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ABSTRACT Here we try to explain the use of graphical displays for outlying and influential observations in regression 
analysis. An attempt has been made to classify the observations with the help of some two dimensional 

plots, which will be comprised of four quadrants.Depending upon the location of the observations, these will be la-
beled either as good or bad observations. The observations falling in the upper left and lower right quadrants will be 
subjected for further scrutiny. Also the findings are compared with robust regression. For ensuring proper use of such 
plots we use some well-referred datasets.

1. Introduction:The large amount of work on different 
types of influence measures with respective cutoffs has 
been enriching the statistical literature through several 
decades. Being a function of the sample size and number 
of predictors, there arise some confusing situations to use 
these cutoffs. Also validity of the cutoff value is subjected 
to some additional conditions. Now-a-days the major sta-
tistical packages avail the values of some outlier diagnos-
tics, which make the use of those diagnostics much wider. 
But the usage needs some proper guidelines regarding the 
benchmark value. Regarding the usage of these measures 
Kuntur et al. (2004) warned that we should try to examine 
the existence of a gap between the leverage values for 
most of the cases and the unusually high leverage value(s). 
This kind of gap can obvious through graphical displays 
in a lucid manner. As a preliminary diagnosis, the residual 
analysis isvery useful which reflect those maverick observa-
tions that pull the regression line disproportionately. Apart 
from the unstandardised version, the other types of residu-
als have their own advantages in detecting anomalous ob-
servations.

In this paper we have made an attempt to carve out the 
best use of thesescalar diagnostic measures and residuals. 
For this purpose different graphical displays are construct-
ed using three well-referred datasets. Most of the times 
plotting the measures against the observation label is suffi-
cient. Here we search for suitable pairs of measures whose 
two-dimensional plot can candidly track down outlying and 
influential observations.

2. Model Specification:

Let us consider the linear regression model with intercept 
in matrix form

where  is the response vector  with   is 
the design matrix; is the vector of parameters and  

 The ordinary least squares (OLS) estimate of β is 
given by   and the vector of fitted values 
as   where is the hatmatrix. 
The vector of OLSresidualsis.  The differ-
ent types of measures with different versions of scaled re-
siduals are as follows.

3. Diagnostics based on residual analysis: Since residual 
analysis deals with studying departures from assumption so 
it is useful to work with the scaled residuals. In ideal condi-
tions residuals have zero mean and their average variance 
is approximated by-

The different types of residuals are outlined below:
3.1.Studentized Residuals: Instead of the constant er-
ror variance if the exact variance is used then we have Var 
where  is the diagonal element of the projection matrix. 
Consequently the studentised residuals are dedined by-

It is also known as Internally Studentized Residuals.Belsey 
et al. (1980) recommended a cutoff value of for .

3.2. Externally Studentized Residuals:The Externally Stu-
dentized Residuals (also known as R-Student and Jackknife 
Residuals) are defined by-

The jackknife residuals respond more strongly to the pres-
ence of a single outlier than the standardized residuals. It 
provides an indication of the presence of a bad -value (At-
kinson, 1981).

3.3. Adjusted Residuals: Adjusted residuals are nothing 
but a simpler transformation of the ordinary residuals that 
possess the same ordering as that of the studentized resid-
uals (Marasinghe, 1985). These are defined by with usual 
cutoff 

4.ScalarMeasures of Influence Statistics:
4.1 Cook’s Distance: Cook (1997) proposed a measure us-
ing the information from the studentized residuals and the 
variances of residuals and predicted values. Denoting the 
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LSE of  without the ith observation as  the statistic is given 
by,

where 
,
 and. Here  combines residual magnitude and the 

location of the ith  point in  X-space to access influence.
examines the changes occurred in estimates for    when 
some cases are deleted. This is the basic idea in influence 
analysis as introduced by Cook (Su et al., 2012). A rule 
of thumb of  has been suggestedby Kenneth and Robert 
(1990), Cook and Weisberg (1982). Others have suggested 
. Also one noticeable thing is that, if all values of are simi-
lar, then there is likely no influential point (Vinoth andRaja-
rathinam, 2014).

