$ make install

It will install three files into /boot directory as well as modi-
fication to your kernel grub configuration file.

1. system.map, 2.6.8 2. config-2.6.8 3. vmlinuz-2.6.8

4. Create an initrd image

 $ cd /boot

 $ mkinitrd -o initrd.img-2.6.8

5. Creating a Custom Kernel

In this step you can create a new system calls in under
kernel.h file and this file is available in /usr/src/linux

source—2.6.8/kernel/<file_name>.c

Now generate the simple Gujarati character with the kernel
file and linkage with the <file_name>.c with kernel.h

<file_name>.c = guj_char.c

#include <linux/linkage.h>

#include <linux/kernel.h>

#include <asm/uaccess.h>

#define MAX_BUF_SIZE 4

asmlinkage int sys_guj_char(char _ _ usr *buff, int len)

{

char tmp[MAX_BUF_SIZE]; // tmp buffer to copy user's
string into

int guj_stem_len; // find how many stems in a string

int guj_suffix_len; // find how many suffixes in a string

a:

 if (guj_char==”stem”);

 write to “guj_char.c ”

 else if (guj_char==”suffix”);

 write to “guj_char.c ”

 close();

File_writer guj_char = new File_writer(“/usr/src/linux-
source—2.6.8/kernel/guj_char.c”;

Buffer_writer guj_char = new buffer_writer(guj_char);

class buff_read closed

// Apply RELAN algorithm

guj_char = { stem1 + suffix1, stem2 + suffix2, stem3 + suf-
fix3, , steml + suffixl } ;

guj_char -> guj_word [2] [N] array;

guj_char = i * log (freq(stemi)) + (L – i) * log (freq(suffixi));

boolean suffix;

boolean stem;

printk(KERN_EMERG “Entering guj_char(). The len is
%d\n”, len);

char guj_char_list;

206 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

if (len <= 2 || (len > MAX_BUF_SIZE))

{

printk((KERN_EMERG “Entering guj_char() failed: illegal len
(%d) !”, len); return (-1); } goto (a);

// copy buff from user space into a kernel buffer

if (copy_from_user(tmp, buff, len)

{

printk(KERN_EMERG “Entering guj_char() fail: copy_from_
user() error”); return (-1);

} goto (a)

tmp[len] = '\0';

printk(KERN_EMERG “ guj_char() from %s. \n”, tmp);

return (0);

close()

}

6. Edit the Makefile to compile your new system call

Add guj_char.o to the definition of obj-y, like

obj-y = sched.o fork.o printk.o

cpu.o exit.o resource.o

guj_char.o

7. Add your system call to the unistd kernel header files by
editing

/usr/src/ l inux-source-2.6.8/arch/x86/ include/asm/
unistd_32.h. and add the line:

define _ _ NR guj_char 337 // unique system call num-
ber

8. Add your system call to the syscalls kernel header files
by editing

/usr/src/linux-source-2.6.8/arch/x86/include/asm/syscalls.h.
and add the lines

/* kernel/guj_char.c */

asmlinkage int sys_guj_char(char _ _ usr *buff, int len)

9. Now recompile and load your kernel

Move to the root of the linux source code

 cd /usr/src/linux-source-2.6.8

 make bzImage

 make install

 # Move to the boot directory

 cd /boot

 mkinitramfs -o initrd.img-2.6.8.1-cs470p2
2.6.31.9-cs470p2

update-grub

/sbin/reboot

10. Now reboot and load new kernel for booting process

in your Linux.

7 Default Screen – Linux boot screen

8 Future Booting Screen in Regional Language

9 Conclusion
A revolution is taking place in the way of people, how to
access, learn, and interact with information looking boot-
ing process in regional language for the Linux based mo-
bile Operating System.

INDIAN JOURNAL OF APPLIED RESEARCH X 207

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

REFERENCE 1. Proposed Booting screen and Architecture in regional language for Linux based mobile devices, By Milan Bhatt, Prashant Dolia [International
Journal of Computer Applications, 2013] | 2. Linux Mobile (Architecture) Desktop Software By By Milan Bhatt, Prashant Dolia [Shabd-Brahm]

| 3. Memory Management for Many-Core Processors with Software Configurable Locality Policies, By Jin Zhou, Brian Demsky. [International Symposium on Memory
Management, 2012] | 4. Characterizing the Memory Management for Improving the Performance of Embedded system used in Wireless Sensor Networks, By
Vivek Deshpande, Vijay Wadhai, J B Helonde [IJCA Proceedings on International Conference in Computational Intelligence, 2012]. | 5. Learning to read between
the lines using Bayesian Logic Programs. Raghavan, S.; Mooney, R. J.; and Ku, H. ACL 2012. | 6. Proceedings of the 1st Workshop on South and Southeast Asian
Natural Language Processing (WSSANLP), pages 51–55, the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010. | 7. “Joint
Transmitter Power Control and Mobile Cache Management in Wireless Computing”, IEEE Transactions on Mobile Computing, Savvas Gitzenis, Member, IEEE, and
Nicholas Bambos, Member, IEEE, Vol. 7, No. 4, April 2008. | 8. "An unsupervised Hindi stemmer with heuristic improvements", Amaresh K. Pandey and Tanveer J.
Siddiqui, 2nd Workshop on Analytics for Noisy Unstructured Text Data, pp 99-105, 2008. | 9. Prasenjit Majumder, Madar Mitra, Swapan K. Parui, Gobinda Kole, Pabitra
Mitra and Kalyankumar Datta, "YASS: Yet another suffix stripper", ACM Transactions on Information Systems, Vol. 25, No. 4, pp 18-38, 2007. | 10. Semantic inference
at the lexical-syntactic level Bar-Haim, I. Dagan, I. Greental, and E. Shnarch. 22nd AAAI Conference on Artificial Intelligence, 2007. | 11. Unsupervised models for
morpheme segmentation and morphology learning. Association for Computing Machinery Transactions on Speech and Language Processing. Creutz, Mathis, and
Krista Lagus. 2007. | 12. "An algorithm for unsupervised learning of morphology", Natural Language Engineering, John Goldsmith, Vol. 12, No. 4, pp 353-371, 2006. |

