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ABSTRACT  In this paper , Bayesian approach to nonparametric regression model described . The nonparametric re-
gression model is assumed to be a smooth spline . Bayes approach based on Markov chain Monte Carlo 

(MCMC) employed to make inferences on the resulting spline nonparametric model coefficients under some conditions 
on the prior and design matrix. We investigate the posterior density and identify the analytic form of the Bayes factors.

1. Introduction | In the Bayesian approach to inference 
the fixed but unknown parameters are viewed as a ran-
dom variables . It is well known that the Bayes estimate 
under squared error loss of any subvector of the param-
eters vector is the mean of its posterior distribu-
tion,[10],[12]. | Markov Chain Monte Carlo (MCMC) 
method depends on partition of difficult and compound 
models into simple ones which can be manipulated and 
easily analyzed , specially for the posterior distribution 
which are not easy to find their final formula. | The 
Bayesian, Bayesian nonparametric and Bayesian Semipa-
rametric regression models , were studied by many re-
searchers for example DeRobertis and Hartign in (1981) 
discussed the Bayesian inference using intervals of 
measeres,[7]. Berger in (1985) introduced the statistical 
decision theory and Bayesian analysis,[4] . Lenk in 
(1999) presented the Bayesian inference of a Semipara-
metric regression model using Fourier representa-
tion,[11]. Zhao in (2000) studied the Bayesian approach 
to the nonparametric function estimation problems such 
as nonparametric regression and signal estimation and 
he considered the asymptotic of Bayes procedures for 
conjugate (Gaussian) priors,[15]. Angers and Delampady 
in (2001) used the Bayesian approach to the nonpara-
metric regression model using a wavelet basis and per-
formed the subsequence estimations,[1]. Dass and Lee 
in (2002) presented a note on the consistency of Bayes 
factors for testing point null versus nonparametric alter-
native,[6].Ghosh, J.K. and Ramamoorthi, R.V. in (2003) 
studied Bayesian nonparametric,[9]. Angers and Delam-
pady in (2004) studied fuzzy sets in hierarchical Bayes 
and robust Bayes inference,[2]. Ghosh, J.K. , Delampady 
M. and samanta, T. in (2006) presented Bayesian analy-
sis and discussed the theory and methods,[8]. Angers 
and Delampady in (2008) discussed fuzzy sets in non-
parametric Bayes regression by using wavelet and mem-
bership functions and they treated the membership 
functions as likelihood functions for the model,[3] . Choi 
, Lee and Roy in (2008) investigated the large sample 
property of the Bayes factor for testing the parametric 
null model against the Semiparametric alternative mod-
el,[5] Under some conditions on the prior and design 
matrix , and using algebraic smoothing , they identified 

the analytic form of the Bayes factor and showed that 
the Bayes factor is consistent. Osaba and Mitaim in 
(2011) examined Bayesian with adaptive fuzzy priors 
and the likelihoods member,[13]. Pelenis in (2012) stud-
ied the Bayesian Semiparametric regression and consid-
ered a Bayesian estimation of restricted conditional mo-
ment models with linear regression as a particular 
example,[14]. | This paper came to shed light on the 
nonparametric regression model which has a nonpara-
metric function is assumed to be a smooth spline , as 
well as the error term which has normal distribution with 
mean zero and variance 

2
εσ . | In this paper , Bayesian ap-

proach based on Markov chain Monte Carlo (MCMC) 
employed to make inferences on the resulting spline 
nonparametric regression model coefficients under 
some conditions on the prior distribution and design 
matrix. | We investigate the posterior density and iden-
tify the analytic form of the Bayes factors to choose be-
tween a fully Bayesian spline nonparametric regression 
model with )1( ++ kp of parameters against a Bayesian 
spline nonparametric regression model with )1( ++ qp of 
parameters , where kq < , | 2. Description of the prob-
lem | Consider the model: | 

)1(.,...,2,1,)( nixmy iii =+= ε  (1) | 

Where 

the unobserved errors nεεε ,...,, 21  are known to be i.i.d. 

nor-

mal with mean zero and covariance nI2
εσ  with 2

εσ  unknown 
and is nonparametric component . By using spline of 

degree get : | 
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where kttt ,...,, 21  are inner knots . The 
model (2) is rewritten as follows: | 

)3(,εβ += XY
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The estimation of the parameters β entails minimizing the spline least 
squares criterion :

)4(.2βXY −

The least squares estimators from (4) are :

)5(,)(ˆ 1 YXXX TT −=β

and the fitted valued are:

HYXY == β̂ˆ , where H is the smoothing matrix given by :

