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1.1  INTRODUCTION : 

It is a well known fact that means-

Arithmetic, Geometric, Harmonic, Root- Square 

Mean, Heron’s Mean and Logarithmic means 

have wide applications in Mathematical Seiences, 

Statistical Analysis, Medical Sciences, Budget 

Ananlysis, Planning, Environmental Sciences and 

many others. Recently Kapur and Sharma [12] 

have applied the Arithmetic, Geometric and 

Harmonic means in information measures for 

increasing and decreasing probability 

distributions and characterized the newly 

monotonic measures of information ; entropy, 

inaccuracy and divergence measures and their 

concavity and convexity. 

 Recently generalization of these means 

have created an interest among Liu, H Meng, X-J 

[15] who introduced contraharmonic mean as 

Seifferts mean and established different 

inequalities. Logarithmic mean which can be 

expressed in terms of Gauss’s hypergemetric 

function 2F1, has many applications. For example, 

a variant of Jonson’s functional equation, 

involving logarthim mean appears in heat 

conduction problems. 

Heronian and Seiffert means have 

applications in geometry, topology, ordinary 

differential equations and fuzzy sets. For 

example, Runge-Kutta methods are based on 

Heronian mean. A lot of work is being done by 

Zhi-Hua Zhang and Yu-Dong Wu [22], H.N. Shi, 

J. Zhang and Da Mao Li [5] and Huan Nan Shi 

and Zia Zhang [6], Ladislav Mate Jicka [14] have 

studied many types of means and characterized 

them and established bounds for them and 

concavity and convexity of these means. 

Taneja [8] considered the differences of 

means due to the fact that the divergence 

measures viz. Kullback and Leibler [13] 

divergence being the difference of inaccuracy 

measure and Shannon entropy, this divergence 

has been applied to many areas. 

Recently Javier E. Contreras-Reyes and 

Reinaldo B. Arellano-Valle [10] have applied 

Kullback-Leibler’s [13] divergence measure for 

multivariate Skew-Normal distributions to study 

seismic catalogue of the Servicio Sismologico 

National of Chile containing 6,714 aftershocks on 

a map [32-40S]  [69-75.5E] for a period 

between 27 February 2010 to 13 July 2011.  

Recently Zhi-Hua-Zhang and Yu-Dong 

Wu [22] have established some new bounds for 

logarithmic mean viz. : 
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and the generalized power type Heronian mean 

studied by G. Jia and J. D. Cao [4] is : 
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and t-order power mean defined by 
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The inequality studied by Liu [15] is given by 
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Another generalization of Heronian Mean is given 

by Zh – G.Xiao and Zh – H Zhang [21] as follows 
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As mentioned above, there are many 

generalizations of means due to their applications 

Recently Taneja [8] who generalized mean as 

mean of order t, t  0 as follows : 
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Also defined some mixed means such as : 
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So, Taneja [8] considered the difference 

of means exploiting Csiszar’s [7] f-divergence for 

probabilistic divergences, and has studied 

convexities of the difference- divergence 

measures of means stated above. 

The motivation for this study, is due to 

the fact that Singh and Tomar [8] have already 

studied fuzzy means of different kinds. Here in 

this communication our objective is to enhance 

the studies further considering mixed fuzzy means 

for weighted distributions, their difference-

divergences to establish new inequalities and 

bounds among them and their concavity, 

particularly in SN1, SN2 and SN3, which are 

defined in the next section along with others 

needed.  

 Importance of the event or experiment 

has been the outlook of every human being, 

therefore, we utilize, the weighted distribution 

corresponding to fuzzy set theoretic distribution 

and consider the following fuzzy information 

scheme : 

1 2

1 1 2

1 2

...........
( ) ( )....... ( ) (1.15)
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Hence the weighted fuzzy entropy is given by 

( ( ); ) ( ) log ( ) A i i A i A iF E W w E E  

(1 ( ) log(1 ( ) ) (1.16)  A i A iE E 

Since the basic objective is to study divergence of 

the fuzzy means weighted, so we consider the 

revised fuzzy information scheme as : 
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and define the weighted fuzzy divergence as : 
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A lot of literature is available for fuzzy entropy, 

information, divergence, inaccuracy and other 

fuzzy information indices in De Luca and Termini 

, Bezdek, Ebanks, Pal & Pal, Pal and Bezdek, 

Bhandari and Pal, Kapur, Hooda, Omparkash et. 

al. Gurdial et. al.  Loo Kauf Mann, Yagger,  

Kosko, Parade and many others. 

