

Effect of Different Training Methods on Health Related Physical Fitness

KEYWORDS

Circuit Training, Plyometric Training, Interval Training, Health related physical fitness.

Dr. Sakti Ranjan Mishra

Ph.D., Former Principal, At- Water Woks Road, Puri-752002, Odisha. (Corresponding Author)

Sri Ardhendu Kumar Das

Physical Education Teacher, R.M.D. College of Science & Education, Patia, Bhubaneswar- 31

Dr. Ashok Kumar Nayak

Ph.D., Former Principal

ABSTRACT The purpose of this study was to know the effect of different training methods on health related physical fitness of school going adolescent students. One hundred twenty school going adolescent students, age ranging between 13 to 15 years acted as subjects and assigned to four groups (three experimental and one control group) with 30 students each. The three experimental groups were Circuit Training, Plyometric Training and Interval Training groups. Health related physical fitness parameters such as Abdominal Muscle Strength (Sit Up), Flexibility (Sit and Reach), Cardiovascular Endurance (1 Mile Run), and Body Fat % (Triceps and Sub-Scapular Skin fold) were measured before and after training. All the experimental Groups (Circuit training, Plyometric training and Interval training) was administered with the selected exercises, thrice in a week for a duration of 12 weeks under direct supervision of the researcher. The analysis of data revealed that the three experimental groups, showed significant gains in performance of health related physical fitness after administration of training for duration of 12 weeks. The control group did not show any significant increase in the performance.

INTRODUCTION:

A fit body is an asset to any game. The present era stresses upon sports and games involving high skill and expertise. Super performances not only depends upon skill and expertise but also requires a high degree of physical fitness of the players. Thus, fitness is the key factor and base of the super performances. Preparing a skilled player depends upon the provision of type of training to the player. Sports training refer to specialized strategies and methods of exercise used in various sports to develop players and athletes and prepare them for performing in sporting events. The purpose of this study was to know effect of different training methods on physical fitness of secondary school children.

METHODOLOGY:

One hundred twenty school going adolescent students, age ranging between 13 to 15 years and studying in class VIII, IX AND X acted as subjects and were randomly assigned to four groups i.e., three experimental groups and one control group, consisting of 30 students each. The experimental treatments were also assigned to the groups at random. The Experimental Groups (three groups) were given Circuit Training, Plyometric Training and Interval Training respectively. The control group being kept away from the training schedule and continued in performing normal school programme. Considering the capabilities and existing facilities the above stated training methods were selected for the study. Keeping the feasibility criterion in mind, especially in the case of availability of instruments, the following variables of Health Related Physical Fitness were chosen: 1. Abdominal Muscle Strength (Sit Up), 2. Flexibility (Sit and Reach), 3. Cardiovascular Endurance (1 Mile Run), and 4. Body Fat % (Triceps and Sub-Scapular Skin fold). All the experimental Groups (Circuit training, Plyometric training and Interval training) were administered with the selected exercises, thrice in a week for a duration of 12 weeks under direct supervision of the researcher.

FINDINGS: The statistical analysis of data on Health Related Physical Fitness components of subjects belonging to three experimental groups and one control group, each comprising of thirty subjects, is presented below.

TABLE – 1(Significance of Difference between Pre-Test
and Post-Test Means of the three Experimental Groups
and the Control Group in Sit Ups)

Groups	Pre-test mean <i>±SE</i>	Post-test mean <i>±SE</i>	Diff. between means	SE	't' ratio
Circuit train- ing	24.667±0.830	26.867±0.803	2.200	0.443	4.965*
Plyometric training	24.767±0.756	28.567±0.474	3.800	0.416	9.127*
Interval training	24.967±0.968	25.967±0.828	1.000	0.418	2.392*
Control	24.633±0.977	24.367±0.796	0.266	0.258	1.034

* Significant at 0.05 level of confidence, 't' $_{0.05}$ (29) = 2.045. Table 1 clearly reveals that all the experimental groups improved significantly yielding 't' value of 4.965, 9.127 and 2.392 with regard to circuit training, plyometric training and interval training, respectively, where as the control group did not show any significant improvement in sit ups performance of subjects indicating 't' values of 1.034. The needed 't' value for significance at 0.05 level of confidence with 29 degrees of freedom was 2.045.