4.2.COVRATIOi,:This measure uses the concept based on 
the role of the ith observation on the precision of estima-
tion and it is defined by

Here COVRATIOi>1 indicates that ith observation improves 
the precision of estimation and  COVRATIOi<1 indicates 
degradation. Belsley et al. (1980) recommended that the ith 
observation is influential if {(Montgomery et al., 2001).

4.3.DFFITSi,: It is a measure of influence introduced by 
Belsley, Kuh and Welsch (1980), which measures how the 
deletion of the ith observation influence the predicted or 
fitted values. It is given as

The rule of thumb is that an observation for which 
 warrants attention. Vellman and 

Wesch(1981) suggested that  values greater than 1 to 2 
warrant special attention (Montgomery et al., 2001). 

4.4. Hat matrix diagonals: The hat matrix plays an im-
portant role for detecting influential observations as 
it determines the variance and covariance of residu-
als   and that of fitted responses. 

 The diagonal  is the standardized measure 
of the distance of the ith observation from the centre (or 
centroid) of the X-space (Seber and Lee, 2003).Generally 
with an average value    and the data 
points with   may be regarded as outliers in X-space (Su et 
al., 2012). Larger the value  of, smaller is the. So large lev-
erage will lead to the closer fit of  Leverage reflects 
the position of an observation in the multidimensional 
space of the carriers or predictors (Velleman and Welsch, 
1981). In extreme case  , the error variance becomes 
zero. That’s why a point which is located extremely in the 
-space may not always influential unless it has an unusual 
value in -space. Another guideline is that   indicate very 
high leverage, whereas  indicate moderate 
leverage. Additional evidence of an outlying case is the 
existence of a gap between the leverage values for   most 
of the cases and the unusually high leverage value(s) (Kun-
turet al., 2004).

An outlier in predictor space may create a point of high 
influence  . Such a point may have a large effect on 
the fitted model, but since the standardized residuals all 
have same variance; a residual plot will not reveal such a 

point (Atkinson, 1983).

4.5. Potentials: Hadi (1992) found that if there is a high 
leverage point then the information matrix might have 
broken down and consequently the observations may not 
have the appropriate leverage. He introduced a single 
case deleted measure of leverage known as potentials de-
fined as

where  is the data matrix with ith row deleted. Its re-
lationship with hat diagonals is given by.  
Those observations with very large potentials are consid-
ered as high leverage points (Imon, 2005). Hadi suggested 
using the cut off as.  Here   is a constant 
appropriately selected such as 2 and 3. Also realizing the 
fact that mean and s.d. are non-robust even for one ex-
treme observation, Hadi suggests using median and me-
dian absolute deviation (MAD) respectively.

4.6. Robust Residual analysis:Another approach is the 
robust regression which is said to be insensitive to such 
wild points. But interestingly Hurber (1977) illustrated 
that in case of outliers in the predictor space robust ap-
proach may be inefficient.The routine application of robust 
regression automatically identifies the suspicious points. 
So whenever a LS analysis is performed, it is advisable to 
perform a robust fit also. If the residuals of the two pro-
cedures are in substantial agreement, then LS should be 
used, otherwise robust one. And reason for these differ-
ences should be identified. Observations in the robust fit 
should be carefully examined (Montgomery et al. 2001). 
Again regarding performance two properties of robust re-
gression are to be examined, viz. breakdown and efficien-
cy. And there are different estimators. Here we’ll examine 
the plot of robust residuals versus robust fitted values ob-
tained through M-estimator.

