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Introduction

Let n mC × denote the set of all 

complexnxmmatrices. Indenotes the unit 

matrix of order n. By * m nA C ×∈ we denote 

the conjugate transpose matrix of n mA C ×∈

. Let us recall that the Moore-Penrose 

inverse of n mA C ×∈ is the unique matrix
† m nA C ×∈ which satisfies † ,AA A A=

† † † ,A AA A= ( )*† † ,AA AA=

( )*† † .A A A A=

The Drazin inverse of n nA C ×∈ is the 

matrix D n nA C ×∈ which satisfies 

Ak+1X = Ak, XAX = X, AX = XA,for some 

nonnegative integer k. The least k is the 

index of A, denoted by ind(A). 

Generalizing the Moore-Penrose and the 

Drazin inverse, the weighted Moore-

Penrose inverse and the weighted Drazin 

inverse are defined as follows:

In this paper we have extended the results 

of Banachiewicz-schur form of 

J.K.Baksalary and G.P.Styan[2] our work, 

PseduoBanachiewicz-schur form is an 

extension of the above mentioned paper.

Definition 1.1

Let n mA C ×∈ and let m nM C ×∈ and
m mN C ×∈ be positive definite. The unique 

matrix m nX C ×∈ which satisfies

AXA = A, XAX = X,(MAX)*=

MAX,(NXA)*= NXA (1)
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is called the weighted Moore-Penrose 

inverse of A and it is denoted by †
,M NA .

Definition 1.2

If n mA C ×∈ and m nW C ×∈ are complex 

matrices, then the unique solution 
n mX C ×∈ of the equations

(AW)k+1XW = (AW)k, XWAWX = X,

AWX = XWA (2)

wherek=ind(AW), is called the 

W-weighted Drazin inverse of A and it is 

denoted by Ad,w.

Obviously for M = Inand N = Imthe 

weighted Moore-Penrose inverseof A is the 

Moore-Penrose inverse of A.

If m = n and W = In, thenmatrix X which 

satisfies (2) is the Drazin inverse of A. It is 

well-knownthat

( )†† 1 2 1 2 1 2 1 2
,M NA N M AN M− −= andAd,w=

[(AW)D]2A. Someinteresting properties of 

weighted Moore-Penrose and the weighted 

Drazininverse, among other papers, are 

investigated in [9], [13].

For n mBKN C ×∈ , the set of inner, outer, 

least-squares weighted generalized and 

minimum-norm weighted generalized 

inverses, respectively are given by:

{ } [ ] [ ] [ ]{ }
{ } [ ]{ }

( ){ } [ ] [ ] [ ] [ ]( ) [ ]{ }
( ){ } [ ] [ ] [ ] [ ]( ) [ ]{ }

*

*

1 : ,

2 : ,

1,3 : , ,

1, 4 : , ,

m n

m n

m n

m n

BKN X C BKN X BKN BKN

BKN X C X BKN X X

BKN M X C BKN X BKN BKN M BKN X M BKN X

BKN N X C BKN X BKN BKN NX BKN NX BKN

×

×

×

×

= ∈ =

= ∈ =

= ∈ = =

= ∈ = =

where n nM C ×∈ and m mN C ×∈ are positive 

definite matrices.

In this paper we consider matrix 
( ) ( )m p n qBKN C + × +∈ partitioned as 

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

/ / /
/ / /
/ / /

N N N
K N N N B

N N N
K N K N K N
K N K N K N
K N K N K N

 
 
 
 
 
 
      
      
      
      
             

=

=

11 12 13

21 22 23

31 32 33

/ / / / / /
/ / / / / /
/ / / / / /

B K N B K N B K N
M B K N B K N B K N

B K N B K N B K N

           
           

                      
 
                      

=

[ ]11 11/ /BKN B K N =   ,

[ ] [ ]12 12 13/ / / /BKN B K N B K N   =     

[ ]
[ ]

21
21

31

/ /

/ /

B K N
BKN

B K N

    =
     ,
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[ ] [ ]
[ ] [ ]

22 23
22

32 33

/ / / /

/ / / /

B K N B K N
BKN

B K N B K N

      =  
        

11 12

21 22

BKN BKN
BKN

BKN BKN
 

=  
 

Where 11 n nBKN C ×∈ and 12 n mBKN C ×∈ ,

21 m nBKN C ×∈ , 22 m mBKN C ×∈ we use the  

following definition of the generalized 

pseudo- schur complement.

