Weighted Generalized Inverse of Partitioned
 Matrices in Pseudo Banachiewicz - schur form

pseudo Banachiewicz- Schur form, weighted Moore-Penrose invers, weighted Drazin inverse, Pseudo-Schur complement.

Dr. B.K.N. MUTHUGOBAL

Assistant Professor in Mathematics, Bharathidasan University Constituent College, Nannilam, Tiruvarur, Tamil Nadu, India

ABSTRACT
In this paper the conditions under which the weighted generalized inverses $A(1,3 M), A(1,4 N)$, and can be expressed in pseudo Banachiewicz - Schur form are considered and some interesting results are established. AMS classification: 15A09, 15A15, 15A57

Introduction

Let $C^{n \times m}$ denote the set of all complexnxmmatrices. I_{n} denotes the unit matrix of order n. By $A^{*} \in C^{m \times n}$ we denote the conjugate transpose matrix of $A \in C^{n \times m}$. Let us recall that the Moore-Penrose inverse of $A \in C^{n \times m}$ is the unique matrix $A^{\dagger} \in C^{m \times n} \quad$ which satisfies $A A^{\dagger} A=A$, $A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger}$, $\left(A^{\dagger} A\right)^{*}=A^{\dagger} A$.

The Drazin inverse of $A \in C^{n \times n}$ is the matrix $\quad A^{D} \in C^{n \times n}$ which satisfies $A^{k+1} X=A^{k}, X A X=X, A X=X A$, for some nonnegative integer k. The least k is the index of A , denoted by $\operatorname{ind}(A)$. Generalizing the Moore-Penrose and the

Drazin inverse, the weighted MoorePenrose inverse and the weighted Drazin inverse are defined as follows:

In this paper we have extended the results of Banachiewicz-schur form of J.K.Baksalary and G.P.Styan[2] our work, PseduoBanachiewicz-schur form is an extension of the above mentioned paper.

Definition 1.1

Let $A \in C^{n \times m}$ and let $\quad M \in C^{m \times n}$ and $N \in C^{m \times m}$ be positive definite. The unique matrix $X \in C^{m \times n}$ which satisfies
$A X A=A, \quad X A X=X,(M A X)^{*}=$ $M A X,(N X A) *=N X A$
is called the weighted Moore-Penrose inverse of A and it is denoted by $A_{M, N}^{\dagger}$.

Definition 1.2

If $A \in C^{n \times m}$ and $W \in C^{m \times n}$ are complex matrices, then the unique solution $X \in C^{n \times m}$ of the equations
$(A W)^{k+1} X W=(A W)^{k}, X W A W X=X$,
$A W X=X W A$
where $k=\operatorname{ind}(A W)$, is called the W-weighted Drazin inverse of A and it is denoted by $A^{d, w}$.

Obviously for $M=I_{n}$ and $N=I_{m}$ the weighted Moore-Penrose inverseof A is the

Moore-Penrose inverse of A. If $m=n$ and $W=I_{n}$, thenmatrix X which satisfies (2) is the Drazin inverse of A. It is well-knownthat

$$
A_{M, N}^{\dagger}=N^{-1 / 2}\left(M^{1 / 2} A N^{-1 / 2}\right)^{\dagger} M^{1 / 2} \text { and } A^{d, w}=
$$

$\left[(A W)^{D}\right]^{2} A$. Someinteresting properties of weighted Moore-Penrose and the weighted Drazininverse, among other papers, are investigated in [9], [13].

For $B K N \in C^{n \times m}$, the set of inner, outer, least-squares weighted generalized and minimum-norm weighted generalized inverses, respectively are given by:
$B K N\{1\}=\left\{X \in C^{m \times n}:[B K N] X[B K N]=[B K N]\right\}$,
$B K N\{2\}=\left\{X \in C^{m \times n}: X[B K N] X=X\right\}$,
$B K N\{1,3(M)\}=\left\{X \in C^{m \times n}:[B K N] X[B K N]=[B K N],(M[B K N] X)^{*}=M[B K N] X\right\}$,
$B K N\{1,4(N)\}=\left\{X \in C^{m \times n}:[B K N] X[B K N]=[B K N],(N X[B K N])^{*}=N X[B K N]\right\}$,
where $M \in C^{n \times n}$ and $N \in C^{m \times m}$ are positive definite matrices.

In this paper we consider matrix
$B K N \in C^{(m+p) \times(n+q)} \quad$ partitioned as

$$
\left.\begin{array}{rl}
K & =\left[\begin{array}{lll}
N_{11} & N_{12} & N_{13} \\
N_{21} & N_{22} & N_{23} \\
N_{31} & N_{32} & N_{33}
\end{array}\right] B \\
& =\left[\begin{array}{ll}
{\left[K / N_{11}\right]} & {\left[K / N_{12}\right]}
\end{array}\left[K / N_{13}\right]\right. \\
{\left[K / N_{21}\right]\left[K / N_{22}\right]\left[K / N_{23}\right]} \\
{\left[K / N_{31}\right]} & {\left[K / N_{32}\right]\left[K / N_{33}\right]}
\end{array}\right] .\left[\begin{array}{ll}
\\
{[}
\end{array}\right]
$$

