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ABSTRACT One of the major tasks in designing automation systems is the modelling of separate elements and/or 
the entire structure. The wide use of high-tech software in design has lead to the more intense applica-

tion of discrete models of processes under complex environmental influences. Taking into account the conditions defin-
ing the Kalman filter recursion and its basic features, the challenge here is in examining a method based on this recur-
sion and developed for the purpose of parameter estimation in discrete linear models. 

INTRODUCTION 
The identification of the automation elements and sys-
tems is made on the basis of experimental results, which 
in terms of time are most often the familiar transient 
characteristics. As a rule, the digital identification data 
obtained experimentally contain subjective and/or objec-
tive inaccuracies (errors). In cases when an inaccuracy is 
ignorable in relation to a given process value, it is omit-
ted in the synthesis and analysis of analytical models. 
When the inaccuracies are significant, two approaches are 
applied: the impact is reduced through pre-processing of 
the experimental data (smoothing, filtration, modelling, 
etc.) and usage of determinate methods and models; the 
second approach consists in using stochastic models of 
the processes and values, and application of appropriate 
methods of synthesis and analysis [1, 4-6, 8]. 

One of the popular methods of synthesis defined for 
noisy (stochastic) data which leads to optimal results 
(evaluations) in linear models is the Kalman filter. There 
are, however, enunciations of this method for non-linear 
models that yield quasi-optimal results. It is known that 
there are discrete enunciations of the Kalman filter for 
the estimation of states, of states and parameters (ex-
tended filter), and of parameters only (reverse filter) [2, 
3, 7]. 

The aim of this paper was to study the method of pa-
rameter estimation through Kalman recursions in [2, 7] 
with regard to various linear discrete models and the ab-
sence or presence of random environmental influences 
(noises) on the object. With noises present, it aimed to 
examine the cases when these were measurable or im-
measurable with known or unknown statistical distribu-
tion and characteristics; to study the impact of differ-
ent initial conditions on the algorithm convergence; to 
compare the method results to those of other MATLAB® 
accessible methods; to specify the algorithm and calcu-
lation predicaments arising for the software implementa-
tion of the method. 

COEFFICIENT ESTIMATION OF LINEAR DISCRETE 
MODELS USING THE KALMAN FILTER 

Figure 1: system object (O), Kalman filter (F), and 
input and output signals 

The method of estimating the coefficients of linear discrete 
models using the Kalman filter has been given in [7]. Fig.1 
represents a chart of the object system (O), the Kalman fil-
ter (F), and the input-output signals. u is the determinate 
part of the input signal to be measured without error, and 
y is object response – a determinate, measurable signal. 
This figure also shows: random signal w, measurable or not 
(there was assumed normal distribution, mathematical ex-
pectation mw = 0, and variance Dw = Q); measuring noise v, 
measurable or not random signal (normal distribution, math-
ematical expectation mv = 0 and variance Dv = R); random 
signal at object input uw; noise signal from the object out-
put to the filter input yv; filter output ye (estimation of object 
output); coefficients in the model studied Ž. It was assumed 
that the object model was a difference equation of the type: 

yv(k)+a1*yv(k-1)+a2*yv(k-2)+...+anа*yv(k-nа)=b1*uw(k-1)+b2*uw(k-
2)+...+bnb*uw(k-nb)+e(k) , (1) 

where:

uw(k) = u(k) + w(k)  ;     (2)
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yv(k) = y(k) + v(k) .     (3) 

The discrete transfer function of the type (z-1) correspond-
ing to (1) was 

W(z) = (b1 z
-1+b2 z

-2+…+bnb z
-nb)/(1+ a1 z

-1+a2 z
-2+…+ana z

-na)     
(4) 

Without losing totality, to make description easier, it was 
assumed na = nb = n. Then from equation (1), y(k) was ex-
pressed, and the result was 

yv(k) = -a1*yv(k-1)-a2*yv(k-2)-…-an*yv(k-n)+b1*uw(k-1)+b2*uw(k-
2)+...+bnb*uw(k-n)+e(k) ,     (5) 

where е(к) was the generalised error in the model. By read-
ing (2) and (3), equation (4) in vector form was 

yv(k) = [H(k)+hB(k)]*Z(k)+e(k) ,     (6) 

where: 

- Z(k) = [a1, a2, …an, b1, b2, …bn] is a vector column of the 
model’s coefficients; 

- H(k) = [-y(k-1), … -y(k-n), u(k-1), … u(k-n)] is a vector se-
ries, of the measured input-output values (regressors); 

- hB(k) = [v(k-1), …v(k-n), w(k-1),…w(k-n)] is a vector series, 
of the random parts of input-output values. 

