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ABSTRACT  We have developed the 30K word real time continuous speech recognition based on a context depend-
ent Hidden Markov Model (HMM). Here we are using a 30K word language model instead of previously 

using 20K[15] word speech recognition. It has opened new opportunities for speech recognition innovations. In 20K 
[15]word speech recognition has been designed with limited vocabulary .i.e., 800 words[9] but in this 30K word lan-
guage model to be designed by using the high level vocabulary. In this system contains two parts. One is training and 
second is testing. First different input speech signals will be stored in training kit. Second will give different speech 
signals for testing, after comparing with training kit it will display final output. Gaussian Mixture Models (GMMs)[3] are 
used to represent the state of output probability of HMMs.

INTRODUCTION
Speech recognition is defined as the ability to identify a 
spoken word or a sequence of words. The main idea be-
hind the system is to first train it with several versions of 
the same word, thus yielding a “reference fingerprint”.It 
is an advantage of high processing speed and low power 
consumption.Speech recognition based on a Hidden Mark-
ov Model (HMM) can provide high recognition accuracy, 
thus has been used in various applications such as auto-
matic transcription, audio indexing, navigation, mobile de-
vices, ubiquitous systems, and robotics. Large vocabulary 
real-time continuous speech recognition (LVRCSR)[8] with 
acoustic and language models is too resource-hungry and 
power-sensitive for software applications.

Fig 1. Basic flow chart for speech recognition
 
Hardware implementation by VLSI or FPGA is demanded 
especially for use in mobile equipment and intelligent ro-
bots because of advantageous high processing speed 
and low power consumption. To increase the data-pin to 
improve the data-transmission ability of IO, but their archi-
tecture is not extendable for a larger vocabulary because 
it consumes too much power and is not cost-effective: it 
requires multiple FPGAs. Measurement results show that 
our test chip can achieve 30-kWord continuous real time 
speech recognition with power consumption and only 
slight accuracy degradation.  

We proposed a VLSI implementation for 30-k Word real-
time continuous speech recognition. It employs algorithm 

optimization such as two-stage language model search to 
reduce cross-word transitions for the Viterbi search, beam 
pruning using a dynamic threshold to avoid sort process-
ing. A variable-frame look-ahead scheme is used to reduce 
the memory bandwidth for GMM computation[3]. We in-
troduced part of the External DRAM data into the inter-
nal cache memory using the locality of speech recognition 
and proposed specialized cache architecture to improve 
the cache hit rate. Elastic pipeline operation between the 
Viterbi search and GMM processing is applied. We ana-
lyzed the trade-off between the accuracy and the impor-
tant parameters in viterbi computation to choose the most 
appropriate parameter combination. 

2  SPEECH RECOGNITION
In speech recognition (SR)[9] is the translation of spoken 
words into text. It is also known as Automatic Speech Rec-
ognition (ASR). Some SR systems use training where an in-
dividual speaker reads sections of text into the SR system. 
These systems analyze the person’s specific voice and use 
it to fine tune the recognition of that person’s speech, re-
sulting in more accurate transcription. Systems that do not 
use training are called Speaker Independent systems. Sys-
tems that use training are called Speaker Dependent Sys-
tems. Speech recognition applications include voice user 
interfaces such as voice dialing, call routing, domestic ap-
pliance control, search, simple data entry, preparation of 
structured documents, and speech-to-text processing. 

2.1 OVERVIEW OF SPEECH RECOGNITION
The performance of speech recognition systems is usual-
ly evaluated in terms of accuracy and speed. Accuracy is 
usually rated with Word Error Rate (WER), whereas speed 
is measured with the real time factor. Other measures of 
accuracy include Single Word Error Rate (SWER) and Com-
mand Success Rate (CSR)[6]. However, speech recognition 
is a very complex problem. Vocalizations vary in terms of 
accent, pronunciation, articulation, roughness, nasality, 
pitch, volume, and speed. Speech is distorted by a back-
ground noise and echoes, electrical characteristics. Accu-
racy of speech recognition varies with the following:

•	 Vocabulary	size	and	confusability
•	 Speaker	dependence	vs.	independence
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•	 Isolated,	discontinuous,	or	continuous	speech
•	 Task	and	language	constraints
•	 Read	vs.	spontaneous	speech
•	 Adverse	conditions

Figure 2.1 Speech recognition with HMM algorithm

Fig. 2.1 presents the speech recognition flow with the 
HMM algorithm. The following items describe concrete 
stages.     

