RESEARCH PAPER	Mathematics	Volume : 5 Issue : 7 July 2015 ISSN - 2249-555X		
Stel OF Realize Real of Realize Real of Realize	Weighted Generalized Inverse of Partitioned Matrices in Pseudo Banachiewicz - schur form			
KEYWORDS	pseudo Banachiewicz- Schur form, weighted Moore-Penrose invers, weighted Drazin inverse, Pseudo-Schur complement.			
Dr. B.K.N. MUTHUGOBAL				
Assistant Professor in Mathematics, Bharathidasan University Constituent College, Nannilam, Tiruvarur, Tamil Nadu, India				
ABSTRACT In this paper the conditions under which the weighted generalized inverses A(1,3M), A(1,4N), and can be expressed in pseudo Banachiewicz - Schur form are considered and some interesting results are established. AMS classification: 15A09, 15A15, 15A57				

Introduction

Let $C^{n \times m}$ denote the set of all complexnxmmatrices. Indenotes the unit matrix of order *n*. By $A^* \in C^{m \times n}$ we denote the conjugate transpose matrix of $A \in C^{n \times m}$. Let us recall that the Moore-Penrose inverse of $A \in C^{n \times m}$ is the unique matrix $A^{\dagger} \in C^{m \times n}$ which satisfies $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}, \left(AA^{\dagger}\right)^{*} = AA^{\dagger},$ $\left(A^{\dagger}A\right)^{*} = A^{\dagger}A.$

The Drazin inverse of $A \in C^{n \times n}$ is the $A^D \in C^{n \times n}$ which matrix satisfies $A^{k+1}X = A^k$, XAX = X, AX = XA, for some nonnegative integer k. The least k is the of A, denoted by ind(A). index Generalizing the Moore-Penrose and the Drazin inverse, the weighted Moore-Penrose inverse and the weighted Drazin inverse are defined as follows:

In this paper we have extended the results of Banachiewicz-schur form of J.K.Baksalary and G.P.Styan[2] our work, PseduoBanachiewicz-schur form is an extension of the above mentioned paper.

Definition 1.1

Let $A \in C^{n \times m}$ and let $M \in C^{m \times n}$ and $N \in C^{m \times m}$ be positive definite. The unique matrix $X \in C^{m \times n}$ which satisfies $AXA = A, XAX = X, (MAX)^* =$ MAX, (NXA) *= NXA(1)

is called the weighted Moore-Penrose inverse of A and it is denoted by $A_{M,N}^{\dagger}$.

Definition 1.2

If $A \in C^{n \times m}$ and $W \in C^{m \times n}$ are complex matrices, then the unique solution $X \in C^{n \times m}$ of the equations $(AW)^{k+1}XW = (AW)^k$, XWAWX = X, AWX = XWA (2) where k = ind(AW), is called the W-weighted Drazin inverse of A and it is denoted by $A^{d,w}$.

Obviously for $M = I_n$ and $N = I_m$ the weighted Moore-Penrose inverse of A is the

Moore-Penrose inverse of A. If m = n and $W = I_n$, thenmatrix X which satisfies (2) is the Drazin inverse of A. It is well-knownthat

$$A_{M,N}^{\dagger} = N^{-1/2} \left(M^{1/2} A N^{-1/2} \right)^{\dagger} M^{1/2} \text{ and } A^{d,w} =$$

 $[(AW)^D]^2A$. Some interesting properties of weighted Moore-Penrose and the weighted Drazininverse, among other papers, are investigated in [9], [13].

For $BKN \in C^{n \times m}$, the set of inner, outer, least-squares weighted generalized and minimum-norm weighted generalized inverses, respectively are given by:

$$BKN\{1\} = \{X \in C^{m \times n} : [BKN]X [BKN] = [BKN]\},\$$

$$BKN\{2\} = \{X \in C^{m \times n} : X[BKN]X = X\},\$$

$$BKN\{1,3(M)\} = \{X \in C^{m \times n} : [BKN]X [BKN] = [BKN], (M[BKN]X)^* = M[BKN]X\},\$$

$$BKN\{1,4(N)\} = \{X \in C^{m \times n} : [BKN]X [BKN] = [BKN], (NX[BKN])^* = NX[BKN]\},\$$

where $M \in C^{n \times n}$ and $N \in C^{m \times m}$ are positive definite matrices.

In this paper we consider matrix $BKN \in C^{(m+p)\times(n+q)}$ partitioned as $K = \begin{bmatrix} N_{11} & N_{12} & N_{13} \\ N_{21} & N_{22} & N_{23} \\ N_{31} & N_{32} & N_{33} \end{bmatrix} B$ $= \begin{bmatrix} [K/N_{11}] & [K/N_{12}] & [K/N_{13}] \\ [K/N_{21}] & [K/N_{22}] & [K/N_{23}] \\ [K/N_{31}] & [K/N_{32}] & [K/N_{33}] \end{bmatrix}$ $M = \begin{bmatrix} B / [K / N_{11}] \\ B / [K / N_{21}] \end{bmatrix} \begin{bmatrix} B / [K / N_{12}] \\ B / [K / N_{21}] \end{bmatrix} \begin{bmatrix} B / [K / N_{22}] \\ B / [K / N_{23}] \end{bmatrix} \begin{bmatrix} B / [K / N_{23}] \\ B / [K / N_{31}] \end{bmatrix} \begin{bmatrix} B / [K / N_{32}] \\ B / [K / N_{33}] \end{bmatrix}$