For more detail c. f Nikhil R. Pal and James C. 

Bezdek [16] for different types of fuzzy entropies, 

parametric and non-parametric. For divergence 

measures, c.f Kapur [11], Parkash [17], Singh and 

Tomar [20] and Bhatia and Singh [2]. Recently 

Priti, Sharma and Singh [18] considered fuzzy 

weighted divergence-differences and studied their 

concavity. Inequalities among weighted fuzzy 

means have been studied by authors [18].  

Since in this communication, our objective is to 

consider divergence of fuzzy means as difference 

of means, so we define the weighted t-order fuzzy 

mean as follows : 
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and the particular cases for different values of t, 

corresponding to equation (1.9) and (1.10) as 

follows: 

Particular Cases 

Sr.No. t Mean Fuzzy Expression 

1. When 

t = -1  

Fuzzy Harmonic Mean   

=M-1(A, B; W) 

=H(A(Ei), B(Ei); W) 

1
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Fuzzy Arithmetic Mean = 

M1(A, B; W) 
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5. When 

t = 2 

Fuzzy Root-Square Mean= 

M2(A,B;W)  

= S(A(Ei), B(Ei); W) 
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6. When 

t= 

Fuzzy M -(A, B; W) = min (A(Ei), B(Ei); W)

7. When 

t = 

Fuzzy M(A, B; W) = max (A(Ei), B(Ei); W) 
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MIXED WEIGHTED FUZZY MEAN MEASURES 
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In the next section, we present the weighted 

fuzzy mean-divergence measures. 

SECTION – 2 

2.1 Basic Mean Difference Divergence 

Measures 

In fact, the mean-difference-divergences to 

be utilized for the bounds to be discussed in the 

present papers are as follows : 
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SECTION – 3 

Functional Forms, First and Second 
Derivatives

Setting ( )A iE = x, ( )B iE = ½ in the above 
table, we have  
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2 2


  

 



SN

x x
f x

1 3 1
2 2 2 2
3 3


   

 



x xx x
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where Q is given by (3.11) 

SECTION-4 

Csiszar’s f-Divergence Extended For Fuzzy f-
Divergence 

Csiszar’s f-Divergence 

Definition : If the function f : (0, )  R is 
convex and normalized i.e. f(1) = 0, then the f-
divergence is given by: 

1
( || )



 
  

 


n
i

f i
i i

p
C P Q q f

q
(4.1) 

Extension for Weighted f-Divergence 

Definition : Let f-divergence defined by 
Csiszar[7] be 

1
( || :1)



 
  

 


n
i

f i
i i

p
C P Q q f

q

satisfied by f : (0, )  R, then the weighted f-

divergence is defined as : 

1
( || ; )



 
  

 


n
i

f i i
i i

p
C P Q W w q f

q
 (4.2) 

where  W = (w1, w2,………,wn), wi > 0 

 i = 1, 2, ……, n 

corresponding to the probability distributions 

 P = (p1, p2,………,pn)

 Q = (q1,q2,………,qn)

where 0  pi 1, 0  qi  1. 

1 1
1

 

  
n n

i i
i i

p q

Extension for Fuzzy f-Divergence 

 Analogous to Csiszar’s probabilistic f-

divergence, we define fuzzy f-divergence as 

below : 

Fuzzy f-Divergence : Let f : (0, ) R be a 

convex and normalized function such that 

1

( )
( || ) ( )

( )

 
  

 


n
A i

f B i
i B i

x
C A B x f

x





 (4.3) 

Weighted Fuzzy f-Divergence : Let 

1

( || ) ( )


 
  

 


n
A

f B i
i B

F A B x f





be the Fuzzy f-divergence, then the Weighted 

Fuzzy f-divergence is defined as 
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(4.4) 

Taneja[8] applied the following results : 

Lemma : Let f1, f2 : I  + be two convex 

functions that are normalized i.e.  f1(1) = f2(1) = 

0 and suppose the assumptions : 

(i) f1 and f2 are twice differentiable on [a, b]. 

(ii) There exist the real constants m and M such 

that m < M and  

"
"1

2"
2

( ) , ( ) 0, ( , ) (4.5)
( )

    
f xm M f x x a b
f x

then  

2 1 2
( || ) ( || ) ( || ) f f fmC P Q C P Q MC P Q (4.6) 

Considering (4.3), the Fuzzy Extension for (4.6) 

is : 

2 1 2
( || ) ( || ) ( || ) 

ff fmF A B F A B MF A B (4.7) 

and for Weighted Fuzzy f-Divergence, we have 

2 1 2
( || ; ) ( || ; ) ( || ; ) 

ff fmF A B W F A B W MF A B W

                                                                    (4.8) 

The above mentioned results (4.4), (4.5) and 

(4.8), have been exploited in section 5 for 

bounds, inequalities and concavity. 