Step 1: Feature vector extraction
The input speech signal is converted from the time domain 
to frequency domain to obtain more unique acoustic char-
acteristics. Feature vectors are extracted from 30 ms length 
of speech every 10 ms.

Step 2: GMM computation
A phonemic-model GMM is read and state output prob-
abilities is calculated for all active state nodes.

Step 3: Viterbi search  
It is calculated for all active state nodes using state output 
probabilities, transition probabilities, and the -gram lan-
guage model.    

Step 4: Sort
According to the beam width, active state nodes having a 
higher score are selected. The others are dumped.

Step 5: Output sentence 
The word list with the maximum score is output as a 
speech recognition result after final-frame calculation and 
determination of the transition sequence.

2.2 SPEECH RECOGNITION PRINCIPLE
Speech recognition is performed by identifying a sound 
based on its frequency content. In order to achieve this, 
the frequency content of several samples of the same 
sound must be averaged in a training phase. Then, the fre-
quency content of a sound input can be compared to the 
fingerprint by treating them as vectors and computing[4] 
the distance between them. If a sound is close enough to 
the reference, then it is considered to be a match.

2.3 SPEECH RECOGNITION FOR HMM    
A Hidden Markov Model (HMM) is a statistical Markov 
model in which the system being modeled is assumed to 
be a Markov process with unobserved (hidden) states. An 
HMM can be considered as the simplest dynamic Bayes-
ian network. The mathematics behind the HMM was devel-
oped by L. E. Baum and coworkers. It is closely related to 
an earlier work on optimal nonlinear filtering problem by 
Ruslan L.Stratonovich, who was the first to describe the 
forward-backward procedure.

In a regular Markov model, the state is directly visible to 
the observer, and therefore the state transition probabili-
ties are the only parameters. In a Hidden Markov Model, 
the state is not directly visible, but output, dependent on 
the state, is visible. Each state has a probability distribu-
tion over the possible output tokens. Therefore the se-
quence of tokens generated by an HMM gives some in-
formation about the sequence of states. Note that the 
adjective ‘hidden’ refers to the state sequence through 
which the model passes, not to the parameters of the 
model; even if the model parameters are known exactly, 
the model is still ‘hidden’. Hidden Markov Models are es-
pecially known for their application in temporal pattern 
recognition such as speech, handwriting, gesture recogni-
tion, part of speech tagging, musical score following, par-
tial discharges and bioinformatics [1].

3 BLOCK DIAGRAM EXPLANATION
3.1 DESCRIPTION
Fig. 3.1, in the traditional language model search, only our 
second search treated every frame. However, in our pro-
posed language model search, the second stage is treat-
ed at every frame. By applying this proposed search, the 
computational amount and memory bandwidth can be re-
duced.

Figure 3.1 Block diagram of continuous speech recogni-
tion
 
In this scheme will increase continuous speech length and 
will reduce total power consumption of the system. Two-
stage language model search scheme reduce the compu-
tational workload and memory bandwidth for cross-word 
transitions to isolated trees. This scheme is derived from 
the transition frequency difference between phonemic 
HMM and language HMM.

Figure 3.2 Two stage language search model
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The cross-word transition search is divided into two stages.