$$BKN_{11} = \begin{bmatrix} B / [K / N_{11}] \end{bmatrix},$$

$$BKN_{12} = \begin{bmatrix} B / [K / N_{12}] \end{bmatrix} \begin{bmatrix} B / [K / N_{13}] \end{bmatrix} \end{bmatrix}$$

$$BKN_{21} = \begin{bmatrix} B / [K / N_{21}] \end{bmatrix}$$

$$\begin{bmatrix} B / [K / N_{31}] \end{bmatrix},$$

$$BKN_{22} = \begin{bmatrix} B / [K / N_{22}]] & [B / [K / N_{23}]] \\ [B / [K / N_{32}]] & [B / [K / N_{33}]] \end{bmatrix}$$
$$BKN = \begin{bmatrix} BKN_{11} & BKN_{12} \\ BKN_{21} & BKN_{22} \end{bmatrix}$$

Where $BKN_{11} \in C_{n \times n}$ and $BKN_{12} \in C_{n \times m}$, $BKN_{21} \in C_{m \times n}$, $BKN_{22} \in C_{m \times m}$ we use the following definition of the generalized

pseudo- schur complement.

Definition 1.3

For a matrix $BKN \in C^{(m+p)\times(n+q)}$ given by (3)the generalized pseudo- Schur complement of BKN in symbol $[BBKN / KN_{11}]$, is defined by

 $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix} = BKN_{22} - BKN_{21} \begin{bmatrix} BKN_{11} \end{bmatrix}^{\beta} BK$ BKN_{12}

$$\begin{bmatrix} BKN / BKN_{11} \end{bmatrix} = \begin{bmatrix} B / K / N_{22} \\ B / K / N_{32} \end{bmatrix} \begin{bmatrix} B / K / N_{23} \\ B / K / N_{33} \end{bmatrix} - \begin{bmatrix} B / K / N_{21} \\ B / K / N_{31} \end{bmatrix} \begin{bmatrix} B / K / N_{11} \end{bmatrix}^{\beta} \begin{bmatrix} B / K / N_{12} \\ B / K / N_{12} \end{bmatrix} \begin{bmatrix} B / K / N_{12} \end{bmatrix} \begin{bmatrix} B / K / N_{13} \end{bmatrix}$$
(4)

Where $\left[BKN_{11}\right]^{\beta} \in BKN_{11}\left\{1\right\}$.

The case BKN_{11}^{-1} instead of $[BKN_{11}]^{\beta}$, under assumption that $[BKN_{11}]^{\beta}$ is invertible, was first used by Schur[14]. The idea of Schur complements goes back to Sylvester (1851) and the term Schur complements was introduced by *E*. Haynsworth[10]. Carlson et al. [4] defined the generalized Schur complement by replacing the ordinary inverse with the Moore-Penrose inverse.

The Schur complement and the generalized Schurcomplement were

studied by a number of authors, including their applications in statistics, matrix theory, electrical network theory, discretetime regulator problem, sophisticated techniques and some other fields. For interesting results concerning Schur complements see also [1], [5], [6], [7], [8], [12].

Banachiewicz[3] expressed the inverse of a partitioned matrix in terms of Schur complement. When the partitioned matrix A, given by (3), is nonsingular and A_{11} is also nonsingular, then $[BKN / BKN_{11}]$ is nonsingular and

$$\begin{bmatrix} BKN \end{bmatrix}^{-1} = \begin{bmatrix} BKN^{-1}_{11} + BKN^{-1}_{11}BKN_{12} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{-1} BKN_{21}BKN^{-1}_{11} & -BKN^{-1}_{11}BKN_{12} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{-1} \\ -\begin{bmatrix} BKN / BKN \end{bmatrix}^{-1} BKN_{21}BKN^{-1}_{11} & \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{-1} \end{bmatrix}$$

where we use of $[BKN / BKN_{11}]$.

The motivations for our research are the following:

(1) The paper of Baksalary andStyan[2] in which they extended the result

of Marsaglia and Styan[11], considering the necessary and sufficient conditions such that the outer inverses, least-squares generalized inverses and minimum norm **RESEARCH PAPER**

generalized inverses can be represented by the Banachiewicz-Schur form;

(2) The paper of Y.Wei**[15]** in which he found the sufficient conditions for the Drazin inverse to be represented by the Banachiewicz-Schur form.

Our purpose is to generalized these results for the weighted Moore-Penrose inverse and the weighted Drazin inverse of *BKN*.

Volume : 5 | Issue : 7 | July 2015 | ISSN - 2249-555X

1. Results

$$X = \begin{bmatrix} BKN^{\beta}_{11} + BKN^{\beta}_{11}BKN_{12} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} BKN_{21}BKN^{\beta}_{11} & -BKN^{\beta}_{11}BKN_{12} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \\ - \begin{bmatrix} BKN / BKN \end{bmatrix}^{\beta} BKN_{21}BKN^{\beta}_{11} & \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \end{bmatrix}$$
(5)

 $BKN_{11}^{\beta} \in BKN_{11}\{1\}$ and the positive definite matrices $M \in C_{n \times n}$ and $N \in C_{n \times n}$ are given by

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}, \ N = \begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix}$$
(6)

Where $M_{11} \in C_{n \times n}$, $M_{22} \in C_{p \times p}$, $N_{11} \in C_{m \times m}$, $N_{22} \in C_{q \times q}$.