Definition 1.3

For a matrix ( ) ( )m p n qBKN C + × +∈
given by (3)the generalized pseudo- Schur 
complement of BKN in symbol
[ ]11/BBKN KN , is defined by

[ ] [ ]11 22 21 11 12/BKN BKN BKN BKN BKN BKNβ= −

[ ] [ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ][ ]2122 23
11 11 12 13

32 33 31

/ // / / /
/ / / / / / /

/ / / / / /

B K NB K N B K N
BKN BKN B K N B K N B K N

B K N B K N B K N
β  
 = −     

    
(4)

Where [ ] { }11 11 1BKN BKNβ ∈ .

The case 1
11BKN − instead of 

[ ]11BKN β , under assumption that 

[ ]11BKN β is invertible, was first used by 

Schur[14]. The idea of Schur complements 

goes back to Sylvester (1851) and the term 

Schur complements was introduced by E.

Haynsworth[10]. Carlson et al. [4] defined 

the generalized Schur complement by 

replacing the ordinary inverse with the 

Moore-Penrose inverse.

The Schur complement and the 

generalized Schurcomplement were 

studied by a number of authors, including 

their applications in statistics, matrix 

theory, electrical network theory, discrete-

time regulator problem, sophisticated 

techniques and some other fields. For 

interesting results concerning Schur 

complements see also [1], [5], [6], [7], [8], 

[12].

Banachiewicz[3] expressed the 

inverse of a partitioned matrix in terms of 

Schur complement. When the partitioned 

matrix A, given by (3), is nonsingular and 

A11 is also nonsingular, then 

[ ]11/BKN BKN is nonsingular and

[ ] [ ] [ ]
[ ] [ ]

1 11 1 1 1
1 11 11 12 11 21 11 11 12 11

1 11
21 11 11

/ /

/ /

BKN BKN BKN BKN BKN BKN BKN BKN BKN BKN BKN
BKN

BKN BKN BKN BKN BKN BKN

− −− − − −
−

− −−

 + −
 =
 − 

where we use  of [ ]11/BKN BKN .

The motivations for our research 

are the following:

(1) The paper of Baksalary and 

Styan[2] in which they extended the result 

of Marsaglia and Styan[11], considering 

the necessary and sufficient conditions 

such that the outer inverses, least-squares 

generalized inverses and minimum norm 
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generalized inverses can be represented by 

the Banachiewicz-Schur form;

(2) The paper of Y.Wei[15] in 

which he found the sufficient conditions 

for the Drazin inverse to be represented by 

the Banachiewicz-Schur form.

Our purpose is to generalized these 

results for the weighted Moore-Penrose 

inverse and the weighted Drazin inverse of 

BKN.

1. Results 

[ ] [ ]
[ ] [ ]

11 11 12 11 21 11 11 12 11

21 11 11

/ /

/ /

BKN BKN BKN BKN BKN BKN BKN BKN BKN BKN BKN
X

BKN BKN BKN BKN BKN BKN

β ββ β β β

β ββ

 + −
 =
 − 

(5)

11 11BKN BKNβ ∈ {1} and the positive 

definite matrices n nM C ×∈ and n nN C ×∈

are given by

11 12

21 22

M M
M

M M
 

=  
 

, 11 12

21 22

N N
N

N N
 

=  
 

(6)

Where 11 n nM C ×∈ , 22 p pM C ×∈ , 11 ,m mN C ×∈

22 q qN C ×∈ .

We begin with the following result 

of Baksalary and Styn[2], adopting the 

following notations from [2].

11 11 11BKNE I BKN BKNβ= − ,

11 11 11BKNF I BKN BKN β= − ,

[ ] [ ] [ ]
11/ / /BKN BKNE I BKN BKN BKN BKNβ= −

[ ] [ ][ ]
11/ / /BKN BKNF I BKN BKN BKN BKN β= −

where [ ]11/BKN BKN is the pseudo –

schur complement of 11BKN which is 

defined in (4) and [ ]/ m mBKN BKN Cβ
×∈ .

