

Effect of Textile Effluent on The Growth And Pigment Content of *Tagetes erecta* L. (Var. Pusa Basanti)"

KEYWORDS	Chlorophyll, Effluent, Growth, Plant, Textile				
Ak	rity Parihar	Piyush Malaviya			
	onmental Sciences, University of mmu - 180006, India.	Department of Environmental Sciences, University of Jammu, Jammu-180006 (J&K) India			
ABSTRACT The effect of different concentrations of sawdust treated and untreated textile effluent on plant growth					

and pigment content of Tagetes erecta (var. Pusa basanti) were evaluated in a pot level experiment. The seedlings of Tagetes were sown in soil-filled pots and irrigated with four different concentrations (25%, 50%, 75% and 100% v/v) of sawdust treated or untreated textile effluent. The data for various attributes were collected 60 days after sowing. It was observed that higher concentrations of effluent decreased the growth while the lower concentration (25%) of sawdust treated textile effluent was effective in increasing the growth of Tagetes erecta when compared with control. The increase in growth was associated with increased photosynthetic pigments, carotenoids, anthocyanins. The better growth of plants irrigated with (25%) of sawdust treated textile effluent suggested that effluent could be used for irrigation in nutrients deprived environments but only after proper dilution.

1. INTRODUCTION

The wastewater from textile manufacturing is typically alkaline and has high BOD (700 to 2,000 mg L⁻¹) and COD (150 to 12,000 mg L-1) loads [1]. Pollutants in textile effluents include suspended solids, mineral oils (e.g. anti foaming agents, grease, spinning lubricants), organic compounds, non-biodegradable or low biodegradable surfactants (alkylphenol ethoxylates) and halogenated organics from solvents used in bleaching [2]. The highly variable and complex chemical structure of the dyes and textile effluent make them difficult to remove using conventional wastewater treatment systems. In many parts of the world, wastewater is used for the irrigation of various crops including agronomic, horticultural and tree crops. There are several reports of both beneficial and damaging effects resulting from irrigation of crops with effluents from various industries. e.g. distillery [3], dyeing [4] and textile [5]. In the present study, Tagetes erecta var. Pusa basanti (marigold) was used as a test plant for the analysis of the growth and pigment content under different concentrations of sawdust treated and untreated textile effluent.

2. MATERIAL AND METHODS

2.1 Effluent collection and analysis

Effluent was collected from the main outlet of Chenab textile mill, Kathua, Jammu, Jammu and Kashmir in plastic containers and divided in two parts; one part of the effluent was treated by the method as recommended by Izadyar and Rahimi [6] i.e. using sawdust as adsorbent. This part of effluent was termed as treated effluent (TE) and the other part of effluent was termed as untreated effluent (UE).

2.2 Experimental design

The experimental setup was designed in the Department of Environmental Sciences, University of Jammu, Jammu and Kashmir. Nine treatments were made; each consisted of three replicates. E_0 was taken as control in which ordinary tap water was used for the irrigation of plants. TE_{25} , TE_{50} , TE_{75} and TE_{100} were irrigated with sawdust treated effluent concentrations of 25%, 50%, 75% and 100%, respectively and for the UE₂₅, UE₅₀, UE₇₅ and UE₁₀₀, untreated effluent concentration of 25%, 50%, 75% and

100% were used for irrigation, respectively.

2.3 Plant material, growth and treatment conditions

The seeds of *Tagetes erecta* were sown in the month of October in trays maintaining proper spacing and irrigated with respective treatment viz. tap water or different concentration of treated or untreated effluent. On 30th day after sowing (DAS), the seedlings were transplanted one each in earthen pots having 220 mm diameter and 2 kg capacity maintaining three replicates for nine treatments. The pots were irrigated daily at the rate of 200 ml pot¹ with different effluent concentrations of treated and untreated effluent upto 60th DAS.

2.4 Growth data

The plants were uprooted on 60th DAS from the pots of each treatment and examined for various growth parameters viz. root length, shoot length, plant length, fresh weight, dry weight and moisture content.

1.5Pigment content

The leaf samples of the plants were analyzed for chlorophyll and carotenoid estimation according to method described by Arnon [7] and Duxbury and Yentsch [8] respectively. Anthocyanin quantification was performed using method adopted by Deikman and Hammer [9].