We begin with the following result of Baksalary and Styn[2], adopting the following notations from [2].

$$\begin{split} E_{BKN_{11}} &= I - BKN^{\beta}_{11}BKN_{11}, \\ F_{BKN_{11}} &= I - BKN_{11}BKN^{\beta}_{11}, \\ E_{[BKN/BKN_{11}]} &= I - [BKN/BKN]^{\beta} [BKN/BKN] \\ F_{[BKN/BKN_{11}]} &= I - [BKN/BKN] [BKN/BKN]^{\beta} \\ \text{where } [BKN/BKN_{11}] \text{ is the pseudo } - \\ \text{schur complement of } BKN_{11} \text{ which is } \\ \text{defined in (4) and } [BKN/BKN]^{\beta} \in C_{m \times m}. \end{split}$$

Theorem 2.1

Let BKN and X are given by (3) and (5). Then $X \in A$ (1) if and only if $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \in BKN \{1\}$ and $F_{BKN_{11}}BKN_{12}E_{BKN/BKN_{11}} = 0$, $F_{BKN_{11}}BKN_{21}E_{BKN_{11}} = 0$, $F_{BKN_{11}}BKN_{12} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta}$ (7)

$$\frac{BKN_{11}BKN_{12}[BKN / BKN_{11}]}{BKN_{12}E_{BKN_{11}}} = 0$$
(7)

The last three conditions being independent of the choice of $BKN^{\beta}_{11} \in BKN_{11}\{1\}$ and

 $[BKN / BKN_{11}]^{\beta} \in BKN \{1\}$ involved in

$$E_{BKN_{11}}, F_{BKN_{11}}, E_{[BKN/BKN_{11}]}, F_{[BKN/BKN_{11}]}$$

The following theorem give the necessary and sufficient conditions such that $X \in BKN\{1,3(M)\}$ under some conditions.

Theorem 2.2

If M is a positive definite matrix given by (6), such that

$$\begin{bmatrix} M_{12} [BKN / BKN_{11}] [BKN / BKN_{11}]^{\beta} \end{bmatrix}$$

= $M_{12}^{*} [BKN_{11}] [BKN_{11}]^{\beta} + M_{12}^{*} F_{BKN_{11}} BKN_{12} [BKN / BKN_{11}]^{\beta} [BKN_{21}] [BKN_{11}]^{\beta}$
[$BKN / BKN_{11}]^{\beta} M_{22} F_{[BKN / BKN_{11}]} = E_{[BKN / BKN_{11}]} M_{22} [BKN / BKN_{11}]^{\beta}$ (8)

× **م**

That
$$X \in BKN\{1,3(M)\}$$
 if and

only if $BKN_{11}^{\beta} \in BKN_{11}\{1, 3(M_{11})\},\$

 $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \in \begin{bmatrix} BKN / BKN_{11} \end{bmatrix} \{1, 3(M_{22})\}$ and

$$F_{BKN_{11}}BKN_{12} = 0, F_{[BKN/BKN_{11}]}BKN_{21} = 0 (9)$$

The last two conditions are independent of the choice of $BKN_{11}^{\beta} \in BKN_{11}\{1\}$ and $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \in \begin{bmatrix} BKN / BKN_{11} \end{bmatrix} \{1\}$ involved in $F_{BKN_{11}}$ and $F_{\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}}$.

Proof

Suppose that

$$BKN_{11}^{\beta} \in BKN_{11}\{1, 3(M_{11})\},\$$

 $[BKN / BKN_{11}]^{\beta} \in [BKN / BKN_{11}]\{1, 3(M_{22})\}$ and the conditions (9) are satisfied. Then the conditions from the **Theorem 2.1** are satisfied and *X* is an inner inverse of *BKN*. Also, we have that

$$\begin{pmatrix} M (BKN) X \end{pmatrix}_{11} = M_{11} (BKN_{11}) (BKN_{11})^{\beta} - M_{11} F_{BKN_{11}} BKN_{12} [BKN / BKN_{11}]^{\beta} BKN_{21} BKN_{11}^{\beta} + M_{12} F_{[BKN / BKN_{11}]} BKN_{21} BKN_{12} [BKN / BKN_{11}]^{\beta} = M_{11} BKN_{11} BKN_{11}^{\beta} , \begin{pmatrix} M (BKN) X \end{pmatrix}_{12} = M_{11} F_{BKN_{11}} BKN_{12} [BKN / BKN_{11}]^{\beta} + M_{12} [BKN / BKN_{11}] [BKN / BKN_{11}]^{\beta} = M_{12} [BKN / BKN_{11}] [BKN / BKN_{11}]^{\beta} \begin{pmatrix} M (BKN) X \end{pmatrix}_{12} = M_{12}^{*} BKN_{11} BKN_{11}^{\beta} - M_{12}^{*} F_{BKN_{11}} BKN_{12} [BKN / BKN_{11}]^{\beta} BKN_{21} BKN_{11}^{\beta} + M_{22} F_{[BKN / BKN_{11}]} BKN_{21} BKN_{12} [BKN / BKN_{11}]^{\beta} BKN_{21} BKN_{11}^{\beta} = M_{12}^{*} BKN_{11} BKN_{11}^{\beta} = M_{12}^{*} BKN_{11} BKN_{11}^{\beta} = M_{12}^{*} BKN_{11} BKN_{11}^{\beta} = M_{12}^{*} BKN_{11} BKN_{11}^{\beta} (M (BKN) X)_{22} = M_{12}^{*} F_{BKN_{11}} BKN_{12} [BKN / BKN_{11}]^{\beta} + M_{22} [BKN / BKN_{11}] [BKN / BKN_{11}]^{\beta} = M_{22} [BKN / BKN_{11}] [BKN / BKN_{11}]^{\beta}$$