Theorem 2.1

Let BKN and X are given by 

(3) and (5). Then X A∈ (1) if and only if 

[ ]11/BKN BKN BKNβ ∈ {1}and 

[ ]11 / 11
12 0

BKN BKNBKNF BKN E = ,

[ ] 11/ 11
21 0

BKN BKN BKNF BKN E = ,

[ ]
11

11

12 11

12

/

0
BKN

BKN

F BKN BKN BKN

BKN E

β

=
(7)

The last three conditions being 

independent of the choice of 

11 11{1}BKN BKNβ ∈ and

[ ]11/BKN BKN BKNβ ∈ {1} involved in 

11BKNE ,
11BKNF ,

[ ]/ 11BKN BKN
E ,

[ ]/ 11BKN BKN
F

The following theorem give the necessary 

and sufficient conditions such that 

{ }1,3( )X BKN M∈ under some 

conditions.

Theorem 2.2

If M is a positive definite matrix 

given by (6), such that 
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[ ][ ]

[ ][ ] [ ][ ]
11

12 11 11

* *
12 11 11 12 12 11 21 11

/ /

[ / ]BKN

M BKN BKN BKN BKN

M BKN BKN M F BKN BKN BKN BKN BKN

β

β ββ

∗
 
 

= +

[ ] [ ] [ ] [ ]
11 1111 22 22 11/ // /BKN BKN BKN BKNBKN BKN M F E M BKN BKNβ β= (8)

That { }1,3( )X BKN M∈ if and 

only if { }11 11 111,3( )BKN BKN Mβ ∈ ,

[ ] [ ]{ }11 11 22/ / 1,3( )BKN BKN BKN BKN Mβ ∈
and

[ ]11 1112 21/0, 0BKN BKN BKNF BKN F BKN= = (9)

The last two conditions are 

independent of the choice of 

{ }11 11 1BKN BKNβ ∈ and 

[ ] [ ]{ }11 11/ / 1BKN BKN BKN BKNβ ∈

involved in 
11BKNF and [ ]11/BKN BKNF .

Proof 

Suppose that 

{ }11 11 111,3( )BKN BKN Mβ ∈ ,

[ ] [ ]{ }11 11 22/ / 1,3( )BKN BKN BKN BKN Mβ ∈
and the conditions (9) are satisfied. Then 

the conditions from the Theorem 2.1 are 

satisfied and X is an inner inverse of BKN.

Also, we have that 

( )( ) [ ]

[ ]

11

11

11 11 11 11 12 11 21 1111

12 21 11/

( )( ) /BKN

BKN BKN

M BKN X M BKN BKN M F BKN BKN BKN BKN BKN

M F BKN BKN

ββ β

β

= −

+

11 11 11M BKN BKN β= ,

( )( ) [ ] [ ][ ]
1111 12 11 12 11 1112

/ / /BKNM BKN X M F BKN BKN BKN M BKN BKN BKN BKNβ β= +

[ ][ ]12 11 11/ /M BKN BKN BKN BKN β=

( )( ) [ ]

[ ]

11

11

* *
12 11 11 12 12 11 21 1112

22 21 11/

/BKN

BKN BKN

M BKN X M BKN BKN M F BKN BKN BKN BKN BKN

M F BKN BKN

ββ β

β

= −

+

*
12 11 11M BKN BKN β=

( )( ) [ ] [ ][ ]
11

*
12 12 11 22 11 1122

/ / /BKNM BKN X M F BKN BKN BKN M BKN BKN BKN BKNβ β= +

[ ][ ]22 11 11/ /M BKN BKN BKN BKN β=

Obviously,

( )( ) ( )( )*11 11
M BKN X M BKN X= ,

( )( ) ( )( )*12 12
M BKN X M BKN X= and 

( )( ) ( )( )*22 22
M BKN X M BKN X=

i.e, ( )( ) ( )( )*M BKN X M BKN X=
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On the other hand, let 

{ }1,3( )X BKN M∈ then the conditions 

(7)are satisfied and 

( )( ) ( )( )*M BKN X M BKN X= .