The equations of the model within the state space were 
written down as follows: 

- equation of state was Z(k+1) = Z(k) ; 
- equation of output was yv(k)=[H(k)+hB(k)]*Z(k)+v(k). 

The equations of the Kalman filter were searched under 
the minimum error condition. 

ε(k) = Z(k)−Ž(k) ,  for k = n, n+1, n+2, …     (7)

Coefficients Ž(k) were determined by the filter equations 
[2, 4, 7] 

Ž(k) = Ž(k−1)+G(k)*[yv(k)−H(k)*Ž(k−1)] ,     (8) 

where: 

G(k)=P(k−1)*H′(k)[H(k)*P(k−1)*H′(k)+M{hB(k)*S(k)*hB(k)′}+Dv]
-1 

;     (9) 

P(k) = [1−G(k)*H(k)]*P(k−1) and S(k)=M{Ž(k)*Ž(k)′} . (10)

The initial conditions were: 

S(0)=M{Ž(0)*Ž(0)′}=c2*I;  c2→∞;  P(0)=S(0)     (11) 

Equations (8), (9) and (10) are also known as Kalman recur-
sion, and the algorithm for estimation of output ye and the 
model’s coefficients Z(k) are referred to as Reverse Kalman 
filter [2, 4, 7]. 

DESCRIPTION OF THE ALGORITHM AND PROGRAM 
FOR EXPLORING THE METHOD, ALGORITHM CALCU-
LATIONS AND PREDICAMENTS 
The general algorithm pattern for testing the method of 
model parameter estimation is given in fig. 2. The algo-
rithm is linear, including the basic stages successively, as 

illustrated in the figure. 

 Entering TC, mW, DW, mV, DV, and 
the type of model 

Entering TC, mW, DW, mV, DV, and 
the type of model 

Initialisation of the Kalman recursion Initialisation of the Kalman recursion 

Kalman filter recursion Kalman filter recursion 

Deduction of results on the 
estimates and the model 

relevance 

Deduction of results on the 
estimates and the model 

relevance 
Figure 2: general algorithm of the method 

Stage 1 Assignment of input data: 

- Entering Transient Characteristic yv, assuming that the 
values are read within a continuous interval of time Td = 
const; further, entering the discretisation period and input 
signal u; 

- Entering the random signal values w and v or their statis-
tical estimates Dw and Dv; 

- Entering the net delay (if any) as number of discretisation 
periods. 

Stage 2 Initialisation of the Kalman recursion that includes: 

- Assigning initial values to the vector of the searched co-
efficients Ž(0); 

- Assigning initial values to the variance matrix P(0); 

- Structuring vectors H and hB according to the model or-
der na (in the example below na=2); 

- Initialisation of the cycle of counting in which the equa-
tions of the two variants are executed. 

Stage 3 Executing the Kalman filter recursion. Two variants 
(V1 and V2) for second order models by means of the re-
cursion equations (12-19) are given below. V1 is for meas-
urable and V2 for immeasurable noise. In the first variant, 
equation (13) is complementary, and (14) and (18) are ex-
ecuted instead of (15) and (19). 

Figure 3: stage 3 - variant V1 
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Figure 4: stage 3 - variant V2

Stage 4 Deduction of results on the estimates and the 
model relevance: 

- Displaying the analytical expression of the model ob-
tained as a discrete transfer function; 

- Displaying the experimental transient characteristic and 
the model transient characteristic onto a single coordinate 
system; 

- Displaying the mean square differences (errors): MSE1 is 
between the experimental transient characteristic and the 
transient characteristic of the model, and MSE2 is between 
the experimental transient characteristic and the transient 
characteristic of the model obtained with the arx function 
in MATLAB®. 