SECTION – 5 

1 2 3
5. .           ,SN SN SNM M and M1 Concavity and Bounds for

 In this section we have considered the 

following inequalities/bounds: 

(i)
1

( , ; ) 2 ( , ; )SH A B SN A BM W M W   

3 ( , ; )
2

 SG A BM W 
      

(5.1) 

(ii)
2

4( , ; ) ( , ; )
5

SA A B SN A BM W M W   

2
4 ( , ; ) AN A BM W 

       
(5.2) 

and

(iii)
3

3( , ; ) ( , ; )
4

SA A B SN A BM W M W   

1

2 ( , ; )
3

 SN A BM W  (5.3) 

which have been established through 

prepositions as well as their concavity property 

which is needed in case of detailed analysis. Now 

we consider the inequality (5.1) through the 

following prepositions. 

Preposition 1 : The following inequality holds 

good. i.e. Lower Bound for 
1SNM  

i.e.

1
( ( ), ( ); ) 2 ( ( ), ( ); )SH A i B i SN A i B iM x x W M x x W   

or 

1
( || ; ) 2 ( || ; )SH SNM A B W M A B W        (5.4) 

Proof : Let us define 

1

1

"

"

( )( ) , (0,1)
( )   SH

SH SN
SN

f xh x x
f x

=
   

3 3

33
22

1 1
1 3
2 2

1 12 2 1
4 4



 
       
   

    

P
x x

P x x
     (5.5)

Differentiating (5.5) w.r.t. x, we get 

1

4 4

2

3 3'
1 3
2 2' ( )

 
 
  
         

    SH SN

D P
x x

h x
D
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3 5
2 2

2

3 3' 2 2(1 )
4 4 (5.6)

       
N P x x

D

where N and D stands for numerator and 

denominator of (5.5). 

From (5.6), we observe that 

1

1

1

(0,1)

10,
2
10,
2' ( )

( )

1 2
2








 

 




     

 

SH SN
SH SN

x

SH SN

when x

when x
h x

M Sup h x

h

            (5.7) 

Hence from (5.6) & (5.7), we observe that the 

function 
1
( )SH SNh x is increasing in x  (0, ½) 

and decreasing in x  (½,1). Hence CONCAVE 

in (0,1),  x  (0,1), w > 0. 

Now applying (4.8) for MSH(A||B; W) and 
1SNM

(A||B;W), together with (5.7), we get the required 

inequality i.e. 

 MSH(A || B; W)  2 
1SNM (A || B; W). 

Preposition 2 : The following inequality holds 

good :  

1

3( ( ), ( ); ) ( ( ), ( ); )
4

SN A i B i SG A i B iM x x W M x x W   

or
 

1

3( || ; ) ( || ; )
4

SN SGM A B W M A B W          (5.8) 

Proof : Let us define 

1

1

"

"

( )
( ) , (0,1)

( )   SN
SN SG

SG

f x
h x x

f x

3 3
2 2

3 3
2 2

1 1(2 ) (2(1 ))
4 4

1 1 1
16 2 16 2

 

 

  


       
   

P x x

x xP

(5.9) 

Differentiating (5.9) w.r.t., we get 

    
1

55
22

2

3 3' 2 2 1
4 4

' ( )





 
   

 SN SG

D P x x
h x

D
5 5
2 2

2

3 3 1'
64 2 4 2

              
 

x xN P

D
 (5.10) 

From (5.10), we observe that 

1 1

1

'

(0,1)

10,
2
10,
2

( ) ( )

1
2

3
4

 





 

 
 

    

 





SN SG SN SG
x

SN SG

when x

when x

h x M Sup h x

h

 (5.11) 

From (5.10) and (5.11), we observe that 
1SN SGh 

(x) is increasing in x  (0, ½) and decreasing in x 

 (½, 1). Hence CONCAVE in x  (0, 1), w > 0. 

Now Applying (4.8) for
1SNM (A||B;W) and 

MSG(A||B; W) together with (5.11), we get the 

required inequality i.e. 

1

3( || ; ) ( || ; )
4

SN SGM A B W M A B W .