We have the 

( )( ) ( )( )*21 21
M BKN X M BKN X= , so we 

obtain that 

[ ] [ ]11 11

*

11 12 11 22 21 11//BKN BKN BKNM F BKN BKN BKN M F BKN BKNβ β =   and

[ ]( ) [ ]( )
[ ]

11 11

11

*

11 12 11 11 12 11

11 12 11

/ /

/

BKN BKN

BKN

M F BKN BKN BKN M F BKN BKN BKN

M F BKN BKN BKN

β β

β=

[ ] [ ]
[ ]

11 /11 11
22 21 11 11 12 22 11/ /

BKN BKNBKNBKN BKNM F BKN BKN M F BKN E M BKN BKN ββ =

[ ]11 21 11/ 0BKN BKNF BKN BKN β =

Hence,

[ ]
1111 12 11/ 0BKNM F BKN BKN BKN β = ,

i.e, 
1111 12 0BKNM F BKN = and 

[ ]1122 21 11/ 0BKN BKNM F BKN BKN β = ,

i.e, [ ]1122 21/ 0BKN BKNM F BKN = .

Using the fact that M is invertible, 

we have that 11M and 22M are also 

invertible, so we obtain the conditions (9).

By the 

( )( ) ( )( )*11 11
M BKN X M BKN X=

and 

( )( ) ( )( )*22 22
M BKN X M BKN X= it

follows that 

{ }11 11 111,3( )BKN BKN Mβ ∈ and 

[ ] { }11 22/ 1,3( )BKN BKN Mβ ∈

The independence of the conditions 

(9) of the choice of { }11 11 1BKN BKNβ ∈

in 
11BKNF and  

[ ] [ ]{ }11 11/ / 1BKN BKN BKN BKNβ ∈
in [ ]11/BKN BKNF follows by the same

arguments as in the proof of Theorem 2.1

Corollary 2.1 

If M is a positive definite matrix 

given by (6), such that

[ ] [ ]

[ ] [ ]
11

11

11 22 /

22 11/

/

/

BKN BKN

BKN BKN

BKN BKN M F

E M BKN BKN

β

β=
,

11

*
12 12 0BKNM F BKN = ,

[ ][ ]12 11 11

**
12 11 11

/ /

,

M BKN BKN BKN BKN

M BKN BKN

β

β =  
(10)

Then { }1,3( )X BKN M∈ if and 

only if { }11 11 111,3( )BKN BKN Mβ ∈ ,

[ ] { }11 22/ 1,3( )BKN BKN S Mβ ∈ and 
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11 12 0BKNF BKN = ,

[ ]11 21/ 0BKN BKNF BKN = (11)

The last two conditions are 

independent of the choice of 

{ }11 11 1BKN BKNβ ∈ and 

[ ] { }11/ 1BKN BKN BKNβ ∈ involved 

in 
11BKNF and [ ]11/BKN BKNF notice that 

forM=Im+p , the conditions (8) are satisfied 

, so we obtain the Theorem 3 in [2] as a 

special case for m pM I += .

Corollary 2.2

If { }11 11 111,3( )BKN BKN Mβ ∈ ,

[ ] [ ]{ }11 11 22/ / 1,3( )BKN BKN BKN BKN Mβ ∈
and 

11 12 0BKNF BKN = , [ ]11 21/ 0,BKN BKNF BKN = (12)

[ ][ ]12 11 11

**
12 11 11

/ /M BKN BKN BKN BKN

M BKN BKN

β

β =  
then { }1,3( )X BKN M∈ .

The following theorem given the 

necessary and sufficient conditions for 

{ }1,4( )X BKN N∈ .

