
INDIAN JOURNAL OF APPLIED RESEARCH X 759

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

OPTIMIZATIONOF DYNAMIC COLLABORATION
STRUCTURES IN OBJECT-ORIENTED

IT GOVERNANCE USING SWARM INTELLIGENCE

Dr.Carsten Mueller
Faculty of Informatics and Statistics, University of Economics

Keywords IT Governance, Class Responsibility Assignment, Ant Colony Optimization, Coupling
Cohesion

Statistics

ABSTRACT The main goal of Class Responsibility Assignment is to find the optimal assignment of responsibilities
(presented in terms of methods and attributes) to classes with regards to dynamic aspects of coupling

and cohesion. Ant Colony Optimization supported by an intelligent parameter recommender is successfully applied to
solve this optimization problem with the focus on object-oriented IT Governance architecture.

INTRODUCTION
Information Technology (IT) often entails large capital in-
vestments in organizations, while companies are faced with
multiple shareholders that are demanding the creation of
business value through these investments.IT Governance
(ITG) is the degree to which the authority for making IT
decisions is defined and shared among management, and
the processes managers in both IT and business organiza-
tions apply in setting IT priorities and the allocation of IT
resources (Luftman, 1996).ITG is deployed using a mixture
of various structures, processes and relational mechanisms.

The granularity of an object-oriented ITG architecture and
the used classes is important for its usability. If the classes
are too large, then cohesion is weak. Consequently, by re-
using them, too much functionality is obtained that is not
needed at all. On the other hand, if the classes are too
small then coupling will be strong and it takes too much
effort to assemble an ITG architecture system from them.

In this research paper a solution will be developed to find
the optimal assignment of responsibilities with regards to
various aspects of coupling and cohesion with the focus on
an object-oriented ITG architecture.

Figure 1: Object-oriented IT Governance
Assigning responsibilities to classes is a vital task in object-
oriented analysis and design, and it directly affects the
maintainability and reusability of software systems. The

development process of object-oriented software involves
several steps, in which each step has its own activities.
Class Responsibility Assignment (CRA) is one of the most
important and complex activities in the context of object-
oriented analysis and design (OOAD).Its main goal is to
find the optimal assignment of responsibilities (where re-
sponsibilities are presented in terms of methods and at-
tributes) to classes with regards to various aspects of cou-
pling and cohesion (Briand, Daly, &Wuest, 1998). It leads
to a better maintainable and reusable model (Briand, Daly,
&Wuest, 1998).

Several methods exist to recognize the responsibilities
of a system (Larman, 2004) and assign them to classes
(Bruegge&Dutoit, 2004). They depend on human judgment
and decision-making.

Generally, the CRA problem is divided into two major sub
problems: assigning responsibilities to classes and setting
relationships between these classes. Recently, researches
have proposed automated methods to solve these sub
problems(Bowman, Briand, &Labiche, 2010; Glavas&Fertalj,
2011;Simons, Parmee, &Gwynllyw, 2010).

RELATED WORKS
Applying search space exploration and optimization to
software engineering was proposed by Harman and Jones
(Harman & Jones, 2001). In recent years, there has been a
dramatic increase in work on Search-Based Software Engi-
neering (SBSE).

SBSE is an approach to software engineering, in which
search-based optimization algorithms are used to address
problems in Software Engineering (Harman, Mansouri, &
Zhang, 2009). The focus of most researches in this area is
on software testing (Harman, Mansouri, & Zhang, 2009).