•	 The	first	stage	is	a	simplified	language	model	search
•	 The	second	stage	is	a	detailed	language	model	search
 
3.2 SIMPLIFIED LANGUAGE SEARCH MODEL
The first stage is a simplified language model search for 
the top important transitions of two-gram probability. It 
consists of single frame to the transition of cross word as 
shown in figure 3.2. Here we are going to measure the 
peak or high values for the speech signal given as an input 
to the system

3.3 DETAIL LANGUAGE SEARCH MODEL     
The second stage is a detailed language model search for 
all crossword transitions. With the increase of the detailed 
language model search Cycle, we can achieve greater re-
duction of cross-word transitions, which is the main pro-
cessing undertaken in Viterbi computation. However, the 
risk of losing the cross-word transition to the correct can-
didate word might increase, thereby affecting the recogni-
tion accuracy. Moreover, the beam width and the number 
of cross-word transitions during the detailed search and 
the simplified search strongly influence the recognition 
accuracy. Therefore, the trade-off of these parameters de-
scribed above must be discussed carefully.

First, the trade-off of the detailed language model search 
cycle and the number of cross-word transitions during the 
simplified language model search are discussed. The beam 
width is set to 4000. The cross-word transitions during 
the detailed language model search[9] are set to 2000 to 
maintain high recognition accuracy.Fig.3.3 presents the re-
lation between the detailed search cycle and the number 
of cross-word transitions.    

Figure 3.3 Cycle of detailed language model search ver-
sus the number of crossword transitions.
 
We measured the accuracy using a referential software 
prototype profiling with Julius 4.0. The test speech data 
consists of 48 test patterns, which totally include 172 sen-
tences of Japanese speech spoken by different speakers. 
The average values of all the patterns for each parameter 
set are shown in the following graphs.

4 HARDWARE AND SOFTWARE IMPLEMENTATION
4.1 HARDWARE IMPLEMENTATION
A common way to implement a hardware viterbi   
decoder.A hardware Viterbi decoder for basic (not punc-
tured) code usually consists of the following major blocks:

•	 Branch	metric	unit	(BMU)
A branch metric unit’s function is to calculate branch met-

rics, which are normed distances between every possible 
symbol in the code alphabet, and the received symbol.

•	 Path	metric	unit	(PMU)
A path metric unit summarizes branch metrics to get met-
rics for  paths, where K is the constraint length of the 
code, one of which can eventually be chosen as optimal. 
Every clock it makes  decisions, throwing off wittingly 
non optimal paths. The results of these decisions are writ-
ten to the memory of a traceback unit.

 
Figure 4.2 Hardware implementation of viterbi decoder
 
•	 Traceback	unit	(TBU)
Back-trace unit restores an (almost) maximum-likelihood 
path from the decisions made by PMU. Since it does it in 
inverse direction, a viterbi decoder comprises a FILO (first-
in-last-out) buffer to reconstruct a correct order.

4.2.2 SOFTWARE IMPLEMENTATION
One of the most time-consuming operations is an ACS 
butterfly, which is usually implemented using an assembly 
language and appropriate instruction set extensions to 
speed up the decoding time.

5. RESULTS
We have to take the sample input and calculate the quan-
tization, FFT and word fingerprint.
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Fig5.1: Quantization of sample speech signal
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Fig 5.2 FFT of sample speech signal
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Fig 5.3 Word fingerprint for sample speech signal

Fingerprint values are stored and the new inputs are com-
pared to precisely stored input for displaying the out-
put. These outputs are taken in the form of speech using 
FPGA.

6. CONCLUSION
To achieve gains in hardware speech recognition, we must 
first realize the requirements and limitations of a hardware-
based recognizer by prototyping the design. We address 
these issues in this paper and describe in detail the design 
and implementation of a fully functional speech recognizer 
The design recognizes a 1000 word vocabulary, is speaker 
independent, and recognizes continuous (connected) live-
mode speech. Our current design runs at 50MHz, decodes 
at roughly 2.3 times slower real-time, achieves the same 
accuracy as state of- the-art software, and is, to the best of 
our knowledge, the most complex recognizer architecture 
ever fully committed to a hardware-only form. Our current 
work focuses on much larger vocabularies (5000 – 2O,000 
words), at rates much fast than real-time, leveraging the 
hardware resources of a more sophisticated FPGA-based 
platform.