Theorem 2.3 

If N is a positive definite matrix 

given by (6) such that 

[ ] [ ]

[ ]
11

*

12 11 11

* *
12 11 11 12 11 12 11 21

/ /

/ ,BKN

N BKN BKN BKN BKN

N BKN BKN N BKN BKN BKN BKN BKN E

β

ββ β

 
 

= +

[ ] [ ] [ ] [ ]
11 1111 22 22 11/ // /BKN BKN BKN BKNBKN BKN M F E M BKN BKNβ β= (13)

Then { }1,4( )X A N∈ if and only if 

{ }11 11 111,4( )BKN BKN Nβ ∈ ,

[ ] [ ]{ }11 11 22/ / 1, 4( )BKN BKN BKN BKN Nβ ∈
and

[ ] 111112 21/ 0, 0BKNBKN BKNBKN E BKN E= = (14)

Proof

The proof is analogous to the proof 

of Theorem 2.2

Corollary 2.3

If N is nonnegative matrix given by 

(6), such that 

[ ] [ ]

[ ] [ ]
11

11

11 22 /

22 11/

/

/ ,

BKN BKN

BKN BKN

BKN BKN N F

E N BKN BKN

β

β=
*
12 11 12 0,N BKN BKNβ =

[ ] [ ]12 11 11

**
12 11 11

/ /N BKN BKN BKN BKN

N BKN BKN

β

β =  
(15)

Then { }1,4( )X BKN BKN∈ if 

and only if { }11 11 111,3( )BKN BKN Nβ ∈ ,

[ ] [ ]{ }11 11 22/ / 1, 4( )BKN BKN BKN BKN Nβ ∈
and 

[ ] 111112 21/ 0, 0BKNBKN BKNBKN E BKN E= = (16)

Also, Theorem 4 in [2] is obtained 

as a special case for N=In+q.
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Corollary 2.4

If { }11 11 111,3( )BKN BKN Nβ ∈ ,

[ ] [ ]{ }11 11 22/ / 1, 4( )BKN BKN BKN BKN Nβ ∈

and [ ]1112 / 0BKN BKNA E = ,

1121 0BKNBKN E = ,

[ ] [ ]12 11 11

**
12 11 11

/ /

,

N BKN BKN BKN BKN

N BKN BKN

β

β =  
then { }1,3( )X BKN M∈

It is easy to se that Theorem 2.2

and Theorem 2.3 are satisfied if we 

suppose that 11M , 22M , 11N and 22N

are invertible, instead of the fact that M

and N are invertible matrices.

Using the results four 

Theorem 2.2, Theorem 2.3 and

Theorem 2 in [2] we obtain the necessary 

and sufficient conditions such that the 

weighted Moore-Penrose inverse of BKN

, ,M NBKN β was the  PseduoBanachiewicz-

Schurform where M and N are matrices 

which satisfy the conditions (8) and (13).

Theorem 2.4 

Let M and N be the matrices which 

satisfy the conditions (8) and (13). Then 

,M NX BKN β= if and only if 

( )

[ ] [ ]
11 11

22 22

†
11 11

†
11 11

,

/ /

M N

M N

BKN BKN

BKN BKN BKN BKN

β

β

=

=

and

11 12 0BKNF BKN = ,

[ ]11 21/ 0BKN BKNF BKN = ,

[ ]1112 / 0BKN BKNBKN E = ,

1121 0BKNBKN E = (17)

if m pM I += and n qN I += , then the 

conditions (8) and (13) are obviously 

satisfied, so from Theorem 2.4 we obtain 

the necessary and sufficient conditions 
†X BKN= also with less restrictive 

conditions for the matrices M and N we 

obtain the sufficient conditions for 
†

,M NX BKN= .

Corollary 2.5

If 
11 11

†
11 ,M NBKN BKNβ =

[ ] [ ]
22 22

†
11 11 ,

/ /
M N

BKN BKN BKN BKNβ =

and 
11 12 0BKNF BKN = ,

[ ]11 21/ 0,BKN BKNF BKN =

[ ]1121 / 0BKN BKNBKN E = ,

1121 0,BKNBKN E =

[ ][ ]12 11 11

** 1
12 11 11

/ /

,

M BKN BKN BKN BKN

M BKN BKN

β

 =  

[ ] [ ]12 11 11

* 1
12 11 11

/ /N BKN BKN BKN BKN

N BKN BKN

β

∗
 =  

then  †
,m nX BKN= .