$$
M=\left[\begin{array}{l}
\left.\left[B /\left[K / N_{11}\right]\right]\left[B /\left[K / N_{12}\right]\right]\left[B /\left[K / N_{13}\right)\right]\right] \\
{\left[B /\left[K / N_{21}\right]\right]\left[B /\left[K / N_{22}\right]\right]\left[B /\left[K / N_{23}\right]\right]} \\
\left.\left[B /\left[K / N_{31}\right]\right]\left[B /\left[K / N_{32}\right]\right]\left[B /\left[K / N_{33}\right]\right]\right]
\end{array}\right.
$$

$$
\begin{aligned}
& B K N_{11}=\left[B /\left[K / N_{11}\right]\right], \\
& B K N_{12}=\left[\left[B /\left[K / N_{12}\right]\right]\left[B /\left[K / N_{13}\right]\right]\right] \\
& B K N_{21}=\left[\begin{array}{l}
\left.\left[B /\left[K / N_{21}\right]\right]\right] \\
\left.\left[B /\left[K / N_{31}\right]\right]\right],
\end{array}\right.
\end{aligned}
$$

$B K N_{22}=\left[\begin{array}{ll}{\left[B /\left[K / N_{22}\right]\right]} & {\left[B /\left[K / N_{23}\right]\right]} \\ {\left[B /\left[K / N_{32}\right]\right]} & {\left[B /\left[K / N_{33}\right]\right]}\end{array}\right]$
$B K N=\left[\begin{array}{ll}B K N_{11} & B K N_{12} \\ B K N_{21} & B K N_{22}\end{array}\right]$
Where $B K N_{11} \in C_{n \times n}$ and $B K N_{12} \in C_{n \times m}$,
$B K N_{21} \in C_{m \times n}, B K N_{22} \in C_{m \times m}$ we use the

Definition 1.3

For a matrix $B K N \in C^{(m+p) \times(n+q)}$ given by (3)the generalized pseudo- Schur complement of BKN in symbol [BBKN / $K N_{11}$], is defined by $\left[B K N / B K N_{11}\right]=B K N_{22}-B K N_{21}\left[B K N_{11}\right]^{\beta} B K$ $B E N_{12}$
following definition of the generalized pseudo- schur complement.

$$
\left.\left[B K N / B K N_{11}\right]=\left[\begin{array}{ll}
{\left[B / K / N_{22}\right]} & {\left[B / K / N_{23}\right]} \tag{4}\\
{\left[B / K / N_{32}\right]} & {\left[B / K / N_{33}\right]}
\end{array}\right]\right]\left[\begin{array}{l}
{\left[B / K / N_{21}\right]} \\
{\left[B / K / N_{31}\right]}
\end{array}\right]\left[B / K / N_{11}\right]^{\beta}\left[\left[B / K / N_{12}\right]\left[B / K / N_{13}\right]\right]
$$

Where $\left[B K N_{11}\right]^{\beta} \in B K N_{11}\{1\}$.
The case $B K N_{11}^{-1}$ instead of $\left[B K N_{11}\right]^{\beta}$, under assumption that $\left[B K N_{11}\right]^{\beta}$ is invertible, was first used by Schur[14]. The idea of Schur complements goes back to Sylvester (1851) and the term Schur complements was introduced by E. Haynsworth[10]. Carlson et al. [4] defined the generalized Schur complement by replacing the ordinary inverse with the Moore-Penrose inverse.

The Schur complement and the generalized Schurcomplement were
studied by a number of authors, including their applications in statistics, matrix theory, electrical network theory, discretetime regulator problem, sophisticated techniques and some other fields. For interesting results concerning Schur complements see also [1], [5], [6], [7], [8], [12].

Banachiewicz[3] expressed the inverse of a partitioned matrix in terms of Schur complement. When the partitioned matrix A, given by (3), is nonsingular and A_{11} is also nonsingular, then [$\left.B K N / B K N_{11}\right]$ is nonsingular and $[B K N]^{-1}=\left[\begin{array}{cc}B K N^{-1}{ }_{11}+B K N^{-1}{ }_{11} B K N_{12}\left[B K N / B K N_{11}\right]^{-1} B K N_{21} B K N^{-1}{ }_{11} & -B K N_{11}^{-1} B K N_{12}\left[B K N / B K N_{11}\right]^{-1} \\ -[B K N / B K N]^{-1} B K N_{21} B K N^{-1}{ }_{11} & {\left[B K N / B K N_{11}\right]^{-1}}\end{array}\right]$
where we use of $\left[B K N / B K N_{11}\right]$.
The motivations for our research are the following:
(1) The paper of Baksalary and Styan[2] in which they extended the result
of Marsaglia and Styan[11], considering the necessary and sufficient conditions such that the outer inverses, least-squares generalized inverses and minimum norm
generalized inverses can be represented by the Banachiewicz-Schur form;
(2) The paper of Y.Wei[15] in which he found the sufficient conditions for the Drazin inverse to be represented by

Our purpose is to generalized these results for the weighted Moore-Penrose inverse and the weighted Drazin inverse of $B K N$.