.)( 1 TT XXXXH −=

),( 2
εσβ

3. The Prior Distribution

To specify a complete Bayesian model , we need a prior distribution 
on . If a proper prior is desired , one could use a ),0( 2 IN βσ prior 
with 2

βσ so large that for all intents and purposes , the normal distribution 
is uniform on the range of β . Therefore , we will use 1)(0 ≡βπ . As well 
as we will assume that the prior on 2

εσ is inverse gamma with parameters 
εα and εβ i.e. 
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where εα and εβ are hyperparameters that determine the priors and must 
be chosen by the statistician . 
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4. Posterior Distribution

From the model (3) we have

Then the likelihood function ),|( 2
εσβYL can be expressed as:
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| The estimation of the parameters β  entails minimiz-
ing the spline least squares criterion : | 



774  X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 5  | May 2015 | ISSN - 2249-555XResearch Paper                           

)8(.)ˆ()ˆ(
2

1exp

)ˆ()ˆ(
2

1exp
)2(

1

2

22/2









−−−

×








−−−=

ββββ
σ

ββ
σπσ

ε

εε

XX

XYXY

TT

T
n

Then the joint posterior density of the coefficients β and the error 
variance 2

εσ given by the expression
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From this expression , we deduce the following conditional and 
marginal posterior distributions 

)11(,)ˆ()ˆ(
2

1exp),|( 2
2

1








−−−∝ ββββ
σ

σβπ
ε

ε XXY TT

and 

)12(.
)ˆ()ˆ(

2
1

exp)(),|( 2
)12/(22

1

















 +−−
−∝ ++−

ε

ε
α

εε σ

βββ
σβσπ ε

XYXY
Y

T

n

Therefore , it follows that
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5. Model checking and Bayes factors

We would like to choose between a fully Bayesian spline 
nonparametric  regression model with of parameters against a
Bayesian spline nonparametric regression model with )1( ++ qp of
parameters , where kq < , by using Bayes factors for two hypotheses
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where 0β is 1)1( ×++ qp vectors of parameters , 0X is an )1( ++× qpn
design matrix and kq < . We compute the Bayes factor , 01B , of 0H
relative to 1H for testing problem (15) as follows 
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using the above derivations , the Bayes factor for testing problem (15) is 
then given by:
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6. Simulation Results
In this section , we  illustrate the effectiveness of our methodology , we 

generated observations from the model (1) with the following regression 
functions :

(i) ,

(ii) 2
2 )5.0()2( −+= xxSiny π .

The observations for x are generated from uniform distribution on the 
interval [0,1] . The sample size taken are 200,150,100,50,25=n .

The goodness of fit of the estimated models quantified by computing 
the criterions average mean squared error )(AMSE and average mean 
absolute error )(AMAE which are defined as:
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where MSE and MAE are mean squared error and mean absolute error 
criterions respectively.

Table(1) presents summary values of the )(AMSE and )(AMAE for the 
estimation method . From this table we can see that the values of )(AMSE
and )(AMAE when )200( =n are smaller than their values for the first test 
function , which were (0.0006407081) and (0.000175353) respectively. 
While the values of )(AMSE and )(AMAE are smaller when )150( =n for
the second test function were (0.0001740030) and (0.000454008)
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respectively. Figure (1) below shows the number for itera-
tions of Gibbs sampler which used in this paper , which 
was (10000) iterations for this data . While figure (2) shows 

density estimates based on (10000) iterations of . 2
εσ  | Ta-

ble(1) results of the and criterions for Bayesian nonpara-

metric regression model |  | Figure (1) shows (10000) itera-

tions of the Gibbs sampler | 

 

    

                           

                     

       2000                             6000                        10000 

 | Figure (2) shows the density 

estimates based on (10000) iterations of 2
εσ  | | 

β

7. Conclusions

The conclusions obtained throughout this paper are as follows:

(1)The posterior of and 2
εσ are respectively:
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(2) The marginal density of Y under model 1,0, =iH i are :
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(3) The Bayes factor for testing problem (15) is  given by the    
following form:
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(4) In the simulation results , we concluded the following:
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(a) The values of and when are smaller thantheir values 
for the first test function , which were (0.0006407081) 
and (0.000175353) respectively. | (b) The values of and 
are smaller when for the second test function were 
(0.0001740030) and (0.000454008) respectively. | (c) The 
model corresponding to the first test function obtains the 
largest Bayes factor when followed by that the second test 
function when . | (d) The Bayes factor favors with strong 
evidence with all samples sizes for two test functions. | | 