It is interesting to notice that if we 

denote by 
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[ ]

1
21 11

1
11 11 12

11

0

0
,

0 / 0

I
Z

BKN BKN I

BKN I BKN BKN
BKN BKN I

 
=  
 

  
  

   

Where { }1
11 11 1 ,BKN BKN then∈

11

11

11 12

21 22

21

0

0
BKN

BKN

BKN BKN
BKN

BKN BKN

F BKN
Z

BKN E

 
=  
 
 

= +  
 

,

and if the expression (5) of X is rewritten 

as following matrices products 

1111 12
†

21 1111

00
0 ( / )0

IBKNI BKN BKN
X

BKN BKN IBKN BKNI

ββ

β

  −  
=     −   

Then it is easy to see that 

{ }1X Z∈ . Moreover if the conditions 

11 12 0BKNF BKN = and 
1121 0BKNBKN E =

hold, we can obtain that BKN Z= and 

therefore { }1,2X BKN∈ if and only if 

{ }1
11 1, 2BKN BKN∈ and

[ ] [ ]{ }11 11/ / 1, 2BKN BKN BKN BKNβ ∈ .

In the rest of the paper we consider 

the sufficient conditions such that the W-

weighted drazin inverse can be represented 

in the pseudoBanachewieczschur form.

Recall the for an arbitrarg matrix 
( ) ( )n q m pW C + × +∈ there exist non singular 

matrix ( ) ( )n q n qP + × +∈ and ( ) ( )m q m qQ C + × +∈

such that 

11 1 1

2

0
0

W
W PW Q P Q

W
− − 

= =  
 

,

where 1 2, .n m q pW C W× ×∈ ∈

Hence, if 1 1BKN QBKN P−= and 
1 1X QX P−= , then X is the W-Weighted 

Drazin inverse of BKN β with this reason 

we will naturally assume that 

( ) ( )n q m pW C + × +∈ has the following form

1

2

0
0

W
W

W
 

=  
 

,

1 m mW C ×∈ , 2 q qW C ×∈ (18)

In the next result concerning W-

weighted Drazin inverse further more, we 

will consider matrix ( ) ( )m p n qBKN C + × +∈

given by (3) modified Pseudo schur 

complement given by

[ ]11

22 21 1 11 1 12

/BKN BKN

BKN BKN W BKN W BKNβ= −
(19)

And modified

[ ] [ ]
[ ] [ ]

11 11 1 12 2 11 2 21 1 11 11 1 12 2 11

11 2 21 1 11 11

/ /

/ /

BKN BKN W BKN W BKN BKN W BKN W BKN BKN W BKN W BKN BKN
X

BKN BKN W BKN W BKN BKN BKN

β ββ β β β

β ββ

 + −
 =
 − 

(20)

Where 
11

,
11 ,d wBKN BKNβ =

[ ] [ ] 2,
11 11/ / d wBKN BKN BKN BKNβ = .

Theorem 2.5
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Let BKN, X, W, S be given by (3), (20), (18), (19) respectively if 

12 2 11 1 11 1 12 2BKN W BKN W BKN W BKN Wβ=

[ ] [ ]2 2 11 2 11 2/ /BKN W BKN BKN W BKN BKN Wβ= (21)

21 1 21 1 11 1 11 1BKN W BKN W BKN W BKN Wβ=

[ ] [ ]11 2 11 2 21 1/ /BKN BKN W BKN BKN W BKN Wβ= (22)

[ ] [ ]1 12 1 12 2 11 2 11/ / ,W BKN W BKN W BKN BKN W BKN BKNβ= (23)

1 21 1 21 1 11 1 11W BKN W BKN W BKN W BKNβ= (24)

[ ] [ ]22 2 22 2 11 2 11 2/ /BKN W A W BKN BKN W BKN BKN Wβ= (25)

Then ,d wX BKN= .