2.6 Statistical analysis

The data observed in the experiment were statistically analyzed using SPSS Inc (V 16.0) software for mean and standard error estimation. The quantitative changes observed for various parameters due to application of different concentration of effluent were evaluated for the level of significance at 5% using Duncan's Multiple Range Test (DMRT).

3. RESULTS AND DISCUSSION

The growth parameters showed a gradual decline from 25% to 100% (treated and untreated textile effluent) with increase in the effluent concentration (Table 1). The lower concentrations (25% treated and untreated textile effluent) favoured the better growth of seedlings due to optimum quantities of micro- and macro-nutrients available in the effluent essential for plant growth. Saxena [10] also reported

that the low amount of oxygen in dissolved form due to the presence of higher concentration of solids in the effluent reduced the energy supply through anaerobic respiration resulting in restriction of the growth and development of the plant at higher effluent concentrations.

Table 1: Effect of different concentrations of treated and untreated textile effluent on growth parame	ers (root
length, shoot length, root shoot ratio, plant length, biomass and moisture content) ¹ of Tagetes erecta L. Pusa	basanti

Treatments	Root length	Shoot length	Root shoot	Plant length	Fresh weight	Dry weight	%
	(cm)	(cm)	ratio	(cm)	(g)	(g)	Moisture
Control (E ₀) ²	11.23 ^{ab} <u>+</u> 0.08	24.80ª <u>+</u> 0.90	0.45 ^{ab} <u>+</u> 0.014	36.03ª <u>+</u> 0.97	24.13 ^b <u>+</u> 1.28	5.05 ^b <u>+</u> 0.37	79.09 ^{ab} <u>+</u> 0.43
Treated effluent (TE) ³							
TE ₂₅	11.73ª <u>+</u> 0.33	25.76ª <u>+</u> 0.08	0.45ª <u>+</u> 0.011	37.50ª <u>+</u> 0.41	27.80ª <u>+</u> 0.51	5.73ª <u>+</u> 0.12	79.37ª <u>+</u> 0.09
TE ₅₀	10.46 ^b <u>+</u> 0.08	23.26 ^b <u>+</u> 0.14	0.44 ^{ab} <u>+</u> 0.001	33.73 [⊾] <u>+</u> 0.23	19.56 [°] <u>+</u> 0.38	4.07° <u>+</u> 0.07	79.17ª ^b <u>+</u> 0.10
TE ₇₅	9.20 ^c <u>+</u> 0.11	20.53° <u>+</u> 0.08	0.44 ^{ab} <u>+</u> 0.003	29.73° <u>+</u> 0.20	13.56 ^f <u>+</u> 0.45	3.36 ^{de} ± 0.04	75.15 ^d <u>+</u> 0.49
TE ₁₀₀	8.26 ^{de} <u>+</u> 0.17	18.86 ^d <u>+</u> 0.17	0.43 ^{ab} <u>+</u> 0.005	27.13 ^d <u>+</u> 0.35	9.56 ^g <u>+</u> 0.48	2.41 ^f <u>+</u> 0.15	74.75 ^d <u>+</u> 0.40
Untreated efflu- ent (UE)⁴							
UE ₂₅	10.50 ^b <u>+</u> 0.15	22.9 ^b <u>+</u> 0.10	0.45 ^{ab} <u>+</u> 0.004	33.40 ^b <u>+</u> 0.25	17.35 ^d <u>+</u> 0.01	3.75 ^{cd} <u>+</u> 0.02	78.39 ^{ab} <u>+</u> 0.10
UE ₅₀	9.26° <u>+</u> 0.06	20.63° <u>+</u> 0.03	0.44 ^{ab} <u>+</u> 0.002	29.9 [°] <u>+</u> 0.10	15.48° <u>+</u> 0.49	3.48 ^d <u>+</u> 0.04	77.44 ^{bc} ± 0.46
UE ₇₅	8.3 ^{cd} ± 0.06	19.70 ^{cd} <u>+</u> 0.10	0.44 ^{ab} <u>+</u> 0.001	28.53 ^{cd} <u>+</u> 0.16	12.26 ^f <u>+</u> 0.58	2.93 ^e <u>+</u> 0.14	76.07 ^{cd} ± 0.27
UE ₁₀₀	7.53° <u>+</u> 0.63	17.63° <u>+</u> 0.78	0.42 ^b <u>+</u> 0.017	25.16° <u>+</u> 1.41	7.21 ^h <u>+</u> 0.51	2.35 ^f <u>+</u> 0.08	67.23° <u>+</u> 1.33