1. Results the Banachiewicz-Schur form.

$$
X=\left[\begin{array}{cc}
B K N^{\beta}{ }_{11}+B K N^{\beta}{ }_{11} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta} B K N_{21} B K N^{\beta}{ }_{11} & -B K N^{\beta}{ }_{11} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta} \tag{5}\\
-[B K N / B K N]^{\beta} B K N_{21} B K N^{\beta}{ }_{11} & {\left[B K N / B K N_{11}\right]^{\beta}}
\end{array}\right]
$$

$B K N^{\beta}{ }_{11} \in B K N_{11}\{1\}$ and the positive definite matrices $M \in C_{n \times n}$ and $N \in C_{n \times n}$ are given by
$M=\left[\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right], N=\left[\begin{array}{ll}N_{11} & N_{12} \\ N_{21} & N_{22}\end{array}\right]$
Where $M_{11} \in C_{n \times n}, M_{22} \in C_{p \times p}, N_{11} \in C_{m \times m}$, $N_{22} \in C_{q \times q}$.

We begin with the following result of Baksalary and Styn[2], adopting the following notations from [2].
$E_{B K N_{11}}=I-B K N^{\beta}{ }_{11} B K N_{11}$,
$F_{B K N_{11}}=I-B K N_{11} B K N_{11}^{\beta}$,
$E_{\left[B K N / B K N_{11}\right]}=I-[B K N / B K N]^{\beta}[B K N / B K N]$ $F_{\left[B K N / B K N_{11}\right]}=I-[B K N / B K N][B K N / B K N]^{\beta}$ where $\left[B K N / B K N_{11}\right]$ is the pseudo schur complement of $B K N_{11}$ which is defined in (4) and $[B K N / B K N]^{\beta} \in C_{m \times m}$.

Theorem 2.1

Let $B K N$ and X are given by (3) and (5). Then $X \in A$ (1) if and only if $\left[B K N / B K N_{11}\right]^{\beta} \in B K N\{1\}$ and $F_{B K N_{11}} B K N_{12} E_{\left[B K N / B K N_{11}\right]}=0$,
$F_{\left[B K N / B K N_{11}\right]} B K N_{21} E_{B K N_{11}}=0$,
$F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta}$
$B K N_{12} E_{B K N_{11}}=0$
The last three conditions being independent of the choice of $B K N^{\beta}{ }_{11} \in B K N_{11}\{1\}$ and
$\left[B K N / B K N_{11}\right]^{\beta} \in B K N\{1\}$ involved in $E_{B K N_{11}}, F_{B K N_{11}}, E_{\left[B K N / B K N_{11}\right]}, F_{\left[B K N / B K N_{11}\right]}$

The following theorem give the necessary and sufficient conditions such that $X \in B K N\{1,3(M)\} \quad$ under some conditions.

Theorem 2.2

If M is a positive definite matrix given by (6), such that

$$
\begin{align*}
& {\left[M_{12}\left[B K N / B K N_{11}\right]\left[B K N / B K N_{11}\right]^{\beta}\right]^{*}} \\
& \quad=M_{12}^{*}\left[B K N_{11}\right]\left[B K N_{11}\right]^{\beta}+M_{12}^{*} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta}\left[B K N_{21}\right]\left[B K N_{11}\right]^{\beta} \\
& {\left[B K N / B K N_{11}\right]^{\beta} M_{22} F_{\left[B K N / B K N_{11}\right]}=E_{\left[B K N / B K N_{11}\right]} M_{22}\left[B K N / B K N_{11}\right]^{\beta}} \tag{8}
\end{align*}
$$

That $X \in B K N\{1,3(M)\} \quad$ if and
only if $B K N_{11}^{\beta} \in B K N_{11}\left\{1,3\left(M_{11}\right)\right\}$,
$\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\left\{1,3\left(M_{22}\right)\right\}$ and

$$
F_{B K N_{11}} B K N_{12}=0, F_{\left[B K N / B K N_{11}\right]} B K N_{21}=0 \text { (9) }
$$

The last two conditions are independent of the choice of $B K N_{11}^{\beta} \in B K N_{11}\{1\}$ and
$\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\{1\}$ involved in $F_{B K N_{11}}$ and $F_{\left[B K N / B K N_{11}\right]}$.

Proof

Suppose that

$$
B K N_{11}^{\beta} \in B K N_{11}\left\{1,3\left(M_{11}\right)\right\},
$$

$\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\left\{1,3\left(M_{22}\right)\right\}$ and the conditions (9) are satisfied. Then the conditions from the Theorem 2.1 are satisfied and X is an inner inverse of $B K N$. Also, we have that
$(M(B K N) X)_{11}=M_{11}\left(B K N_{11}\right)\left(B K N_{11}\right)^{\beta}-M_{11} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta} B K N_{21} B K N_{11}^{\beta}$

$$
+M_{12} F_{\left[B K N / B K N_{11}\right]} B K N_{21} B K N_{11}^{\beta}
$$

$$
=M_{11} B K N_{11} B K N_{11}^{\beta}
$$

$(M(B K N) X)_{12}=M_{11} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta}+M_{12}\left[B K N / B K N_{11}\right]\left[B K N / B K N_{11}\right]^{\beta}$

$$
=M_{12}\left[B K N / B K N_{11}\right]\left[B K N / B K N_{11}\right]^{\beta}
$$