Obviously,

$$\begin{pmatrix} M (BKN) X \end{pmatrix}_{11} = \begin{pmatrix} M (BKN) X \end{pmatrix}_{11}^{*}, \\ \begin{pmatrix} M (BKN) X \end{pmatrix}_{12} = \begin{pmatrix} M (BKN) X \end{pmatrix}_{12}^{*} \text{ and } \\ \begin{pmatrix} M (BKN) X \end{pmatrix}_{12} = \begin{pmatrix} M (BKN) X \end{pmatrix}_{12}^{*} \text{ and } \\ \end{pmatrix}^{*}$$

344 ↔ INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 7 | July 2015 | ISSN - 2249-555X

We have the

 $X \in BKN\{1,3(M)\}$ then the conditions satisfied (7)are and $(M(BKN)X) = (M(BKN)X)^*$.

the

other

hand,

let

 $(M(BKN)X)_{21} = (M(BKN)X)_{21}^*$, so we obtain that

$$M_{11}F_{BKN_{11}}BKN_{12}[BKN / BKN_{11}]^{\beta} = [M_{22}F_{[BKN/BKN_{11}]}BKN_{21}BKN_{11}]^{*} \text{ and}$$

$$(M_{11}F_{BKN_{11}}BKN_{12}[BKN / BKN_{11}]^{\beta})(M_{11}F_{BKN_{11}}BKN_{12}[BKN / BKN_{11}]^{\beta})^{*}$$

$$= M_{11}F_{BKN_{11}}BKN_{12}[BKN / BKN_{11}]^{\beta}$$

$$M_{22}F_{[BKN/BKN_{11}]}BKN_{21}BKN_{11}^{\beta} = M_{11}F_{BKN_{11}}BKN_{12}E_{[BKN/BKN_{11}]}M_{22}[BKN / BKN_{11}]^{\beta}$$

$$F_{[BKN/BKN_{11}]}BKN_{21}BKN_{11}^{\beta} = 0$$

Hence,

$$M_{11}F_{BKN_{11}}BKN_{12} [BKN / BKN_{11}]^{\beta} = 0,$$

i.e, $M_{11}F_{BKN_{11}}BKN_{12} = 0$ and $M_{22}F_{[BKN/BKN_{11}]}BKN_{21}BKN_{11}^{\beta} = 0,$
i.e, $M_{22}F_{[BKN/BKN_{11}]}BKN_{21} = 0.$

Using the fact that M is invertible, we have that M_{11} and M_{22} are also invertible, so we obtain the conditions (9).

By the

$$\left(M\left(BKN\right)X\right)_{11} = \left(M\left(BKN\right)X\right)_{11}^{*}$$

and

$$\left(M\left(BKN\right)X\right)_{22} = \left(M\left(BKN\right)X\right)_{22}^{*}$$
 it

follows that

$$BKN_{11}^{\beta} \in BKN_{11} \{1, 3(M_{11})\} \text{ and}$$
$$[BKN / BKN_{11}]^{\beta} \in \{1, 3(M_{22})\}$$

The independence of the conditions

(9) of the choice of $BKN_{11}^{\beta} \in BKN_{11}\{1\}$

in $F_{BKN_{11}}$ and

 $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \in \begin{bmatrix} BKN / BKN_{11} \end{bmatrix} \{1\}$ in $F_{[BKN/BKN_{11}]}$ follows by the same arguments as in the proof of Theorem 2.1 **Corollary 2.1**

If M is a positive definite matrix given by (6), such that $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} M_{22} F_{[BKN/BKN]}$ $=E_{[BKN/BKN_{11}]}M_{22}[BKN/BKN_{11}]^{\beta}$ $M_{12}^* F_{BKN_1} BKN_{12} = 0$, $M_{12} \big[\textit{BKN} / \textit{BKN}_{11} \big] \big[\textit{BKN} / \textit{BKN}_{11} \big]^{\beta}$ $= \left[M_{12}^* BKN_{11} BKN_{11}^{\beta} \right]^*,$ (10) Then $X \in BKN\{1,3(M)\}$ if and if $BKN_{11}^{\beta} \in BKN_{11} \{1, 3(M_{11})\},\$ only $[BKN / BKN_{11}]^{\beta} \in S\{1, 3(M_{22})\}$ and $F_{BKN_{11}}BKN_{12}=0,$

 $F_{[BKN/BKN_{11}]}BKN_{21} = 0$ (11)

The last conditions two are independent of choice the of $BKN_{11}^{\beta} \in BKN_{11}\{1\}$ and $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \in BKN\{1\}$ involved in $F_{BKN_{11}}$ and $F_{[BKN/BKN_{11}]}$ notice that for $M=I_{m+p}$, the conditions (8) are satisfied , so we obtain the Theorem 3 in [2] as a special case for $M = I_{m+p}$.