TABLE – 2 (Analysis of Variance and Covariance of the Means of three Experimental Groups and the Control Group in Sit Ups)

•								
	Circuit training	Plyometric training	Interval training	Control	Sum of squares	ar	Mean square	F ratio
Due to start an e su e	24.667±0.830	24.767	24.967±0.968	24.633±0.977	B 2.025	3	0.675	0.020
Pre-test means		±0.756	24.90/±0.900		W 2741.967	116	23.638	0.029
Post test means	26.867±0.803	28.567	25.967±0.828	24.367±0.796	B 276.825	3	92.275	5.620*
Post-test means	20.007±0.003	±0.474	23.90/±0.020	24.307±0.790	W 1904.767	116	16.420	5.620
Adjusted post-test	26.935±0.323	28.560	25.810±0.323	24.460±0.323	B 271.697	3	90.566	28.877*
means		±0.323	23.010±0.323		W 360.672	115	3.136	20.077

* Significant at 0.05 level of confidence, N = 120, B = Between group variance, W = Within group variance. The analysis of covariance for sit ups showed that the resultant 'F' ratio of 0.029 was not significant in case of pre test means. The post test means yielded 'F' ratio of 5.620, which was found to be significant. The adjusted final means yielded the 'F' ratio of 28.877 and was found significant. The 'F' ratio, needed for significance at 0.05 level of confidence (df 3, 116) was 2.680.

TABLE – 3 (Paired Adjusted Final Means and Differences between Means for the three Experimental Groups and the Control Group in Sit Ups)

Circuit training	Plyometric training	Interval training	Control	Difference between means	Critical dif. for adjusted mean
26.935	28.560			1.525*	1.323
26.935		25.810		1.125	1.323
26.935			24.460	2.475*	1.323
	28.560	25.810		2.750*	1.323
	28.560		24.460	4.100*	1.323
		25.810	24.460	1.350*	1.323

* Significance at 0.05 level. It was clear from the Table 3 that the mean differences with respect to performance in sit ups of all the experimental groups were found to be significantly greater than that of control group. Plyometric

training group was found to be significantly better than both circuit training and interval training. However, no significant difference between circuit training group and interval training group was found with respect to sit ups performance.

TABLE – 4(Significance of Difference between Pre-Test and Post-Test Means of the three Experimental Groups and the Control Group in One Mile Run/Walk)

Groups	Pre-test mean±SE	Post-test mean±SE	Diff. between means	SE	't' ratio
Circuit training	12.855±0.242	10.170±0.174	2.685	0.102	26.451*
Plyometric training	12.877±0.193	9.891±0.160	2.985	0.056	53.738*
Interval training	12.869±0.217	10.080±0.169	2.789	0.092	30.208*
Control	12.980±0.228	12.896±0.201	0.084	0.109	0.773

* Significant at 0.05 level of confidence, 't' $_{0.05}$ (29) = 2.045. Table 4 clearly reveals that all the experimental groups improved significantly yielding 't' value of 26.451, 53.738 and 30.208 with regard to circuit training, plyometric training and interval training, respectively, where as the control group did not show any significant improvement in sit ups performance of subjects indicating 't' values of 0.773. The needed 't' value for significance at 0.05 level of confidence with 29 degrees of freedom was 2.045

 TABLE – 5 (Analysis of Variance and Covariance of the Means of three Experimental Groups and the Control Group in One Mile Run/Walk)

