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ABSTRACT In this paper we discuss the graph power of paths, and some of their structural properties are derived. 
The acyclic chromatic number of Pn

m and is derived both analytically and using their adjacency matrices. 
Also a relation between them is established.

INTRODUCTION 
Throughout this paper we are concerned only with finite, 
undirected simple graphs. Terms not defined here are used 
in the sense of Harary [3]. 

The notion of Graph power was introduced by Skiena [7] 
in 1990. The kth power Gk of an undirected graph G is an-
other graph that has the same set of vertices, but in which 
two vertices are adjacent when their distance  in G is at 
most k [2]. Powers of graphs are referred to using termi-
nology similar to that for exponentiation of numbers: G2 
is called the square of G, G3 is called the cube of G, etc. 
Since a path of length two between vertices u and v ex-
ists for every vertex w such that {u,w} and {w,v} are edges 
in G, the square of the adjacency matrix  of G counts the 
number of such paths. Similarly, the (u,v)th element of the 
kth power of the adjacency matrix  of G gives the number 
of paths of length k between vertices u and v. It has been 
proved that adj(Gk )= , where adj(G) is the 
adjacency matrix.

Graph colouring on the square of a graph may be used to 
assign frequencies to the participants of wireless communi-
cation networks so that no two participants interfere with 
each other at any of their common neighbours, and to find 
graph drawings with high angular resolution. 

PRELIMINARIES
The following basic definitions are taken from [3]. Graph 
colouring is an assignment of labels traditionally called 
“colours” to elements of a graph subject to certain con-
straints. The most common types of colourings are vertex 
colouring, edge colouring and face colouring. The vertex 
colouring is proper, if no two adjacent vertices are as-
signed the same colour. A proper vertex colouring of a 
graph is acyclic if every cycle uses at least three colours 
[4]. The acyclic chromatic number of G, denoted by a(G), is 
the minimum colours required for its acyclic colouring. 

The diameter d of a graph is the maximum eccentricity of 
any vertex in the graph. That is, d it is the greatest dis-
tance between any pair of vertices. It has been proved 
that, if a graph has diameter d then its dth power is the 
complete graph [9].

1. ACYCLIC COLOURING OF mTH POWER OF AN n-
PATH Pn

The mth power of an n-path Pn is a graph Pn
m with the 

same vertex set as Pn in which two vertices are joined by 

an edge if their distance in Pn is atmost m.

1.1 Structural properties of mth power of the path Pn for 
any n
The number of vertices in Pn

m is p(Pn
m )=n  

The number of edges in Pn
m is q(Pn

m )=mn-m(m+1) , where 
m,n∈N and m<n-1.                                   2

The minimum degree in  Pn
m  is δ(Pn

m )=m,   n>1 and m<n.                 

The maximum degree in  Pn
m  is ∆(Pn

m )=n-1, ≤ m<n.

For m=2, Pm is planar for all n.               

1.2 Theorem
a(Pn

n-1))=n, for any n∈N.

Proof
The eccentricity ε(v) of the end vertices of Pn are n-1. That 
is the diameter,  d=n-1. So by the theorem 2.2, for d=n-1, 
Pn

(n-1) is isomorphic to Kn.  Hence the theorem.

1.3 Theorem
a(Pn

m )=m+1,    n≥m+1

Proof
Case: 1 when m=1

Then the theorem is trivially true

Case: 2 when m>1

If m=n-1

by the theorem 2.3, a(Pn
n-1)=n, for any n∈N, the result is 

true.

If m<n-1 

Let V={v1v2v3,…vn}  is the vertex set of the given graph Pn
m. 

Consider the colour class  C={c1,c2,c3,…,c(m+1)}. Since in Pn
m 

all the vertices with distance at most m in Pn are joined by 
an edge, we can find a complete sub graph Km+1  with ver-
tices v1v2v3,…,vm+1, which are assigned the colours by the 
colour class C. Now the remaining n-m-1 vertices starting 
from v(m+2),v(m+3),v(m+4),… are respectively assigned the col-
ours c_1,c_2,c_3,… cyclically. Now the colouring is minimum 
as it contains Km+1, minimum m+1 colours required for its 

n
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proper colouring. The colouring is acyclic, because for all 
i≠j the subgraph induced by the colour class <ci,cj> satis-
fies the relation ε=v-1, which is the necessary and sufficient 
condition for a tree. Hence the theorem.

Figure 1:  a(P7
3 )=4

 
2. ADJACENCY MATRIX OF 
For m<n, the adjacency matrix of Pn

m is an n×n matrix 
A=[aij], with aij=

2.1 Theorem

a(Pn
m )=min┬vdm (v)+1, n∈N, where dm (v) denote degree 

of vertex v in the mthpower of Pn.

Proof:
For m≤n-1, the graph Pn

m is obtained by joining each ver-
tex of Pn to nearby vertices which are at distance of at 
most m, so that the end vertices have degree m, which is 
the minimum degree. So by the theorem 1.3, a(Pn

m )=δ+1.  
Hence in the adjacency matrix of Pn

m, a(Pn
m )=minvd

m (v)+1, 
n∈N.

Example
The adjacency matrix of P12

5 is the 12×12 matrix A=[aij ],where 
aij={(1,for |i-j|∈(0,5] 0,else                                                  

Now using the theorem 6.1,  a(Pn
m )=minvd

m (v)+1

Therefore, we have a(P12
5 )=minvd

5 (v)+1=5+1=6.

2.2 Corollary

a(Pn
m )=(Number of integers in (0,m]) +1.

Example
In the previous example,  a(P12

5 )=(Number of integers 
in(0,5]) +1=5+1=6.

3. RELATION BETWEEN ACYCLIC CHROMATIC NUM-
BERS OF C_n^m AND P_n^m
3.1 Observations
a(Cn

m )=2 a(Pn
m )-2  when m=  and for even n≥3

a(Cn
m )=2 a(Pn

m )-1  when m<  and for all n≥3

CONCLUSIONS
In this paper, we propose some methods to determine 
the acyclic chromatic number of mth power of an n-path. 
We defined the acyclic chromatic number of this graphs 
in terms of adjacency matrices. This makes acyclic colour-
ing of such graphs easy since the adjacency matrices of 
different graphs is a widely studied area in graph theory. 
A relation between the acyclic chromatic number of  Cn

m 
and P  is also obtained.
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