When implementing the algorithm and the program the 
following traits were observed: 

- Variant V1: read measuring noise w, i.e. the values were 
assumed, and the statistical characteristics were calculated. 
Various random signals were studied; 

- Variant V2: did not read random signals, and the respec-
tive members in (13) were omitted, (14) transformed into 
type (15), (18) transformed into type (19). No information 
on the random signals was available, random signal w of 
normal distribution, centred, with minimum dispersion was 
assumed; 

- Selection and assignment of initial values to the searched 
coefficients Ž(0) and the variance matrix of error P(0); 

- The sum M{hB(k)*S(k)*hB(k)′}+Dv in equation (9) affected 
the rate of the recursion convergence. In [4] it is recom-
mended that this sum be altered in the course of recursion 
in a specific way (reduction until saturation of the algo-
rithm is reached). In the present experiment, for the bulk 
of cases, the best results were obtained for 

M{hB(k)*S(k)*hB(k)′}=0.001*Ž′(k)*Ž(k) .     (20) 

EXPERIMENTAL DATA AND SIMULATION RESULTS
The method was examined through software implementa-
tion of an algorithm containing the Kalman recursion and 
simulation data identification. The MATLAB® computing 
environment was used for the simulation and the method 
comparison. In identification, no methods exist for an un-
ambiguous definition of the model order if only the trans-
fer characteristic is known, therefore the model order in 
the experiments was selected by intuition, hence an error 
resulting from an inappropriate order assumption was likely 
to occur. The model order and the program delay were set 
by means of properly structuring vectors H and hB. The 
presence of a net delay in the data was a priori read and 
set in hB. The method only accounted for the transient de-
lay by the model order. 

The adequacy of the models obtained in relation to the 
set transient characteristic was estimated by visually com-
paring the set transient characteristic to the theoretical 
transient characteristic (TC), and the models were com-
pared using the mean square difference (MSE1). In all sim-
ulations the method examined was compared to the arx 
method of the MATLAB® ident extension, and the MSE1 
and MSE2 differences were compared to the set TC. The 

arx method is a variation of the Least Square Method with 
QR factorisation. Being on the input of the identified ob-
ject, the impact of the process noise w on the object out-
put depended on the static and dynamic properties of the 
object. Therefore in this paper the impact of the process 
noise was neglected, i.e. only the effect of the additive 
measuring noise on the method results was explored. 

Figure 5: models TF1*TF1

Figure 6: models TF1*К2

The program and the algorithm were explored regarding 
the two cases most often occurring in practice: measurable 
interferences (variant 1 – V1), and immeasurable interfer-
ences (variant 2 – V2). With the measurable interferences 
(V1) the method allowed for reading their observed values 
(the vector) and the variance var(v). Fig. 5, 6 illustrate the 
results for the approximation of a monotonic and oscillatory 
transient characteristic. In fig. 5, TC of the object is approxi-
mated to an aperiodic second order model with two con-
secutive aperiodic third order members (TF1*TF1). In fig. 6, 
TC of the object is approximated to a third order oscillatory 
model, i.e. aperiodic first order member consecutively to a 
second order fluctuating member (TF1*К2). Fig.5 and fig.6 
(1) show TC disturbed by random signals of normal distribu-
tion, centred, and of dispersion, 10% and 8% respectively 
of the value found. Graphs (1) in these figures represent 
the noisy TC that could also be experimental but are in 
this case simulated random values. Graphs (2) represent the 
noisy response of the model ye. For the purpose of compar-
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ison, graphs (3) represent the response of the model in the 
determinate case (without noise). Table 1 represents data 
and results of the two identified models (fig.5 and fig. 6). 

TABLE - 1 DATA AND RESULTS OF THE MODELS 
(TF1*TF1, and TF1*К2) 

TF1*К2 TF1*TF1
Td(sec.) 2 2
u 1 1
w(%*u) 0 0

v(%*yуст) 8 10
MSE1 0.4886 0.1834
MSE2 0.4982 0.1797

Figure 7: variation of the coefficients during Kalman re-
cursion  

Fig. 7 shows the variation of the coefficients in 80 cycles 
(epochs) of the method recursion for the oscillatory model. 
MSE1 is the mean square difference between TC (1) and 
TC (2) with the Kalman filter, MSE2 is the same difference 
obtained using the arx method, and StE is the static error 
of the obtained model TC.

Figure 8a: effect of the mean of distribution mV (DV=0) 
 

Figure 8b: effect of the mean of distribution mV (DV=0)

Figures 8a and 8b illustrate how the variation in the mean 
of distribution (mv = 0 ÷ 2.5) affected the type of the mod-
el TC. The TCs refer to models derived by the V2 variant. 
Fig. 8b shows the MSE1 difference for the two variants of 
the method and the StE error in a steady-state mode. 