Now combing proposition (1) and Proposition 

(2), we get the required inequality : 

1

3( || ; ) 2 ( || ; ) ( || ; )
2

 SH SN SGM A B W M A B W M A B W

Preposition 3 : The following inequality holds 

good, i.e. Lower Bound for 
2SNM :
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3 5
2 2

2

3 3' 2 2(1 )
4 4 (5.6)

       
N P x x

D

where N and D stands for numerator and 

denominator of (5.5). 

From (5.6), we observe that 

1

1

1

(0,1)

10,
2
10,
2' ( )

( )

1 2
2








 

 




     

 

SH SN
SH SN

x

SH SN

when x

when x
h x

M Sup h x

h

            (5.7) 

Hence from (5.6) & (5.7), we observe that the 

function 
1
( )SH SNh x is increasing in x  (0, ½) 

and decreasing in x  (½,1). Hence CONCAVE 

in (0,1),  x  (0,1), w > 0. 

Now applying (4.8) for MSH(A||B; W) and 
1SNM

(A||B;W), together with (5.7), we get the required 

inequality i.e. 

 MSH(A || B; W)  2 
1SNM (A || B; W). 

Preposition 2 : The following inequality holds 

good :  

1

3( ( ), ( ); ) ( ( ), ( ); )
4

SN A i B i SG A i B iM x x W M x x W   

or
 

1

3( || ; ) ( || ; )
4

SN SGM A B W M A B W          (5.8) 

Proof : Let us define 

1

1

"

"

( )
( ) , (0,1)

( )   SN
SN SG

SG

f x
h x x

f x

3 3
2 2

3 3
2 2

1 1(2 ) (2(1 ))
4 4

1 1 1
16 2 16 2

 

 

  


       
   

P x x

x xP

(5.9) 

Differentiating (5.9) w.r.t., we get 

    
1

55
22

2

3 3' 2 2 1
4 4

' ( )





 
   

 SN SG

D P x x
h x

D
5 5
2 2

2

3 3 1'
64 2 4 2

              
 

x xN P

D
 (5.10) 

From (5.10), we observe that 

1 1

1

'

(0,1)

10,
2
10,
2

( ) ( )

1
2

3
4

 





 

 
 

    

 





SN SG SN SG
x

SN SG

when x

when x

h x M Sup h x

h

 (5.11) 

From (5.10) and (5.11), we observe that 
1SN SGh 

(x) is increasing in x  (0, ½) and decreasing in x 

 (½, 1). Hence CONCAVE in x  (0, 1), w > 0. 

Now Applying (4.8) for
1SNM (A||B;W) and 

MSG(A||B; W) together with (5.11), we get the 

required inequality i.e. 

1

3( || ; ) ( || ; )
4

SN SGM A B W M A B W .

Now combing proposition (1) and Proposition 

(2), we get the required inequality : 

1

3( || ; ) 2 ( || ; ) ( || ; )
2

 SH SN SGM A B W M A B W M A B W

Preposition 3 : The following inequality holds 

good, i.e. Lower Bound for 
2SNM :

13 
 

2

4( , ; ) ( , ; )
5

SA A B SN A BM W M W   

 (5.12)

Proof : We define 

2

2

"

"

( )( ) , (0,1)
( )   SA

SA SN
SN

f xh x x
f x



P

P Q
   (5.13) 

Differentiating (5.13) w.r.t. x, we get 

2 2

( ) ' ( ) '' ( )
( )

  


SA SN

P Q P P P Qh x
P Q

 
 (5.14) 

Setting the values of P, Q, P, Q, we conclude 
that

2 2

2

'

(0,1)

10,
2
10,
2

( ) sup ( )

1
2

4
5

 





 

 
 

    

 




SA SN SA SN
x

SA SN

when x

when x

h x M h x

h

 (5.15) 

We observe from (5.14) and (5.15) that the 

function 
2SA SNh  (x) is increasing in x      (0, ½ ) 

and decreasing in x  ( ½ , 1), hence 

CONCAVE in x (0, 1), w > 0. 

Applying (4.8) 

2 1 2
( || ; ) ( || ; ) ( || ; ) f f fmF A B W F A B W MF A B W

                    
(5.16) 

due to Singh and Tomar [20], being an extension 

of Csiszar’s [7] and Taneja [8] for MSA(A || B; 

W) and 
2SNM (A || B; W) alongwith (5.15), we 

get required inequality (5.12). 

Preposition 4 : The following inequality holds 

good : Upper Bound for 
2SNM

2 2

4 ( || ; ) ( || ; )
5

SN ANM A B W M A B W
     

(5.17) 

Proof : We define 

2

2 2

2

"

"

( )
( ) , (0,1)

( )   SN
SN AN

AN

f x
h x x

f x

= P Q
Q    

 (5.18) 

where P and Q are given by (3.7) and (3.11). 