In the following the most important studies in the field
of search-based software design are presented. Recently,
researches have used meta-heuristic optimization algo-
rithms to automate the object-oriented software design.
Bowman et al. (Bowman, Briand, &Labiche, 2010) and
Engelbrecht(Engelbrecht, 2007) used multi-objective ge-
netic algorithm (MOGA) to solve the CRA problem. Their
study used the coupling and cohesion metrics as fitness
function and the Strength Pareto Approach (SPEA2) as
MOGA algorithm (Zitzler, Laumanns, & Thiele, 2001). Bow-
man et al. (Bowman, Briand, &Labiche, 2010) also com-

760 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

pared MOGA to other search algorithms, such as Random
Search (RA), Hill Climbing (HC), and a simple Genetic Al-
gorithm (GA), and concluded that a more complex algo-
rithm is needed to solve the CRA problem. Glavas and
Fertalj(Glavas&Fertalj, 2011) used four different heuristic
and metaheuristic optimization algorithms, i.e., GA, HC,
Simulated Annealing (SA), and Particle Swarm Optimization
(PSO) to solve the CRA problem. They used Responsibili-
ties Dependency Graph (RDG) as input of optimization al-
gorithms and the coupling and cohesion metrics as their
fitness function.

APPROACH
Applying search space exploration and optimization to
software engineering was proposed by Harman and Jones
(Harman & Jones, 2001). In recent years, there has been a
dramatic increase in work on Search-Based Software Engi-
neering (SBSE).

A. Ant Colony Optimization
In this research a dynamic model based on Ant Colony
Optimization (ACO) is proposed to solve the CRA prob-
lem. The proposed model has four main phases. In the
first phase, the responsibilities (attributes and methods)
and their dependencies are collected. In the second
phase, features are normalized based on dependencies
between responsibilities. In the third phase, ACO tech-
niques are used to determine responsibilities. Finally, in
the fourth phase, the relationships among classes are set
and an optimized class diagram is generated.

ACO is a recently proposed metaheuristic approach for
solving hard combinatorial optimization problems (Dorigo,
Birattari, &Stutzle, 2006). The inspiring source of ACO is
the pheromone trail laying and following behavior of real
ants which use pheromones as a communication medium.
In analogy to the biological example, ACO is based on
the indirect communication of a colony of simple agents,
called (artificial) ants, mediated by (artificial) pheromone
trails.

The pheromone trails in ACO serve as distributed, numeri-
cal information which the ants use to probabilistically con-
struct solutions to the problem being solved and which the
ants adapt during the algorithm’s execution to reflect their
search experience.

Artificial ants used in ACO are stochastic solution construc-
tion procedures that probabilistically build a solution by it-
eratively adding solution components to partial solutions.
These procedures take into account (i) heuristic information
on the problem instance being solved, if available and (ii)
(artificial) pheromone trails which change dynamically at
runtime to reflect the agents’ acquired search experience
(Dorigo, Bonabeau, &Theraulaz, 2000).

A stochastic component in ACO allows the ants to build
a wide variety of different solutions and hence explore a
much larger number of solutions than greedy heuristics. At
the same time the use of heuristic information guides the
ants target-oriented towards the most promising solutions.

A colony of ants concurrently and asynchronously moves
through adjacent states of the problem by building paths
on the graph. They move by applying a stochastic local
decision policy that makes use of pheromone trails and
heuristic information.

By moving, ants incrementally build solutions to the op-

timization problem. Once an ant has built a solution, or
while the solution is being built, the ant evaluates the (par-
tial) solution and deposits pheromone trails on the compo-
nents or connections it used. This pheromone information
will affect the search of the future ants.

Besides ants’ activity, an ACO algorithm includes two more
procedures: pheromone trail evaporation and daemon ac-
tions (this last component being optional). Pheromone
evaporation is the process by means of which the phero-
mone trail intensity on the components decreases over
time. From a practical point of view, pheromone evapo-
ration is needed to avoid a too rapid convergence of the
algorithm towards a suboptimal region. It implements a
useful form of forgetting, favoring the exploration of new
areas of the search space. Daemon actions are used to im-
plement centralized actions which cannot be performed by
single ants.

Algorithm 1 Ant Colony Optimization

while termination conditions not met do

AntBasedSolutionConstruction()

PheromoneUpdate()

DaemonActions() {optional}

end while

In this research article artificial ants are regarded as proba-
bilistic constructive heuristics that assemble solutions as se-
quences of solution components. The finite set of solution
componentsis derived from CRA optimization problem.