Volume : 5 | Issue : 7 | July 2015 | ISSN - 2249-555X If $BKN_{11}^{\beta} \in BKN_{11} \{1, 3(M_{11})\},$ $[BKN / BKN_{11}]^{\beta} \in [BKN / BKN_{11}] \{1, 3(M_{22})\}$ and $F_{BKN_{11}}BKN_{12} = 0, F_{[BKN / BKN_{11}]}BKN_{21} = 0, (12)$ $M_{12} [BKN / BKN_{11}] [BKN / BKN_{11}]^{\beta}$ $= [M_{12}^{*}BKN_{11}BKN_{11}^{\beta}]^{*}$ then $X \in BKN \{1, 3(M)\}.$

The following theorem given the necessary and sufficient conditions for $X \in BKN\{1, 4(N)\}$.

(6)

If N is a positive definite matrix

such

that

Theorem 2.3

bv

Corollary 2.2

$$\begin{bmatrix} N_{12} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\ast} \\ = N_{12}^{\ast} BKN_{11}^{\beta} BKN_{11} + N_{12}^{\ast} BKN_{11}^{\beta} BKN_{12} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} BKN_{21} E_{BKN_{11}}, \\ \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} M_{22} F_{[BKN/BKN_{11}]} = E_{[BKN/BKN_{11}]} M_{22} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta}$$
(13)

given

Then $X \in A\{1, 4(N)\}$ if and only if

 $BKN_{11}^{\beta} \in BKN_{11}\{1, 4(N_{11})\},\$

 $[BKN / BKN_{11}]^{\beta} \in [BKN / BKN_{11}]\{1, 4(N_{22})\}$ and

 $BKN_{12}E_{[BKN/BKN_{11}]} = 0, BKN_{21}E_{BKN_{11}} = 0$ (14)

Proof

The proof is analogous to the proof

of Theorem 2.2

Corollary 2.3

If N is nonnegative matrix given by

(6), such that

$$\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} N_{22} F_{[BKN/BKN_{11}]} \\ = E_{[BKN/BKN_{11}]} N_{22} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta}, \\ N_{12}^{*} BKN_{11}^{\beta} BKN_{12} = 0, \\ N_{12} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix} \\ = \begin{bmatrix} N_{12}^{*} BKN_{11}^{\beta} BKN_{11} \end{bmatrix}^{\beta}$$
(15)

Then
$$X \in BKN\{1, 4(BKN)\}$$
 if

and only if $BKN_{11}^{\beta} \in BKN_{11}\{1, 3(N_{11})\}$,

 $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \in \begin{bmatrix} BKN / BKN_{11} \end{bmatrix} \{1, 4(N_{22}) \}$ and

$$BKN_{12}E_{[BKN/BKN_{11}]} = 0, BKN_{21}E_{BKN_{11}} = 0$$
(16)

Also, Theorem 4 in [2] is obtained

as a special case for $N=I_{n+q}$.

Volume : 5 | Issue : 7 | July 2015 | ISSN - 2249-555X

Corollary 2.4

If
$$BKN_{11}^{\beta} \in BKN_{11} \{1, 3(N_{11})\}$$
,
 $[BKN / BKN_{11}]^{\beta} \in [BKN / BKN_{11}] \{1, 4(N_{22})\}$
and $A_{12}E_{[BKN / BKN_{11}]} = 0$,
 $BKN_{21}E_{BKN_{11}} = 0$,
 $N_{12}[BKN / BKN_{11}]^{\beta} [BKN / BKN_{11}]$
 $= [N_{12}^{*}BKN_{11}^{\beta}BKN_{11}]^{*}$,
then $X \in BKN \{1, 3(M)\}$

It is easy to se that **Theorem 2.2** and **Theorem 2.3** are satisfied if we suppose that M_{11} , M_{22} , N_{11} and N_{22} are invertible, instead of the fact that Mand N are invertible matrices.

Using the results four **Theorem 2.2, Theorem 2.3** and **Theorem 2** in [2] we obtain the necessary and sufficient conditions such that the weighted Moore-Penrose inverse of BKN, $BKN^{\beta}_{M,N}$ was the PseduoBanachiewicz-Schurform where M and N are matrices which satisfy the conditions (8) and (13).