Proof 

By a straight forward computation, we obtain that

( ) ( )11 1 11 12 2 11 1 11 1 12 211
BKNWX BKN W BKN BKN W BKN W BKN W BKN Wβ β= − −

[ ]11 2 21 1 11/BKN BKN W BKN W BKNβ β

11 1 11BKN W BKN β= , using the first part of (21),

( ) ( )( )12 2 11 11 11 1 12 2 1112
/BKNWX BKN W BKN W BKN W BKN W BKN BKN ββ= −

0= by the first the part of (21),

( ) ( )21 1 11 22 21 1 11 1 1221
BKNWX BKN W BKN BKN BKN W BKN W BKNβ β= − −

[ ]2 11 2 21 1 11/W BKN BKN W BKN W BKNβ β

[ ] [ ]21 1 11 11 2 11 2 21 1 11/ /BKN W BKN BKN BKN W BKN BKN W BKN W BKNββ β= −

= 0 by the second part of (22),

( ) ( ) [ ]
[ ] [ ]

22 21 1 11 1 12 2 1122

11 2 11

/

/ /

BKNWX BKN BKN W BKN W BKN W BKN BKN

BKN BKN W BKN BKN

ββ

β

= −

=

Similarly,

( )
[ ] ( )

11

11 1 11 11 1 12 2 11 2 21 2 21 1 11 1 11/

XWBKN

BKN W BKN BKN W BKN W BKN BKN W BKN W BKN W BKN W BKNββ β β= − −

11 1 11BKN W BKNβ= using(24),
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( )
[ ] ( )

12

1 1 12 11 1 12 2 11 2 22 21 1 11 1 12/

XWBKN

BKN W BKN BKN W BKN W BKN BKN W BKN BKN W BKN W BKNββ β β= − −

0= , using (23)

( ) [ ] ( )11 2 21 2 21 1 11 1 1121
/XWBKN BKN BKN W BKN W BKN W BKN W BKNβ β= −

0= , using (24),

( ) [ ] ( )11 2 22 21 1 11 1 1222
/XWBKN BKN BKN W BKN BKN W BKN W BKNβ β= −

[ ] [ ]11 2 11/ /BKN BKN W BKN BKN β=

Now,
[ ] [ ]

11 11 11

11 2 11

0

0 / /

BKN W BKN
BKNWX

BKN BKN W BKN BKN

β

β

 
=  
  

And 
[ ] [ ]

11 1 11

11 2 11

0

0 / /

BKN W BKN
XWBKN

BKN BKN W BKN BKN

β

β

 
=  
  

,

So, .BKNWX XWBKN=

Using the facts that 
: ,

11 11
d wBKN BKNβ = and 

[ ] [ ] 2,
11 11/ / d wBKN BKN BKN BKNβ = we 

obtain that XWBKNWX X= . Also 

using (25), (22) and (21) it follows that,

[ ] [ ]
11 1 11

11 2 11

0

0 / /

BKN W BKN
BKNWX

BKN BKN W BKN BKN

β

β

 
=  
  

And
[ ] [ ]

1
11 1 11

1
11 2 11

0

0 / /

BKN W BKN
XWBKN

BKN BKN W BKN BKN

 
=  
  

So BKNWX XWBKN=

Using the facts that 

1,
11 11

d wBKN BKNβ = and 
[ ] [ ] 2,

11 11/ / d wBKN BKN BKN BKNβ =
we obtain that XWBKNWX X= . Also, 

using (25), (22) and (21) it follows that.

( ) ( ) [ ] [ ]
[ ] [ ]

2
2 11 1 11 1 12 2 11 2 11 2

21 1 11 1 11 1 22 2 11 2 11 2

/ /

/ /

BKN W BKN W BKN W BKN BKN W BKN BKN W
BKNW XW

BKN W BKN W BKN W BKN W BKN BKN W BKN BKN W

ββ

ββ

 
 =
  

( )2
11 1 11 1 11 1 0

0 0
BKN W BKN W BKN WBKNW

β −= +  
  
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By the induction, using the first 

part of (22), we obtain that 

( ) ( )1m mBKNW XW BKNW+ = , for an 

arbitrary ( )11 1m ind BKN W≥ .

From Theorem 2.5, we obtain the 

result of [weiTheorem 1, [15]] when m = 

n, p = q and w = Im+p

Corollary 2.6

Let BKN and X are given by (3)

and (5). If 
11 12 0BKNF BKN = ,

[ ]1112 / 0BKN BKNBKN E = ,

[ ]1122 / 0BKN BKNBKN E = then dX BKN= .
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