Respective probabilities - also called transition probabilities
- are defined as follows [11]:

 (1)

where is an optional weighting function depending on the-
current sequence, assigns at each construction step a heu-
risticvalueto each feasible solution component.The values
that are given by the weighting function are calledthe heu-
ristic information.

The exponentsandare positiveparameter values that de-
termine the relation between pheromoneinformation and
heuristic information.

The behavior of ACO is significantly determined by the pa-
rameters and.

• α>β: choice of path is more influenced by the knowledge
of the ants,

• α=β: choice of path is equally influenced by both phero-
mone and heuristic,

• α=β: ants ignore their knowledge and choose the path
only regarding the heuristic.

The pheromone update rule consists of two parts.

First, a pheromone evaporation, which uniformly decreas-

INDIAN JOURNAL OF APPLIED RESEARCH X 761

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

es all the pheromone values, is performed. Second, one
or more solutions from the current and/or from earlier it-
erations are used to increase the values of pheromone trail
parameters on solution components that are part of these
solutions (Dorigo, Birattari, &Stutzle, 2006):

 (2)

Supdate denotes the set of solutions that are used for the up-
date. is the pheromone evaporation rate and is the objec-
tive function.

B. Architecture
The implementation of this approach follows the Object-
oriented Architectural Style and 3-Tier Architectural Style.

The responsibilities for the application are divided into
individual reusable and self-sufficient objects, each con-
taining the data and the behavior relevant to the object.
The system is viewed as a series of cooperating objects.
These objects are discrete, independent, loosely coupled
and they communicate through interfaces by calling meth-
ods and sending and receiving messages. In addition, the
implementation is characterized by the functional decom-
position into the layers presentation, logic and persistence.
HyperSQL Database (HSQLDB) is a relational database
system and used as repository for diagrams. HSQLDB runs
entirely in memory using dedicated fast memory structures
for the applied ACO.

Figure 2: Architecture
Objective of the parameter recommender is the intelligent
determination of best suitable values of the ACO param-
eters and concerning solution quality regarding the data
instance stored in the HSQLDB.

C. Cohesion
The cohesion for the class diagram is the arithmetic mean
cohesion of the classesin a diagram.

 (3)

where

 :number of classes in class diagram

 : number of methods for class

 : number of attributes for class

 : number of referenced attributes

by the methodfor class

D. Coupling
The coupling () between two classesandis the ratio ofthe
existing method relationships and the number of all pos-
siblerelations. Two classesandwith a one-way relation in
thecase of only class, using the method(s) of class, havethe
same rate of coupling, disregarding the order of the class-
es.Formally, the function that calculates the coupling be-
tween twoclasses and is commutative.

 (4)

For determining the coupling for a whole class diagram,
the arithmetic mean of the coupling between all possible
pairs of classes within the diagram is calculated.

 (5)

Since Formula 4 is commutative Formula 5is reduced

(6)

E. Objective and ACO algorithm
High cohesion and low coupling of classes are important
indicators for maintainable and future-oriented software ar-
chitecture. From the research perspective in IT Governance
and the view on software architecture it is not commonly
preferable to focus just on maximizing cohesion and mini-
mizing coupling.

Based on the current situation the software architect speci-
fies dynamically the values for coupling and cohesion. Two
variables and are used to represent the target cohesion
and target coupling.

The aim of ACO is to minimize the difference between the
actual coupling and the user-specified coupling, as well as
the difference between the actual cohesion and the user-
specified cohesion.

Based on Formulas 3 and 4 the Formula 7 is stated as

 (7)

The co-domains of both Formulas3 and 4are bound to the-
closed interval, just as and .

With the user-specified settingand(see Figure2) the special
case for minimization of coupling and maximization of co-
hesion as previously described is obtained.