$(M(B K N) X)_{12}=M_{12}^{*} B K N_{11} B K N_{11}^{\beta}-M_{12}^{*} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta} B K N_{21} B K N_{11}^{\beta}$ $+M_{22} F_{\left[B K N / B K N_{11}\right]} B K N_{21} B K N_{11}^{\beta}$

$$
=M_{12}^{*} B K N_{11} B K N_{11}^{\beta}
$$

$(M(B K N) X)_{22}=M_{12}^{*} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta}+M_{22}\left[B K N / B K N_{11}\right]\left[B K N / B K N_{11}\right]^{\beta}$

$$
=M_{22}\left[B K N / B K N_{11}\right]\left[B K N / B K N_{11}\right]^{\beta}
$$

Obviously,
$(M(B K N) X)_{11}=(M(B K N) X)_{11}^{*}$,

$$
\begin{aligned}
& (M(B K N) X)_{22}=(M(B K N) X)_{22}^{*} \\
& \text { i.e, }(M(B K N) X)=(M(B K N) X)^{*}
\end{aligned}
$$

$$
(M(B K N) X)_{12}=(M(B K N) X)_{12}^{*} \text { and }
$$

On the other hand, let $X \in B K N\{1,3(M)\}$ then the conditions (7)are satisfied and

We have the
$(M(B K N) X)_{21}=(M(B K N) X)_{21}^{*}$, so we obtain that $(M(B K N) X)=(M(B K N) X)^{*}$.

$$
\begin{aligned}
& M_{11} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta}=\left[M_{22} F_{\left[B K N / B K N_{11}\right]} B K N_{21} B K N_{11}^{\beta}\right]^{*} \text { and } \\
& \left(M_{11} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta}\right)\left(M_{11} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta}\right)^{*} \\
& =M_{11} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta} \\
& M_{22} F_{\left[B K N / B K N_{11}\right]} B K N_{21} B K N_{11}^{\beta}=M_{11} F_{B K N_{11}} B K N_{12} E_{\left[B K N / B K N_{11}\right]} M_{22}\left[B K N / B K N_{11}\right]^{\beta} \\
& F_{\left[B K N / B K N_{11}\right]} B K N_{21} B K N_{11}^{\beta}=0
\end{aligned}
$$

Hence,
$M_{11} F_{B K N_{11}} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta}=0$, (9) of the choice of $B K N_{11}^{\beta} \in B K N_{11}\{1\}$
i.e, $\quad M_{11} F_{B K N_{11}} B K N_{12}=0 \quad$ and \quad in $F_{B K N_{11}}$ and
$M_{22} F_{\left[B K N / B K N_{11}\right]} B K N_{21} B K N_{11}^{\beta}=0$,
i.e, $M_{22} F_{\left[B K N / B K N_{11}\right]} B K N_{21}=0$.

Using the fact that M is invertible, we have that M_{11} and M_{22} are also invertible, so we obtain the conditions (9). By the

$$
(M(B K N) X)_{11}=(M(B K N) X)_{11}^{*}
$$

and
$(M(B K N) X)_{22}=(M(B K N) X)_{22}^{*}$ it follows that

$$
B K N_{11}^{\beta} \in B K N_{11}\left\{1,3\left(M_{11}\right)\right\} \text { and }
$$

The independence of the conditions

$$
\left[B K N / B K N_{11}\right]^{\beta} \in\left\{1,3\left(M_{22}\right)\right\}
$$

$\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\{1\}$ in $F_{\left[B K N / B K N_{11}\right]}$ follows by the same arguments as in the proof of Theorem 2.1

Corollary 2.1

If M is a positive definite matrix given by (6), such that $\left[B K N / B K N_{11}\right]^{\beta} M_{22} F_{\left[B K N / B K N_{11}\right]}$

$$
=E_{\left[B K N / B K N_{11}\right]} M_{22}\left[B K N / B K N_{11}\right]^{\beta}
$$

$$
M_{12}^{*} F_{B K N_{11}} B K N_{12}=0
$$

$$
M_{12}\left[B K N / B K N_{11}\right]\left[B K N / B K N_{11}\right]^{\beta}
$$

$$
\begin{equation*}
=\left[M_{12}^{*} B K N_{11} B K N_{11}^{\beta}\right]^{*}, \tag{10}
\end{equation*}
$$

Then $\quad X \in B K N\{1,3(M)\} \quad$ if and
only if $B K N_{11}^{\beta} \in B K N_{11}\left\{1,3\left(M_{11}\right)\right\}$,
$\left[B K N / B K N_{11}\right]^{\beta} \in S\left\{1,3\left(M_{22}\right)\right\} \quad$ and
$F_{B K N_{11}} B K N_{12}=0$,
$F_{\left[B K N / B K N_{11}\right]} B K N_{21}=0$
The last two conditions are independent of the choice of $B K N_{11}^{\beta} \in B K N_{11}\{1\} \quad$ and $\left[B K N / B K N_{11}\right]^{\beta} \in B K N\{1\} \quad$ involved in $F_{B K N_{11}}$ and $F_{\left[B K N / B K N_{11}\right]}$ notice that for $M=I_{m+p}$, the conditions (8) are satisfied , so we obtain the Theorem 3 in [2] as a special case for $M=I_{m+p}$.