Within each column, values not followed by the same letter are significantly different at $p \le 0.05$ ¹Mean <u>+</u>SE of three replicates

² E₀: tap water

 ${}^{3}\text{TE}_{25}$, TE₅₀, TE₇₅, TE₁₀₀: 25, 50, 75 and 100% of sawdust treated textile effluent, respectively ${}^{4}\text{UE}_{25}$, UE₅₀, UE₇₅, UE₁₀₀: 25, 50, 75 and 100% of untreated textile effluent, respectively

The chlorophyll a, chlorophyll b, carotenoids, total chlorophyll and anthocyanin recorded the highest values at TE₂₅ while lowest at UE₁₀₀. However, chlorophyll a/b ratio showed an increasing trend with increasing concentrations of effluent (Table 2). The increase in pigment content at low effluent concentration may be due to optimum levels of nitrogen and other minerals present in the effluent while as increased mineral content at the higher concentrations of effluent interact antagonistically with physiological conditions necessary for the synthesis of

chlorophyll [11]. Carotenoid is also a photosynthetic pigment which functions as non-enzymatic antioxidant protecting plants from oxidative stress by changing the physical properties of photosynthetic membranes with involvement of xanthophyll cycle [12]. The anthocyanin showed a decreasing trend with corresponding increase in the effluent concentrations of the treated and untreated effluent irrigated plants as in stress conditions, plants produce reactive oxygen [13] and anthocyanin acts as scavenger of these reactive oxygen intermediate [14].

Table 2: Effect of different concentrations of treated and untreated textile effluent on pigment cor	ntent ¹ (mg g ⁻¹ fresh
weight) of Tagetes erecta L. var. Pusa basanti	

Treatments	Chlorophyll a	Chlorophyll b	Chlorophyll a/b ratio	Carotenoid	Total chloro- phyll	Anthocyanin
Control (E ₀) ²	1.48 [♭] ± 0.04	0.436 ^b <u>+</u> 0.014	3.40° <u>+</u> 0.049	0.72ª <u>+</u> 0.017	1.99 ^{ab} <u>+</u> 0.025	0.485 ^{ab} ± 0.014
Treated effluent (TE) ³						
TE ₂₅	1.60ª <u>+</u> 0.04	0.473ª <u>+</u> 0.008	3.38° <u>+</u> 0.087	0.73ª <u>+</u> 0.032	2.08ª <u>+</u> 0.049	0.507ª <u>+</u> 0.001
TE ₅₀	1.43 ^b <u>+</u> 0.02	0.406 ^b <u>+</u> 0.008	3.52 ^{cde} ± 0.007	0.70 ^{ab} <u>+</u> 0.026	1.83° <u>+</u> 0.010	0.377° <u>+</u> 0.005
TE ₇₅	1.26° <u>+</u> 0.02	0.346 ^{cd} <u>+</u> 0.003	3.64 ^{bcd} <u>+</u> 0.045	0.55° <u>+</u> 0.023	1.64 ^d <u>+</u> 0.037	0.347 ^{de} <u>+</u> 0.015
TE ₁₀₀	1.02 ^d <u>+</u> 0.04	0.27° <u>+</u> 0.011	3.76 ^{ab} <u>+</u> 0.024	0.48 ^{cd} <u>+</u> 0.016	1.43° <u>+</u> 0.103	0.320 ^{ef} <u>+</u> 0.002
Untreated efflu- ent (UE) ⁴						
UE ₂₅	1.45 ^b <u>+</u> 0.02	0.413 ^b <u>+</u> 0.008	3.51 ^{de} <u>+</u> 0.069	0.70 ^{ab} <u>+</u> 0.037	1.86 ^{bc} <u>+</u> 0.032	0.472 ^b <u>+</u> 0.007
UE ₅₀	1.32 [°] <u>+</u> 0.01	0.366° <u>+</u> 0.008	3.60 ^{bcd} <u>+</u> 0.065	0.63 ^b <u>+</u> 0.011	1.73 ^{cd} <u>+</u> 0.02	0.358 ^{cd} <u>+</u> 0.013
UE ₇₅	1.21° <u>+</u> 0.03	0.33 ^d <u>+</u> 0.010	3.68 ^{abc} <u>+</u> 0.00	0.53° <u>+</u> 0.026	1.58 ^d <u>+</u> 0.051	0.323 ^{ef} <u>+</u> 0.002
UE ₁₀₀	1.0 ^d <u>+</u> 0.06	0.263° <u>+</u> 0.017	3.82ª <u>+</u> 0.063	0.41 ^d <u>+</u> 0.027	1.13 ^f <u>+</u> 0.052	0.302 ^f <u>+</u> 0.003