5. Graphical Displays:A common practice is to plot the LS 
residuals or the studentized or jackknifed residuals against 
variables such as the fitted responses or one or more ex-
planatory variables to detect outliers. These plots suffer 
from the fact that the impact of an outlier is not confined 
to inflating only its own residuals; it may inflate or deflate 
the residuals of the other observations too, perhaps mak-
ing itself more or less conspicuous in the detection pro-
cess (Kianifard and Swallow (1989)).Meloun and Militky 
(2001) used some types of plots, like, the graph of predict-
ed residuals, the William graph and the Rankit Q-Q plot.

The various diagnostic measures discussed above are dif-
ferently capable of showing the outlyingness either in the 
predictor space or in the response. Here we are trying to 
classify the observations by some 2-D plots, which will 
be comprised of four quadrants. Two different diagnostic 
measures will be chosen first, and their ordered values will 
be plotted along the two-axes. Corresponding to the cut-
offs two lines parallel to the horizontal and vertical axes 
will be drawn at the cutoff points. The observations fall-
ing on the lower left quadrant will be good observations. 
Those lying in the upper right quadrant will be either influ-
ential or outlier depending upon the plotted measure. The 
observations falling in the upper left and lower right quad-
rants will be subjected for scrutiny. For ensuring proper 
use of such plots we use some well-referred datasets. The 
selected datasets are examined in § 7. Although there may 
be plotted many combination along the two axes, here we 
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display only those which are able to met our objective.

6. Application of the Plots to the Well-Referred Data-
sets:
6.1.Stack loss Data: This classic dataset originally given by 
Brownlee (1965) consist of 21 observations with 3 predic-
tors. These observations are from 21 days’ operation of a 
plant for the oxidation of ammonia as a stage in the pro-
duction of nitric acid. The carrier variablesare:

=air flow, =cooling water inlet temperature( ), =acid 
concentration(%), and the response variable is Y=stack 
loss. Here Stack loss is the percentage of the ingoing am-
monia that escapes unabsorbed (David et al. 1993). The 
data were minutely analysed by Daniel and Wood (1980), 
who used LS method and concluded that observations 1st 

, 3rd, 4th& 21st were outlier. Andrews (1974) came to a simi-
lar conclusion using robust technique. The deletion of 21st 
observation drops the  from 178.83 to 105.6, i.e., approxi-
mately a 41 % decrease.As recommended by Daniel and 
Wood (1971), the data with 21 observations is to be fitted 
to a model consisting two linear terms and a quadratic 
term. Marasisinghe(1985) using the multistage procedure 
and Paul and Fung (1991) using GESR procedure showed 
that 4th and 21st observations are outliers. So according to 
our suggested plot the outlying 4 observations should be 
in the upper right quadrant. 

6.2. Longley Data: Longley presented a dataset consist-
ing six economic variables regressed on the total derived 
employment for the years 1947 to 1962 (Cook, 1977). 
Here the observations corresponding to the years 1951 
and 1962 have the greatest impact on the parameter es-
timates. After proper investigation it was found that 1951 
was the first full year of the Korean conflict. 6.3. Hawkins, 
Bradu and Kass (HBK) Data. Hawkins et al. (1984) pre-
sented a data set containing 75 observations, with a de-
pendent variable y and three predictor variables x1,x2, and 
x3. The data set was created so that it has extensive mask-
ing. Since the position of the bad points are known, such 
artificial data help us to get rid of some controversies that 
are inherent in the real data (Rousseeuw  and Leroy 1987). 
The data set consists of 75 observations in four dimen-
sions. The first 10 observations are bad leverage point, 
and the next 4 points are good leverage points.The first 
ten observations were spurious, with low values of hii. The 
next four were genuine observations, but with high lever-
age (“good leverage points”). Thus this data set contains 
18.6% outlying observations, 5.3% outliers in X-space, no 
outliers in y-space, and 13.3% Xy-space outliers.