Theorem 2.4

Let *M* and *N* be the matrices which satisfy the conditions (8) and (13). Then $X = BKN_{M,N}^{\beta}$ if and only if $BKN_{11}^{\beta} = (BKN_{11})_{M_{11}N_{11}}^{\dagger}$, $[BKN / BKN_{11}]^{\beta} = [BKN / BKN_{11}]_{M_{22}N_{22}}^{\dagger}$ and

$$F_{BKN_{11}}BKN_{12} = 0,$$

$$F_{[BKN/BKN_{11}]}BKN_{21} = 0,$$

$$BKN_{12}E_{[BKN/BKN_{11}]} = 0,$$

$$BKN_{21}E_{BKN_{11}} = 0$$
(17)

if $M = I_{m+p}$ and $N = I_{n+q}$, then the conditions (8) and (13) are obviously satisfied, so from **Theorem 2.4** we obtain the necessary and sufficient conditions $X = BKN^{\dagger}$ also with less restrictive conditions for the matrices *M* and *N* we obtain the sufficient conditions for $X = BKN_{MN}^{\dagger}$.

Corollary 2.5

If
$$BKN_{11}^{\beta} = BKN_{M_{11}N_{11}}^{\dagger}$$
,
 $\begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} = \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}_{M_{22},N_{22}}^{\dagger}$
and $F_{BKN_{11}}BKN_{12} = 0$,
 $F_{[BKN/BKN_{11}]}BKN_{21} = 0$,
 $BKN_{21}E_{[BKN/BKN_{11}]} = 0$,
 $BKN_{21}E_{BKN_{11}} = 0$,
 $M_{12}[BKN / BKN_{11}][BKN / BKN_{11}]^{\beta}$
 $= \begin{bmatrix} M_{12}^{*}BKN_{11}BKN_{11}^{1} \end{bmatrix}^{*}$,
 $N_{12}[BKN / BKN_{11}]^{\beta}[BKN / BKN_{11}]$
 $= \begin{bmatrix} N_{12}^{*}BKN_{11}BKN_{11} \end{bmatrix}^{*}$
then $X = BKN_{m,n}^{\dagger}$.

It is interesting to notice that if we denote by

 $Z = \begin{bmatrix} I & 0 \\ BKN_{21}BKN_{11}^1 & I \end{bmatrix}$ $\begin{bmatrix} BKN_{11} & 0 \\ 0 & \begin{bmatrix} BKN / BKN_{11} \end{bmatrix} \begin{bmatrix} I & BKN_{11}^{1}BKN_{12} \\ 0 & I \end{bmatrix},$ Where $BKN_{11}^1 \in BKN_{11} \{1\}$, then

$$X = \begin{pmatrix} I & -BKN_{11}^{\beta}BKN_{12} \\ 0 & I \end{pmatrix} \begin{pmatrix} BKN_{11}^{\beta} & 0 \\ 0 & (BKN / BKN_{11})^{\dagger} \end{pmatrix}$$

Then it is easy to see that $X \in \mathbb{Z}\{1\}$. Moreover if the conditions $F_{BKN_{12}}BKN_{12} = 0$ and $BKN_{21}E_{BKN_{11}} = 0$ hold, we can obtain that BKN = Z and therefore $X \in BKN\{1,2\}$ if and only if $BKN_{11}^1 \in BKN\{1, 2\}$ and

 $[BKN / BKN_{11}]^{\beta} \in [BKN / BKN_{11}] \{1, 2\}.$ In the rest of the paper we consider

the sufficient conditions such that the Wweighted drazin inverse can be represented in the pseudoBanachewieczschur form.

Recall the for an arbitrarg matrix $W \in C_{(n+q)\times(m+p)}$ there exist non singular matrix $P \in_{(n+q)\times(n+q)}$ and $Q \in C_{(m+q)\times(m+q)}$ such that

 $W = PW^{1}Q^{-1} = P \begin{vmatrix} W_{1} & 0 \\ 0 & W_{2} \end{vmatrix} Q^{-1},$ where $W_1 \in C_{n \times m}, W_2 \in \mathcal{U}_{a \times n}$.

Volume : 5 | Issue : 7 | July 2015 | ISSN - 2249-555X

$$BKN = \begin{bmatrix} BKN_{11} & BKN_{12} \\ BKN_{21} & BKN_{22} \end{bmatrix}$$
$$= \begin{pmatrix} 0 & F_{BKN_{11}}BKN \\ BKN_{21}E_{BKN_{11}} & 0 \end{pmatrix} + Z'$$

and if the expression (5) of X is rewritten following matrices products as

Hence, if $BKN = OBKN^{1}P^{-1}$ and $X = QX^{1}P^{-1}$, then X is the W-Weighted Drazin inverse of BKN^{β} with this reason will naturally that we assume $W \in C_{(n+q)\times(m+p)}$ has the following form

$$W = \begin{bmatrix} W_1 & 0\\ 0 & W_2 \end{bmatrix},$$
$$W_1 \in C_{m \times m}, \ W_2 \in C_{q \times q}$$
(18)

In the next result concerning Wweighted Drazin inverse further more, we will consider matrix $BKN \in C_{(m+p)\times(n+q)}$ given by (3) modified Pseudo schur complement given by

$$\begin{bmatrix} BKN / BKN_{11} \end{bmatrix} = BKN_{22} - BKN_{21}W_{1}BKN_{11}^{\beta}W_{1}BKN_{12}$$
(19)