Figure 9a: effect of the dispersion DV (mV=0) 

Figure 9b: effect of the dispersion DV (mV=0)

Figures 9a, and 9b illustrate how the variation in the dis-
persion (Dv = 0 ÷ 1.4) affected the type of the model TC. 
The TCs refer to models derived by the V2 variant. Fig 
9b shows the MSE1 difference for the two variants of the 
method and the StE error in a steady-state mode. 

Fig. 10 demonstrates how the mean mv, and the disper-
sion Dv together affected the model TC (the values dis-
played for mv and Dv were part of the output value found).

Figure 10: joint effect of mV and DV
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Figure 11: effect of discretisation step Тd 

Figure 11 illustrates how the model TC varied with the var-
iation in the discretisation step Td  = (0.1 ÷ 5) s.

In the course of the study, the method was tested: for 
other types of linear models; for noises of distribution dif-
ferent from the normal ones (Weibull, or other); for pres-
ence of random noise at the object input; for various ini-
tial conditions, etc. The results are summarized in the next 
section. 

ANALYSIS AND COMPARATIVE EVALUATION OF THE 
METHOD 
The test results, some of which presented above in the fig-
ures and tables, allowed the following conclusions: 

- The method was converging and applicable to the es-
timation of the parameters of linear (according to the su-
perposition principle) discrete models (fig. 5 and 6). The 
method was applicable to damping/non-damping transient 
characteristics. 

- The method accounted for the noises in the measuring 
part and was applicable for two variants (V1 and V2), for 
measurable and immeasurable noise respectively. 

- The results obtained by using the method were compara-
ble to those of the arx method in the MATLAB® ident ex-
tension, which is a variant of the Least Square Method with 
QR factorisation (fig. 12). In this figure, MSE1 is the mean 
square difference between TC (1) and TC (2) with the 
Kalman filter, and MSE2 is the same difference obtained 
by the arx function in MATLAB®. 

Figure 12: The method in comparison with the arx func-
tion (mV=0-2.5, DV=0, Td=2)  

- The results obtained depended on the statistical parame-
ters of the interferences: noises had less effect on the esti-
mations if it was possible to apply variant V1 (fig. 8 and 9); 
the method offered allowed to fully compensate centred 
interferences of normal distribution and intensity of 8-10% 
of the established value; the mean of distribution of a ran-
dom noise of normal distribution had an analogical effect 
to that of a permanent interference of zero dispersion (fig. 
8), and the increase in the mean of distribution propor-
tionally changed only the static amplification factor of the 
model obtained; the dispersion only slightly influenced the 
static amplification factor but strongly affected the rest of 
the parameters of the model obtained (fig. 9); the symmet-
rical distributions (+ and – random quantity value) affected 
the results like a normal centred distribution, and the non-
symmetrical distributions affected the parameters in a way 
analogical to the variation in the mean of distribution. 

- The method results depended on the discretisation pe-
riod Тd (fig. 11), and good results were obtained with dis-
cretisation step Td 8-12 times as small as the time constant 
in the model (if the step was smaller, the error was consid-
erable). 

- The method and the implementation algorithm were ap-
plicable without any significant changes to both practical 
cases, i.e. with an priory available set of data or when the 
data were obtained in real time. 

- The calculation specificities were of the type typical of 
the discrete Kalman filter, namely: fast convergence within 
20 recursion cycles (fig. 7); initial values Ž(0) preferably as-
signed close to the actual ones (values significantly depart-
ing from the actual ones were likely to result in non-con-
vergence of the algorithm), and it was not recommended 
to attribute zero values, as suggested by some authors, 
since these values were in the denominator of equation 
(15); the rate of convergence depended on the initial val-
ues of the variance matrix of error P(0) of the coefficients 
(it is suggested that [1, 5] be set as a diagonal matrix of 
infinite large values), but in the cases studied with c2 > 
1000 no better results were obtained; the algorithm for 
multi output models was sensitive to the input data due to 
the inversion in (14); in the present experiment, for equa-
tion (11) the best results were obtained for the type, shows 
in (20). 

M{hB(k)*S(k)*hB(k)′}=0.001*Ž′(k)*Ž(k) .l"

- Due to the requirement for linearity, the method exam-
ined could not define the net delay in the difference equa-
tion (the net delay, if any, needed to be determined a pri-
ori). 

- The impact of the process noise w(t) depended primarily 
on the static and dynamic parameters of the object, there-
fore its effect could not be studied. 
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