7. Results and discussion: The three data sets are differ-
ent from each other in respect of dimension, degree of 
fitted model and nature of contamination, so same plot is 
expected to behave differently. From the fig.1(a) we see 
that the 4th and 21st observations are doubtful with high  , 
fig 1(b) clearly indicate that the points 2nd ,4th and 21st are 
influential and 1st observation is doubtful with high DFFITS 
value. Fig.1(c) labeled all the four observations as influen-
tial, fig1(d) is same as fig1(a) but it shows 1st and 2nd obser-
vation as good leverages. Fig1(e) indicates 4th and 21st as 
doubtful. The COVRATIO<1 for the observations 21st,4th,3rd 
also shows that their inclusion degrade the model, but 
with highest CORATIO for the 1st observation does not im-
prove the model. Fig 1(f) is the residual-fitted values plot 
from robust regression. It shows 4th, 3rd ,21st as outliers. 
Thus comparing with the standard results we see that the 
COVRATIO-Hat diagonal plot is sufficient. Also COVRATIO 
is partially powerful to detect the true outlier. The plot in 

fig.1(e), also known as Williams graph (Vinoth andRajarathi-
nam, 2014) is able to label only two ob-
servations (21st , 4th ) as outlier.Examining 
our plotted graphs we see that fig2(a) do not flag out out-
liers, it only shows 10th observation as doubtful with high 
studentized residual and 5th ,2nd ,16th as high leverage. 
Fig.2(b) shows 5th and 16th as influential but at the same 
time unnecessarily high values of DFFITS carries meaning-
less information. Fig 2(c) confirms 2ndobservation as influ-
ential and 5th ,6th as good leverages, while COVRATIO is 
misleading. Fig2 (d) shows 10th as influential and 16th as 
a high potential point. Fig2 (e) track 10th point as doubt-
ful while 5th,10th ,16th as good leverages. Fig 2(f) is the 
residual-fitted values plot fromrobust regression. This plot 
shows some suspicsion on the points 4th and 10th .Here we 
observe that the observation corresponding to the year of 
Korean conflict has been traced with high Cook’s distance, 
high DFFITS but the robust residuals are not in agreement 
with these. From fig.3(a) we notice that the observations 
12th,13th,14th are influential 11th, 7th are doubtful. Fig3(b) 
confirms 14th as outlier even if we use the cutoff of  . Us-
ing cutoff we found 11th, 12th, 13th, 14th as influential. The 
Williams graph i.e., fig3 (e) conveys the same information 
as 3(a). Fig 3(f) is the residual-fitted values plot from robust 
regression. For the large data set of HBK the observations 
11th ,12th ,13th ,14th are clearly detected but the first ten 
observations of the data are located in a separate corner.

8. Conclusion: As warned by Hurber (1977) that in case 
of outliers in the predictor space robust approach may be 
inefficient, the 21st observation in the stackloss data were 
detected as outliers but not the 1st and 2nd . COVRATIO 
can be applied in such situation where the model contains 
a quadratic term. For the Longley data COVRATIO is not 
appropriate and the outlier is masked by the others due 
to the explanation of Huber (1977). Thus it can be inferred 
that without having the 

Fig.1: Graphical displays for the Stackloss Data set
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Fig.2: Graphical displays for the Longley Dataset
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Fig.3. Graphical displays for the Hawkins, Bradu and Kass (HBK) Dataset

practical experience one analytics cannot separate out doubtful data as outliers, they can only label them as suspicious.  
Here though simulation is not performed, still the conclusion is valid. Because the three data sets are different from each 
other in respect of dimension, degree of fitted model and nature of contamination.The robust fit to the Longley data was 
not appropriate.For the large artificial HBK dataset only 1 out of 14 outliers are detected using cutoff of   and using cutoff 
of   only 6 outliers are detected. But plot of robust residual against fitted values may be useful to separate out the outliers.
Being an artificial one, the HBK dataset implies that robust fit should always be performed with least squares method and 
the plot of residual against the fitted response should be examined. As mentioned at the outset that we aim is to get plot(s) 
or equivalently measure(s) which is (are) effective in these particular situations. Further validity of the plots will be subject to 
the pattern of new real life data. Our further work will be based on simulated study for analogous real world problem.
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