And modified

$$X = \begin{bmatrix} BKN_{11}^{\beta} + BKN_{11}^{\beta}W_{1}BKN_{12}W_{2} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} W_{2}BKN_{21}W_{1}BKN_{11}^{\beta} & -BKN_{11}^{\beta}W_{1}BKN_{12}W_{2} \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \\ - \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} W_{2}BKN_{21}W_{1}BKN_{11}^{\beta} & \begin{bmatrix} BKN / BKN_{11} \end{bmatrix}^{\beta} \end{bmatrix}$$
(20)

Where $BKN_{11}^{\beta} = BKN_{...}^{d,w}$, $[BKN / BKN_{11}]^{\beta} = [BKN / BKN_{11}]^{d, w_2}.$

Theorem 2.5

Let BKN, X, W, S be given by (3),

(20), (18), (19) respectively if

$$BKN_{12}W_{2} = BKN_{11}W_{1}BKN_{11}^{\beta}W_{1}BKN_{12}W_{2}$$

= $BKN_{2}W_{2} [BKN / BKN_{11}]W_{2} [BKN / BKN_{11}]^{\beta}W_{2}$ (21)
 $BKN_{21}W_{1} = BKN_{21}W_{1}BKN_{11}W_{1}BKN_{11}^{\beta}W_{1}$

$$= [BKN / BKN_{11}] W_2 [BKN / BKN_{11}]^{\beta} W_2 BKN_{21} W_1$$
(22)

$$W_1 BKN_{12} = W_1 BKN_{12} W_2 [BKN / BKN_{11}]^{\beta} W_2 [BKN / BKN_{11}],$$
(23)

$$W_1 BKN_{21} = W_1 BKN_{21} W_1 BKN_{11}^{\beta} W_1 BKN_{11}$$
(24)

$$BKN_{22}W_2 = A_{22}W_2 [BKN / BKN_{11}]W_2 [BKN / BKN_{11}]^{\beta} W_2$$
(25)

Then $X = BKN^{d,w}$

Proof

By a straight forward computation, we obtain that

$$(BKNWX)_{11} = BKN_{11}W_1BKN_{11}^{\beta} - (BKN_{12}W_2 - BKN_{11}W_1BKN_{11}^{\beta}W_1BKN_{12}W_2)$$
$$[BKN / BKN_{11}]^{\beta} W_2BKN_{21}W_1BKN_{11}^{\beta}$$

 $= BKN_{11}W_1BKN_{11}^{\beta}$, using the first part of (21),

$$(BKNWX)_{12} = (BKN_{12}W_2 - BKN_{11}W_{11}BKN_{11}^{\beta}W_1BKN_{12}W_2)(BKN / BKN_{11})^{\beta}$$

= 0 by the first the part of (21),

 $(BKNWX)_{21} = BKN_{21}W_{1}BKN_{11}^{\beta} - (BKN_{22} - BKN_{21}W_{1}BKN_{11}^{\beta}W_{1}BKN_{12})$ $W_{2} [BKN / BKN_{11}]^{\beta} W_{2}BKN_{21}W_{1}BKN_{11}^{\beta}$

$$= BKN_{21}W_{1}BKN_{11}^{\beta} - [BKN / BKN_{11}]W_{2}[BKN / BKN_{11}]^{\beta}W_{2}BKN_{21}W_{1}BKN_{11}^{\beta}$$

= 0 by the second part of (22),

$$(BKNWX)_{22} = (BKN_{22} - BKN_{21}W_{1}BKN_{11}^{\beta}W_{1}BKN_{12})W_{2}[BKN / BKN_{11}]^{\beta}$$
$$= [BKN / BKN_{11}]W_{2}[BKN / BKN_{11}]^{\beta}$$

Similarly,

 $(XWBKN)_{11}$

 $= BKN_{11}^{\beta}W_{1}BKN_{11} - BKN_{11}^{\beta}W_{1}BKN_{12}W_{2} [BKN / BKN_{11}]^{\beta} (W_{2}BKN_{21} - W_{2}BKN_{21}W_{1}BKN_{11}^{\beta}W_{1}BKN_{11})$ = $BKN_{11}^{\beta}W_{1}BKN_{11}$ using(24),

$(XWBKN)_{12}$

 $= BKN_{1}^{\beta}W_{1}BKN_{12} - BKN_{11}^{\beta}W_{1}BKN_{12}W_{2} [BKN / BKN_{11}]^{\beta} W_{2} (BKN_{22} - BKN_{21}W_{1}BKN_{11}^{\beta}W_{1}BKN_{12})$ = 0, using (23) $(XWBKN)_{21} = [BKN / BKN_{11}]^{\beta} (W_{2}BKN_{21} - W_{2}BKN_{21}W_{1}BKN_{11}^{\beta}W_{1}BKN_{11})$ = 0, using (24), $(XWBKN)_{22} = [BKN / BKN_{11}]^{\beta} W_{2} (BKN_{22} - BKN_{21}W_{1}BKN_{11}^{\beta}W_{1}BKN_{12})$ $= [BKN / BKN_{11}]W_{2} [BKN / BKN_{11}]^{\beta}$ Now, $BKNWX = \begin{bmatrix} BKN_{11}W_{11}BKN_{11}^{\beta} & 0 \\ 0 & [BKN / BKN_{11}]W_{2} [BKN / BKN_{11}]^{\beta} \end{bmatrix}$ And $XWBKN = \begin{bmatrix} BKN_{11}^{\beta}W_{1}BKN_{11} & 0 \\ 0 & [BKN / BKN_{11}]^{\beta}W_{2} [BKN / BKN_{11}]^{\beta} \end{bmatrix},$

So, *BKNWX* = *XWBKN*.