		Plyometric training	Interval train- ing	Control	Sum of squares	df	Mean square	F ratio
Pre-test means	12.855 ±0.242	12.877 ±0.193	12.869 ±0.217		B 0.297 W 169.237	3 116	0.099 1.459	0.068
Post-test means	10.170 ±0.174	9.891 ±0.160	10.080 ±0.169		B 183.827 W 108.831	-	61.276 0.938	65.312*
Adjusted post-test means	10.199 ±0.071	9.905 ±0.071	10.100 ±0.071		B 173.145 W 17.508		57.715 0.152	379.098*

* Significant at 0.05 level of confidence , N = 120, B = Between group variance, W = Within group variance. The analysis of covariance for one mile run/walk showed that the resultant 'F' ratio of 0.068 was not significant in case of pre test means. The post test means yielded 'F'

ratio of 65.312, which was found to be significant. The adjusted final means yielded the 'F' ratio of 379.098 and was found to be highly significant. The 'F' ratio, needed for significance at 0.05 level of confidence (df 3, 116) was 2.680.

TABLE – 6 (Paired Adjusted Final Means and Differences between M	Veans for the three Experimental Groups and the
Control Group in One Mile Run/Walk)	

Circuit training	Plyometric training	Interval training	Control		Critical diff. for adjusted mean
10.199	9.905			0.294	1.717
10.199		10.100		0.099	1.717
10.199			12.833	2.634*	1.717
	9.905	10.100		0.195	1.717
	9.905		12.833	2.828*	1.717
		10.100	12.833	2.733*	1.717

* Significance at 0.05 level. It is clear from the Table 6 that the mean differences with respect to performance in one mile run/walk of all the experimental groups were found to be significantly better than that of control group with decreased numerical value. However, no significant difference among the experimental groups was found with respect to one mile run/walk performance.

TABLE – 7(Significance of Difference between Pre-Test and Post-Test Means of the three Experimental Groups and the Control Group in Triceps Skin Fold Measurement)

Groups	Pre-test mean±SE	Post-test mean±SE	Dif. between means	SE	't' ratio
Circuit training	14.900±0.411	13.633±0.369	1.267	0.244	5.188*
Plyometric training	14.600±0.456	13.200±0.330	1.400	0.270	5.194*
Interval training	14.600±0.364	13.667±0.319	0.933	0.126	7.393*
Control	14.633±0.360	14.733±0.349	0.100	0.121	0.828

* Significant at 0.05 level of confidence, 't' $_{0.05}$ (29) = 2.045. Table 7 reveals that all the experimental groups improved significantly yielding 't' value of 5.188, 5.194 and 7.393 with regard to circuit training, plyometric training and interval training, respectively, where as the control group did not show any significant improvement in triceps skin fold measurement of subjects indicating 't' values of 0.828. The needed 't' value for significance at 0.05 level of confidence with 29 degrees of freedom was 2.045

Table – 8(Analysis of Variance and Covariance of the Means of three Experimental Groups and the Control Group in Triceps Skin Fold Measurement)

	Circuit training	Plyometric training	Interval training	Control	Sum of squares	df	Mean square	F ratio
Pre-test means	14.900 ±0.411	14.600±0.456	14.600± 0.364	14.633±0.360	B 1.900 W 556.067	3 116	0.633 4.794	0.132
Post-test means	13.633 ±0.369	13.200±0.330	13.667± 0.319	14.733±0.349	B 38.292 W 408.300	3 116	12.764 3.520	3.626*
Adjusted post-test means	13.473 ±0.174	13.262±0.174	13.728±0.174	14.770±0.174	B 40.286 W 103.979	3 115	13.429 0.904	14.852*

* Significant at 0.05 level of confidence, N = 120, B = Between group variance, W = Within group variance.

The analysis of covariance for triceps skin fold measurement showed that the resultant 'F' ratio of 0.132 was not significant in case of pre test means. The post test

means yielded 'F' ratio of 3.626, which was found to be significant. The adjusted final means yielded the 'F' ratio of 14.852 and was found significant. The 'F' ratio, needed for significance at 0.05 level of confidence (df 3, 116) was 2.680.