Differentiating (5.18) w.r.t.  , we get 

2 2

'
2

( ) ' '( )( )
  

SN AN
Q P Q Q P Qh x

Q
(5.19) 

We observe from (5.19) 

2 2 2 2

2 2

'

(0,1)

10,
2
10,
2

( ) sup ( )

1 ;1
2

4
5

 





 

 
 

    

 




SN AN SN AN
x

SN AN

when x

when x

h x M h x

h

 (5.20)

From (5.19) and (5.20), we observe that the 

function 
2 2SN ANh (x) is increasing in x  (0, ½ ) 

and decreasing in x  ( ½ , 1), hence 

CONCAVE in x (0, 1), w > 0. 

Utilizing (4.8) for 
2SNM (A || B; W) and 

2ANM

(A || B; W) together with (5.20), we conclude 

that the inequality (5.2) is satisfied. 

Now combining prepositions 3 and 4, we get the 

required inequality  
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2

4( , ; ) ( , ; )
5

SA A B SN A BM W M W   

2
4 ( , ; ) AN A BM W 

Preposition 5 : The following holds good : 

Lower Bound for 
3SNM

3

3( ( ), ( ); ) ( ( ), ( ); )
4

SA A B SN A BM x x W M x x W   

(5.21)

or 

3

3( || ; ) ( || ; )
4

SA SNM A B W M A B W

Proof : We define 

3

3

"

"

( )( ) , (0,1)
( )   SA

SA SN
SN

f xh x x
f x

3 3 3
2 2

( )
1 1 1
48 2 48 2


 


       

   

SA SN
Ph x

x xP (5.22) 

Differentiating (5.22) w.r.t. x, we get 

3

5 5
2 2

2

3 3 1' '
192 2 192 2

' ( )

 



              
 SA SN

x xDP P P

h x
D

                
(5.23)

From (5.23), we observe that  

3 3

3

(0,1)

10,
2
10,
2

' ( ) sup ( ) (5.24)

1
2

3
4

 





 

 
 

    

 




SA SN SA SN
x

SA SN

when x

when x

h x M h x

h

From (5.23) and (5.24), we observe that the 

function 
3
( )SA SNh x is increasing in           x 

(0, ½ ) and decreasing in x  ( ½ , 1), hence 

CONCAVE in x (0, 1), w > 0. 

   
3SAApplying 4.8  for M A ||  B;  W  and SNM

(A || B; W) together with (5.24), we get the 

required inequality (5.21). 

Preposition 6 : The following inequality holds 

good : Upper Bound 
3SNM

3 1

3 2( ( ), ( ); ) ( ( ), ( ); )
4 3

SN A B SN A BM x x W M x x W   

           (5.25) 

or
3 1

8( || ; ) ( || ; )
9

SN SNM A B W M A B W

Proof : We define 

3

3 1

1

"

"

( )
( ) , (0,1), 0

( )    SN
SN SN

SN

f x
h x x w

f x

   
3 1

3 3
2 2

3 3
2 2

1 1 1
48 2 48 2( ) 1 12 2(1 )
4 4

 


 

       
   

  
SN SN

x xP
h x

P x x

(5.26) 
Differentiating (5.26) w.r.t. x, we get 

3 1

5 5
2 2

2

3 3 1'
192 2 192 2

' ( )

 



          
     SN SN

x xD P

h x
D

5 5
2 2

2

3 3' (2 ) (2(1 ))
4 4

      
  

N P x x

D
(5.27)

We conclude from (5.27) 

3 1 3 1

3 1

(0,1)

10, 0,
2

10, ,1
2

' ( ) sup ( ) (5.28)

1
2

3
4

 




    
  
      
 

    

 




SN SN SN SN
x

SN SN

when x

when x

h x M h x

h

From (5.28), we observe that the function 

2 1
( )SN SNh x is increasing in x  (0, ½ ) and 
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decreasing in x  ( ½ , 1), hence CONCAVE in 

x (0, 1), w > 0. 

   
3 1SNApplying 4.8  for M A ||  B;  W  and SNM

(A || B;W) together with (5.28), we get the 

required inequality (5.25). 

Now combining prepositions (5) and (6), we get 

the required inequality 

3 1

3 2( , ; ) ( , ; ) ( , ; )
4 3

 SA A B SN A B SN A BM W M W M W     
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