The objective of the proposed ACO algorithm regarding
CRA is denoted as

min(dev(D)) (8)

Algorithm2Ant Colony Optimization for CRA
initialize empty class diagramwith an empty class
while assign. attributes and/or methods not empty do
for all existing classes indo

762 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

calculate prob. and store in roulette wheel
end for
add probabilities to a new class to roulette wheel
end while
roulette wheel selection and extend

calculate fitness of the diagram using Formula 7

update (pheromone) the edges in

To compute the certainty of an assignment the quality of the-
actual class diagramis compared to the fitness of the samedi-
agram with the addition already performed on it, named.

(9)

The probability is then computed as:

 (10)

whereis the pheromone on the edge between an elemen-
tand a class. The pheromone value is increased by the re-
sultof Formula7if the specific edge is used in the diagram.

Figure 3: Dynamic CRA - Graphical User Interface

PRACTICAL EXAMPLE
In this practical example three classes Strategy () Audit ()
and Change are given.is the-th attribute andis the-th meth-
od.Table I presentsthe structure of the classes regarding
attributes and methods.

TABLEI
STRUCTURE OF THE CLASSES

Figure 4: Method-Attribute Relationship
TABLEII
METHOD-ATTRIBUTE RELATIONSHIP

Figure 5: Method-Method Relationship

A. Cohesion
TABLEIII
COHESION:

Cohesion – Class:

INDIAN JOURNAL OF APPLIED RESEARCH X 763

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

CONCLUSIONS
In this research paper a flexible optimization architecture
for solving the CRA in the context of ITG Architecture was
successfully developed based on ACO. Additionally a pa-
rameter recommender is used to optimize the behavior
of ACO regarding different class diagrams stored in the
memory-based HSQLDB.

Future steps are developing a framework with additional
metrics and further research in parameter settings and
heuristic dependencies.

Updates are found on http://www.itg-research.net.

764 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 2 | Feb 2015 | ISSN - 2249-555XReseaRch PaPeR

REFERENCE Bowman, M., Briand, L., &Labiche, Y. (2010). Solving the class responsibility assignment problem in object-oriented analysis with multi-objective
Genetic Algorithms, IEEE Transactions on Software Engineering, 36(6), 817–837. | Briand, L., Daly, J., &Wuest, J. (1998). A unified framework

for cohesion measurement in object-oriented systems, Empirical Software Engineering, 3(1), 65–117. | Bruegge, B., &Dutoit, A. (2004). Object-Oriented Software
Engineering using UML, Patterns and Java. Prentice Hall. | Dorigo, M., Birattari, M., &Stutzle, T. (2006). Ant Colony Optimization, Computational Intelligence Magazine,
1, 28–39. | Dorigo, M., Bonabeau, E., &Theraulaz, G. (2000). Ant algorithms and stigmergy, Future Generation Computing Systems, 16(8), 851–871. | Engelbrecht, A.
(2007). Computational Intelligence: An Introduction. John Willey. | Glavas, G., &Fertalj, K. (2011). Metaheuristic approach to class responsibility assignment problem,
Information Technology Interfaces, 591-596. | Luftman, J. (1996). Competing in the Information Age. Oxford University Press. | Harman, M., & Jones, B. (2001).
Search-based software engineering, Information and Software Technology, 43(14), 833–839. | Harman, M., Mansouri, S., & Zhang, Y. (2009). Search based software
engineering: A comprehensive analysis and review of trends, techniques and applications, Technical Report 09-03, London. | Larman, C. (2004). Applying UML and
Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development. Prentice Hall. | Simons, C., Parmee, I., &Gwynllyw, R. (2010). Interactive,
evolutionary search in upstream object-oriented class design, IEEE Transactions on Software Engineering, 36(6), 798–816. | Zitzler, E., Laumanns, M., & Thiele, L.
(2001). SPEA2: Improving the strength pareto, Evolutionary Algorithm, 103, 95-100. |