Within each column, values not followed by the same letter are significantly different at $p\leq 0.05$ 1Mean $\underline{+}$ SE of three replicates 2 E_n: tap water

 ${}^{3}\text{TE}_{25}^{0}$, TE₅₀, TE₇₅, TE₁₀₀: 25, 50, 75 and 100% of sawdust treated textile effluent, respectively ${}^{4}\text{UE}_{25}^{0}$, UE₅₀, UE₇₅, UE₁₀₀: 25, 50, 75 and 100% of untreated textile effluent, respectively

4. CONCLUSION

The growth parameters and pigment content of *Tagetes* erecta receiving various concentrations of treated and untreated effluent showed a declining trend with increasing effluent concentrations. The highest values were recorded at TE₂₅ (25% of treated textile effluent) while lowest at UE₁₀₀ (100% of treated textile effluent). The decrease in parameters at higher concentrations may be attributed to reduction in water absorption and other metabolic processes due to excessive quantities of nitrates, bicarbonates and chlorides in the effluent.

[1] Al-Kdasi, A., Idris, A. and Saed, K. (2011). Treatment of textile wastewater by advanced oxidation process. Global Nest: the Int J. 6, 222-230. [2] Chand, R., Brenner, H.D., Namkung, C.K., Collier, J.P. and Gogate, R.P. (2007). Water disinfection the novel approach of ozone and a liquid whistle reactor. Biomed. Eng. J. 35, 357-364. [3] Malaviya, P. and Sharma, A. (2011). Effect of distillery effluent on yield attributes of Brassica napus L. J. Environ. Biol. 32, 385-389. [4] Malaviya, P., Hali and R., Sharma, N. (2012). Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum). J. Environ. Biol. 33, 1075-1078. [5] Wins, J.A. and Murugan, M. (2010). Effect of textile mill effluent on growth and germination of black gram, Vigna mungo (L.) hepper. Int. J. Pharma and Biosci. 1, 1-7. [6] Izadyar, S. and Rahimi, M. (2007). Use of beech wood sadvulst for adsorption of textile dyes. Pak. J. Biol. Sci. 10, 287-293. [7] Amon, D.I. (1949). Copper enzymes in isolated chloroplast, polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1-15. [8] Duxbury, A.C. and Yentsch, C.S. (1956). Plankton pigment monographs. J. Marine Res. 15, 91-101. [9] Deikman, J. and Hammer, P.E. (1995). Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol. 108, 47-57. [10] Saxena, A. (2003). Irrigational impact of match factory effluent on Vigna mungo L. Hepper var. T9. Poll. Res. 22, 601-604. [11] Chandra, R.P., Abdulsalam, A.K., Salim, N. and Puthur, J.T. (2010). Distribution of bioaccumulated cadmium and chromium in two Vigna species and the associated histotological variations. J. stress Physiol. Biochem. 6, 4-12. [12] Gruszecki, W.I. and Strzatka, K. (1991). Does the xanthophylls cycle take part in the regulation of fluidity of the thylakid membrane? Acta Biochem. Biophys. 1060, 310-314. [13] Sherwin, H.W. and Ferrant, J.M. (1996). Differences in rehydration of three desiccation-tolerant angiosperm species. Ann. Bot. 78, 703-710. [14] Evans, C.A.R., Miller, N.J. and Paganga,