Corollary 2.2

If $B K N_{11}^{\beta} \in B K N_{11}\left\{1,3\left(M_{11}\right)\right\}$,
$\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\left\{1,3\left(M_{22}\right)\right\}$ and

$$
F_{B K N_{11}} B K N_{12}=0, F_{\left[B K N / B K N_{11}\right]} B K N_{21}=0, \mathbf{(1 2)}
$$

$$
M_{12}\left[B K N / B K N_{11}\right]\left[B K N / B K N_{11}\right]^{\beta}
$$

$$
=\left[M_{12}^{*} B K N_{11} B K N_{11}^{\beta}\right]^{*}
$$

then $X \in B K N\{1,3(M)\}$.
The following theorem given the necessary and sufficient conditions for $X \in B K N\{1,4(N)\}$.

Theorem 2.3

If N is a positive definite matrix given by (6) such that

$$
\begin{align*}
& {\left[N_{12}\left[B K N / B K N_{11}\right]^{\beta}\left[B K N / B K N_{11}\right]\right]^{*}} \\
& \quad=N_{12}^{*} B K N_{11}^{\beta} B K N_{11}+N_{12}^{*} B K N_{11}^{\beta} B K N_{12}\left[B K N / B K N_{11}\right]^{\beta} B K N_{21} E_{B K N_{11}}, \\
& {\left[B K N / B K N_{11}\right]^{\beta} M_{22} F_{\left[B K N / B K N_{11}\right]}=E_{\left[B K N / B K N_{11}\right]} M_{22}\left[B K N / B K N_{11}\right]^{\beta}} \tag{13}
\end{align*}
$$

Then $X \in A\{1,4(N)\}$ if and only if
$B K N_{11}^{\beta} \in B K N_{11}\left\{1,4\left(N_{11}\right)\right\}$,
$\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\left\{1,4\left(N_{22}\right)\right\}$ and
$B K N_{12} E_{\left[B K N / B K N_{11}\right]}=0, B K N_{21} E_{B K N_{11}}=0(\mathbf{1 4})$

Proof

The proof is analogous to the proof of Theorem 2.2

Corollary 2.3

If N is nonnegative matrix given by (6), such that

$$
\begin{align*}
& {\left[B K N / B K N_{11}\right]^{\beta} N_{22} F_{\left[B K N / B K N_{11}\right]}} \\
& \quad=E_{\left[B K N / B K N_{11}\right]} N_{22}\left[B K N / B K N_{11}\right]^{\beta}, \\
& N_{12}^{*} B K N_{11}^{\beta} B K N_{12}=0, \\
& N_{12}\left[B K N / B K N_{11}\right]^{\beta}\left[B K N / B K N_{11}\right] \\
& \quad=\left[N_{12}^{*} B K N_{11}^{\beta} B K N_{11}\right]^{*} \tag{15}
\end{align*}
$$

Then $X \in B K N\{1,4(B K N)\}$ if and only if $B K N_{11}^{\beta} \in B K N_{11}\left\{1,3\left(N_{11}\right)\right\}$, $\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\left\{1,4\left(N_{22}\right)\right\}$ and

$$
B K N_{12} E_{\left[B K N / B K N_{11}\right]}=0, B K N_{21} E_{B K N_{11}}=0(\mathbf{1 6})
$$

Also, Theorem 4 in [2] is obtained as a special case for $N=I_{n+q}$.

Corollary 2.4
If $B K N_{11}^{\beta} \in B K N_{11}\left\{1,3\left(N_{11}\right)\right\}$,
$\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\left\{1,4\left(N_{22}\right)\right\}$ and $A_{12} E_{\left[B K N / B K N_{11}\right]}=0$,
$B K N_{21} E_{B K N_{11}}=0$,
$\begin{aligned} & N_{12}\left[B K N / B K N_{11}\right]^{\beta}\left[B K N / B K N_{11}\right] \\ &= {\left[N_{12}^{*} B K N_{11}^{\beta} B K N_{11}\right]^{*}, }\end{aligned}$
then $X \in B K N\{1,3(M)\}$
It is easy to se that Theorem 2.2 and Theorem 2.3 are satisfied if we suppose that M_{11}, M_{22}, N_{11} and N_{22} are invertible, instead of the fact that M and N are invertible matrices.

Using the results four Theorem 2.2, Theorem 2.3 and Theorem 2 in [2] we obtain the necessary and sufficient conditions such that the weighted Moore-Penrose inverse of $B K N$, $B K N_{M, N}^{\beta}$ was the PseduoBanachiewiczSchurform where M and N are matrices which satisfy the conditions (8) and (13).

Theorem 2.4
Let M and N be the matrices which satisfy the conditions (8) and (13). Then $X=B K N_{M, N}^{\beta} \quad$ if and only if $B K N_{11}^{\beta}=\left(B K N_{11}\right)_{M_{11} N_{11}}^{\dagger}$,
$\left[B K N / B K N_{11}\right]^{\beta}=\left[B K N / B K N_{11}\right]_{M_{22} N_{22}}^{\dagger}$ and
$F_{B K N_{11}} B K N_{12}=0$,
$F_{\left[B K N / B K N_{11}\right]} B K N_{21}=0$,
$B K N_{12} E_{\left[B K N / B K N_{11}\right]}=0$,
$B K N_{21} E_{B K N_{11}}=0$
if $M=I_{m+p}$ and $N=I_{n+q}$, then the conditions (8) and (13) are obviously satisfied, so from Theorem 2.4 we obtain the necessary and sufficient conditions $X=B K N^{\dagger}$ also with less restrictive conditions for the matrices M and N we obtain the sufficient conditions for $X=B K N_{M, N}^{\dagger}$.