Using	the	facts	that
$BKN_{11}^{\beta} = BKN_{11}^{d:w,}$			and

 $[BKN / BKN_{11}]^{\beta} = [BKN / BKN_{11}]^{d,w_2}$ we obtain that XWBKNWX = X. Also using (25), (22) and (21) it follows that,

$$BKNWX = \begin{bmatrix} BKN_{11}W_{1}BKN_{11}^{\beta} & 0 \\ 0 & [BKN / BKN_{11}]W_{2}[BKN / BKN_{11}]^{\beta} \end{bmatrix}$$

And $XWBKN = \begin{bmatrix} BKN_{11}^{1}W_{1}BKN_{11} & 0 \\ 0 & [BKN / BKN_{11}]^{1}W_{2}[BKN / BKN_{11}] \end{bmatrix}$

So *BKNWX* = *XWBKN*

Using the facts that
$$[BKN / BKN_{11}]^{\beta} = [BKN / BKN_{11}]^{d,w_2}$$

 $BKN_{11}^{\beta} = BKN_{11}^{d,w_1}$ and we obtain that $XWBKNWX = X$. Also, using (25), (22) and (21) it follows that.

$$(BKNW)^{2} XW = \begin{bmatrix} (BKN_{11}W_{1})^{2} BKN_{11}^{\beta}W_{1} & BKN_{12}W_{2} [BKN / BKN_{11}]W_{2} [BKN / BKN_{11}]^{\beta}W_{2} \\ BKN_{21}W_{1}BKN_{11}W_{1}BKN_{11}^{\beta}W_{1} & BKN_{22}W_{2} [BKN / BKN_{11}]W_{2} [BKN / BKN_{11}]^{\beta}W_{2} \end{bmatrix}$$
$$= BKNW + \begin{bmatrix} (BKN_{11}W_{1})^{2} BKN_{11}^{\beta}W_{1} - BKN_{11}W_{1} & 0 \\ 0 & 0 \end{bmatrix}$$

By the induction, using the first part of (22), we obtain that $(BKNW)^{m+1}XW = (BKNW)^m$, for an arbitrary $m \ge ind (BKN_{11}W_1)$.

From **Theorem 2.5**, we obtain the result of [wei**Theorem 1, [15**]] when m = n, p = q and $w = I_{m+p}$

Corollary 2.6

Let *BKN* and *X* are given by (3) and (5). If $F_{BKN_{11}}BKN_{12} = 0$, $BKN_{12}E_{[BKN/BKN_{11}]} = 0$, $BKN_{22}E_{[BKN/BKN_{11}]} = 0$ then $X = BKN^d$.

REFERENCE[1] T.Ando, "Generalized Schur complements", Linear Algebra Appl. 27 (1979), 173–186. | [2] J.K.Baksalary, G.P.H.Styan, "Generalized inverses of partitioned matrices in Banachiewicz-Schur form", Linear Algebra Appl. 354, (2002), 41–47 | [3] T.Banachiewicz, Zur Berechnung der Determinanten, "wie auch der Inversen und zur darauf basierten Auflosung der Systeme linearer Gleichungen", Acta Astronom.Ser. C 3, (1937), 41–67. | [4] D.Carlson, E.Haynsworth, T.Markham, "A generalization of the Schur complement by means of the Moore-Penrose inverse", SIAM J. Appl. Math. 26 (1974), 169–176. | [5] C.K.Li, R.Mathias, "Extremal characterization of the Schur complements and resulting inequalities", SIAM Rev. 42, (2000), 233–246. | [6] D.J.Clements, H.K.Wimmer, "Monotonicity of the optimal cost in the discrete-time regulator problem and Schur complements", Acta Sci. Math. (Szeged), 67 (2001), 439–445. | [7] D.S.Cvetkovic, D.S.Djordjevic, V. Rakocevic, "Schur complement in C*- algebras", Mathematische Nachrichten, (to appear). | [9] D.S.Djordjevic, "Unified approach to the reverse order rule for generalized inverses", Acta Sci. Math. (Szeged) 67 (2001), 761–776. | [10] E.V.Haynsworth, "Determination of the inertia of a partitioned Hermitian matrix", Linear Algebra Appl. 1, (1968), 73–81. | [11] G.Marsaglia, G.P.H.Styan, "Rank conditions for generalized inverses of partitioned matrices", Sankhya Ser. A 36, (1974), 437–442. | [12] D.V.Quellette, "Schur complements and statistics", Linear Algebra Appl. 36, (1981), 187–295. | [13] V. Rakocevic, Y.Wei, "The representation and approximation of the W-weighted Drazin inverse of linear operators in hilbert space", Appl. Math. Comput. 141, (2003), 455-470. | [14] I.Schur, "Uber Potenzreihen die im Inner des Einheitskreises sind", r. J.Reine Argew.Math. 147, (1917), 205–234. | [15] Y.Wei, "Expressions for the Drazin inverse of a 2 x 2 Block Matrix", Linear and Multilinear Algebra, 45, (1998), 131–146. |