Corollary 2.5

$$
\text { If } B K N_{11}^{\beta}=B K N_{M_{11} N_{11}}^{\dagger}
$$

$\left[B K N / B K N_{11}\right]^{\beta}=\left[B K N / B K N_{11}\right]_{M_{22}, N_{22}}^{\dagger}$ and $F_{B K N_{11}} B K N_{12}=0$,

$$
\begin{aligned}
& F_{\left[B K N / B K N_{11}\right]} B K N_{21}=0, \\
& B K N_{21} E_{\left[B K N / B K N_{11}\right]}=0,
\end{aligned}
$$

$$
B K N_{21} E_{B K N_{11}}=0,
$$

$$
M_{12}\left[B K N / B K N_{11}\right]\left[B K N / B K N_{11}\right]^{\beta}
$$

$$
=\left[M_{12}^{*} B K N_{11} B K N_{11}^{1}\right]^{*},
$$

$N_{12}\left[B K N / B K N_{11}\right]^{\beta}\left[B K N / B K N_{11}\right]$

$$
=\left[N_{12}^{*} B K N_{11}^{1} B K N_{11}\right]^{*}
$$

then $X=B K N_{m, n}^{\dagger}$.
It is interesting to notice that if we denote by
$Z=\left[\begin{array}{cc}I & 0 \\ B K N_{21} B K N_{11}^{1} & I\end{array}\right]$

$$
\left[\begin{array}{cc}
B K N_{11} & 0 \\
0 & {\left[B K N / B K N_{11}\right]}
\end{array}\right]\left[\begin{array}{cc}
I & B K N_{11}^{1} B K N_{12} \\
0 & I
\end{array}\right],
$$

Where $B K N_{11}^{1} \in B K N_{11}\{1\}$, then

$$
X=\left(\begin{array}{cc}
I & -B K N_{11}^{\beta} B K N_{12} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
B K N_{11}^{\beta} & 0 \\
0 & \left(B K N / B K N_{11}\right)^{\dagger}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-B K N_{21} B K N_{11}^{\beta} & I
\end{array}\right)
$$

Then it is easy to see that $X \in Z\{1\}$. Moreover if the conditions $F_{B K N_{11}} B K N_{12}=0$ and $B K N_{21} E_{B K N_{11}}=0$ hold, we can obtain that $B K N=Z$ and therefore $X \in B K N\{1,2\}$ if and only if $B K N_{11}^{1} \in B K N\{1,2\}$ and
$\left[B K N / B K N_{11}\right]^{\beta} \in\left[B K N / B K N_{11}\right]\{1,2\}$.
In the rest of the paper we consider the sufficient conditions such that the Wweighted drazin inverse can be represented in the pseudoBanachewieczschur form.

Recall the for an arbitrarg matrix $W \in C_{(n+q) \times(m+p)}$ there exist non singular matrix $P \in_{(n+q) \times(n+q)}$ and $Q \in C_{(m+q) \times(m+q)}$ such that

$$
W=P W^{1} Q^{-1}=P\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right] Q^{-1},
$$

where $W_{1} \in C_{n \times m}, W_{2} \in_{q \times p}$.

Hence, if $B K N=Q B K N^{1} P^{-1}$ and $X=Q X^{1} P^{-1}$, then X is the W -Weighted Drazin inverse of $B K N^{\beta}$ with this reason we will naturally assume that $W \in C_{(n+q) \times(m+p)}$ has the following form

$$
\begin{align*}
& W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right], \\
& W_{1} \in C_{m \times m}, W_{2} \in C_{q \times q} \tag{18}
\end{align*}
$$

In the next result concerning W weighted Drazin inverse further more, we will consider matrix $B K N \in C_{(m+p) \times(n+q)}$ given by (3) modified Pseudo schur complement given by
[BKN / BKN 11]

$$
\begin{equation*}
=B K N_{22}-B K N_{21} W_{1} B K N_{11}^{\beta} W_{1} B K N_{12} \tag{19}
\end{equation*}
$$

And modified $(n+q) \times(m+p)$ has

$$
\begin{aligned}
B K N & =\left[\begin{array}{ll}
B K N_{11} & B K N_{12} \\
B K N_{21} & B K N_{22}
\end{array}\right] \\
& =\left(\begin{array}{cc}
0 & F_{B K N_{11}} B K N \\
B K N_{21} E_{B K N_{11}} & 0
\end{array}\right)+Z,
\end{aligned}
$$

and if the expression (5) of X is rewritten as following matrices products
$X=\left[\begin{array}{cc}B K N_{11}^{\beta}+B K N_{11}^{\beta} W_{1} B K N_{12} W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2} B K N_{21} W_{1} B K N_{11}^{\beta} & -B K N_{11}^{\beta} W_{1} B K N_{12} W_{2}\left[B K N / B K N_{11}\right]^{\beta} \\ -\left[B K N / B K N_{11}\right]^{\beta} W_{2} B K N_{21} W_{1} B K N_{11}^{\beta} & {\left[B K N / B K N_{11}\right]^{\beta}}\end{array}\right]$

Where $B K N_{11}^{\beta}=B K N_{11}^{d, w}$,
Theorem 2.5
$\left[B K N / B K N_{11}\right]^{\beta}=\left[B K N / B K N_{11}\right]^{d, w_{2}}$.

Let $B K N, X, W$, S be given by (3),

$$
\begin{align*}
B K N_{12} W_{2}= & B K N_{11} W_{1} B K N_{11}^{\beta} W_{1} B K N_{12} W_{2} \\
= & B K N_{2} W_{2}\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2} \tag{21}\\
B K N_{21} W_{1} & =B K N_{21} W_{1} B K N_{11} W_{1} B K N_{11}^{\beta} W_{1} \\
= & {\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2} B K N_{21} W_{1} } \tag{22}\\
W_{1} B K N_{12}= & W_{1} B K N_{12} W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2}\left[B K N / B K N_{11}\right] \tag{23}
\end{align*}
$$

$$
\begin{equation*}
W_{1} B K N_{21}=W_{1} B K N_{21} W_{1} B K N_{11}^{\beta} W_{1} B K N_{11} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
B K N_{22} W_{2}=A_{22} W_{2}\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2} \tag{25}
\end{equation*}
$$

Then $X=B K N^{d, w}$.

Proof

By a straight forward computation, we obtain that
$(B K N W X)_{11}=B K N_{11} W_{1} B K N_{11}^{\beta}-\left(B K N_{12} W_{2}-B K N_{11} W_{1} B K N_{11}^{\beta} W_{1} B K N_{12} W_{2}\right)$
$\left[B K N / B K N_{11}\right]^{\beta} W_{2} B K N_{21} W_{1} B K N_{11}^{\beta}$
$=B K N_{11} W_{1} B K N_{11}^{\beta}$, using the first part of (21),
$(B K N W X)_{12}=\left(B K N_{12} W_{2}-B K N_{11} W_{11} B K N_{11}^{\beta} W_{1} B K N_{12} W_{2}\right)\left(B K N / B K N_{11}\right)^{\beta}$
$=0$ by the first the part of (21),
$(B K N W X)_{21}=B K N_{21} W_{1} B K N_{11}^{\beta}-\left(B K N_{22}-B K N_{21} W_{1} B K N_{11}^{\beta} W_{1} B K N_{12}\right)$
$W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2} B K N_{21} W_{1} B K N_{11}^{\beta}$
$=B K N_{21} W_{1} B K N_{11}^{\beta}-\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2} B K N_{21} W_{1} B K N_{11}^{\beta}$
$=0$ by the second part of (22),

$$
\begin{aligned}
(B K N W X)_{22} & =\left(B K N_{22}-B K N_{21} W_{1} B K N_{11}^{\beta} W_{1} B K N_{12}\right) W_{2}\left[B K N / B K N_{11}\right]^{\beta} \\
& =\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta}
\end{aligned}
$$

Similarly, $(X W B K N)_{11}$

$$
\begin{aligned}
& =B K N_{11}^{\beta} W_{1} B K N_{11}-B K N_{11}^{\beta} W_{1} B K N_{12} W_{2}\left[B K N / B K N_{11}\right]^{\beta}\left(W_{2} B K N_{21}-W_{2} B K N_{21} W_{1} B K N_{11}^{\beta} W_{1} B K N_{11}\right) \\
= & B K N_{11}^{\beta} W_{1} B K N_{11} \text { using(24), }
\end{aligned}
$$

$(X W B K N)_{12}$

$$
=B K N_{1}^{\beta} W_{1} B K N_{12}-B K N_{11}^{\beta} W_{1} B K N_{12} W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2}\left(B K N_{22}-B K N_{21} W_{1} B K N_{11}^{\beta} W_{1} B K N_{12}\right)
$$

$=0$, using (23)
$(X W B K N)_{21}=\left[B K N / B K N_{11}\right]^{\beta}\left(W_{2} B K N_{21}-W_{2} B K N_{21} W_{1} B K N_{11}^{\beta} W_{1} B K N_{11}\right)$
$=0$, using (24),
$(X W B K N)_{22}=\left[B K N / B K N_{11}\right]^{\beta} W_{2}\left(B K N_{22}-B K N_{21} W_{1} B K N_{11}^{\beta} W_{1} B K N_{12}\right)$

$$
=\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta}
$$

Now, $\quad B K N W X=\left[\begin{array}{cc}B K N_{11} W_{11} B K N_{11}^{\beta} & 0 \\ 0 & {\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta}}\end{array}\right]$

$$
\text { And } X W B K N=\left[\begin{array}{cc}
B K N_{11}^{\beta} W_{1} B K N_{11} & 0 \\
0 & {\left[B K N / B K N_{11}\right]^{\beta} W_{2}\left[B K N / B K N_{11}\right]}
\end{array}\right]
$$

So, $B K N W X=X W B K N$.

$$
\begin{gathered}
\text { Using the facts that } \\
B K N_{11}^{\beta}=B K N_{11}^{d: w,}
\end{gathered} \begin{gathered}
{\left[B K N / B K N_{11}\right]=[B K N} \\
\text { and } \\
\text { obtain that } X W B K N \\
\text { using (25), (22) and (2 } \\
B K N W X=\left[\begin{array}{cc}
B K N_{11} W_{1} B K N_{11}^{\beta} & 0 \\
0 & {\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta}}
\end{array}\right] \\
\text { And } X W B K N=\left[\begin{array}{cc}
B K N_{11}^{1} W_{1} B K N_{11} & 0 \\
0 & {\left[B K N / B K N_{11}\right]^{1} W_{2}\left[B K N / B K N_{11}\right]}
\end{array}\right]
\end{gathered}
$$

$\left[B K N / B K N_{11}\right]^{\beta}=\left[B K N / B K N_{11}\right]^{d, w_{2}}$ we obtain that $X W B K N W X=X$. Also using (25), (22) and (21) it follows that,

So $B K N W X=X W B K N$

$$
\begin{array}{ccc}
\text { Using the facts that } & {\left[B K N / B K N_{11}\right]^{\beta}=\left[B K N / B K N_{11}\right]^{d, w_{2}}} \\
B K N_{11}^{\beta}=B K N_{11}^{d, w_{1}} & \text { and } \quad & \text { we obtain that } X W B K N W X=X . \text { Also, } \\
& & \text { using (25), (22) and (21) it follows that. }
\end{array}
$$

$(B K N W)^{2} X W=\left[\begin{array}{cl}\left(B K N_{11} W_{1}\right)^{2} B K N_{11}^{\beta} W_{1} & B K N_{12} W_{2}\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2} \\ B K N_{21} W_{1} B K N_{11} W_{1} B K N_{11}^{\beta} W_{1} & B K N_{22} W_{2}\left[B K N / B K N_{11}\right] W_{2}\left[B K N / B K N_{11}\right]^{\beta} W_{2}\end{array}\right]$
$=B K N W+\left[\begin{array}{cc}\left(B K N_{11} W_{1}\right)^{2} B K N_{11}^{\beta} W_{1}-B K N_{11} W_{1} & 0 \\ 0 & 0\end{array}\right]$

By the induction, using the first part of (22), we obtain that $(B K N W)^{m+1} X W=(B K N W)^{m}$, for an arbitrary $m \geq \operatorname{ind}\left(B K N_{11} W_{1}\right)$.

From Theorem 2.5, we obtain the result of [weiTheorem 1, [15]] when $m=$ $n, p=q$ and $w=I_{m+p}$

Corollary 2.6

Let $B K N$ and X are given by (3)
and (5). If $F_{B K N_{11}} B K N_{12}=0$,

$$
B K N_{12} E_{\left[B K N / B K N_{11}\right]}=0
$$

$B K N_{22} E_{\left[B K N / B K N_{11}\right]}=0$ then $X=B K N^{d}$.

[^0]
[^0]: REFERENCE
 [1] T.Ando, "Generalized Schur complements", Linear Algebra Appl. 27 (1979), 173-186. | [2] J.K.Baksalary, G.P.H.Styan, "Generalized inverses of partitioned matrices in Banachiewicz-Schur form", Linear Algebra Appl. 354, (2002), 41-47 | [3] T.Banachiewicz, Zur Berechnung der Determinanten, "wie auch der Inversen und zur darauf basierten Auflosung der Systeme linearer Gleichungen", Acta Astronom.Ser. C 3, (1937), 41-67. | [4] D.Carlson, E.Haynsworth, T.Markham, "A generalization of the Schur complement by means of the Moore-Penrose inverse", SIAM J. Appl. Math. 26 (1974), 169-176. | [5] C.K.Li, R.Mathias, "Extremal characterization of the Schur complements and resulting inequalities", SIAM Rev. 42, (2000), 233-246. | [6] D.J.Clements, H.K.Wimmer, "Monotonicity of the optimal cost in the discrete-time regulator problem and Schur complements", Automatica, 37 (2001), 1779-1786. | [7] G.Corach, A. Maestripieri, D.Stojanoff, "Oblique projections and Schur complements", Acta Sci. Math. (Szeged), 67, (2001), 439-459. | [8] D.S.Cvetkovic, D.S.Djordjevic, V. Rakocevic, "Schur complement in C*- algebras", Mathematische Nachrichten, (to appear). | [9] D.S.Djordjevic, "Unified approach to the reverse order rule for generalized inverses", Acta Sci. Math. (Szeged) 67 (2001), 761-776. | [10] E.V.Haynsworth, "Determination of the inertia of a partitioned Hermitian matrix", Linear Algebra Appl. 1, (1968), 73-81. | [11] G.Marsaglia, G.P.H.Styan, "Rank conditions for generalized inverses of partitioned matrices", Sankhya Ser. A 36, (1974), 437-442. | [12] D.V.Quellette,"Schur complements and statistics", Linear Algebra Appl. 36, (1981), 187-295. | [13] V. Rakocevic, Y.Wei, "The representation and approximation of the W-weighted Drazin inverse of linear operators in hilbert space", Appl. Math. Comput. 141, (2003), 455-470. | [14] I.Schur, "Uber Potenzreihen die im Innerr des Einheitskreises sind", r J.Reine Argew.Math. 147, (1917) , 205-234. | [15] Y.Wei, "Expressions for the Drazin inverse of a 2×2 Block Matrix", Linear and Multilinear Algebra, 45, (1998), 131-146. |