TABLE – 9(Paired Adjusted Final Means and Differences between Means for the three Experimental Groups and the Control Group in Triceps Skin Fold Measurement)

Circuit training	Plyometric training	Interval training	Control	Diff. between means	Critical diff. for adjusted mean
13.473	13.262			0.211	0.674
13.473		13.728		0.245	0.674
13.473			14.770	1.297*	0.674
	13.262	13.728		0.466	0.674
	13.262		14.770	1.508*	0.674
		13.728	14.770	1.042*	0.674

* Significance at 0.05 level. It is evident from the Table 9 that the mean differences with respect to triceps skin fold measurement of all the experimental groups were found to be significantly greater than that of control group. However, no significant difference among the three experimental groups was found with respect to triceps skin fold measurement.

TABLE – 10 (Significance of Difference be	tween Pre-Test and Post-Test Me	eans of the three Experimental Groups and
The Control Group in Sub-Scapular Skin Fe	old Measurement)	

Groups	Pre-test mean±SE	Post-test mean±SE	Dif.between means	SE	't' ratio
Circuit training	14.433±0.459	13.200±0.301	1.233	0.213	5.798*
Plyometric training	14.633±0.485	13.467±0.331	1.166	0.225	5.178*
Interval training	14.567±0.462	13.367±0.351	1.200	0.206	5.835*
Control	14.400±0.554	14.567±0.462	0.167	0.145	1.153

RESEARCH PAPER

Volume : 5 | Issue : 11 | November 2015 | ISSN - 2249-555X

* Significant at 0.05 level of confidence, 't' $_{0.05}$ (29) = 2.045. Table 10 reveals that all the experimental groups improved significantly yielding 't' value of 5.798, 5.178 and 5.835 with regard to circuit training, plyometric training and interval training, respectively, where as the control group did not show any significant improvement in sub-scapular skin fold measurement of subjects indicating 't' values of 1.153. The needed 't' value for significance at 0.05 level of confidence with 29 degrees of freedom was 2.045

TABLE – 11(Analysis of Variance and Covariance of the Means of three Experimental Groups and the Control Group in	
Sub-Scapular Skin Fold Measurement)	

	Circuit training	Plyometric training	Interval train- ing	Control	Sum of squares	df	Mean square	F ratio
Pre-test means 14	14 422 +0 450	14.633 ±0.485	14.567±0.462	14.400±0.554	B 1.092	3	0.364	0.050
	14.433 ±0.439				W 840.900	116	7.249	
Post tost moons	13 200 +0 301	13 167 +0 331	13.367±0.351		B 34.700	3	11.567	2.876*
	est means 13.200 ±0.301 13.467 ±0.331 13.367±0.351	15.507±0.551		W 466.600	116	4.022	2.070	
Adjusted post-	13.252 ±0.132	12 200 +0 122	13.326	14.642	B 39.588	3	13.196	25.158*
test means	13.252 ±0.132	13.300 ±0.132	±0.132	±0.132	W 60.321	115	0.525	25.158"

* Significant at 0.05 level of confidence, N=120, B=Between group variance, W=Within group variance. The analysis of covariance for sub-scapular skin fold measurement showed that the resultant 'F' ratio of 0.050 was not significant in case of pre test means. The post test means yielded 'F' ratio of 2.876, which was found to be significant. The adjusted final means yielded the 'F' ratio of 25.158 and was found significant. The 'F' ratio, needed for significance at 0.05 level of confidence (df 3, 116) was 2.680.

TABLE – 12(Paired Adjusted Final Means and Differences between Means for the three Experimental Groups and the Control Group in Sub-Scapular Skin Fold Measurement)

Circuit training	Plyometric training	Interval training	Control	Diff. between means	Critical diff. for adjusted mean
13.252	13.380			0.128	0.132
13.252		13.326		0.126	0.132
13.252			14.642	1.390*	0.132
	13.380	13.326		0.054	0.132
	13.380		14.642	1.262*	0.132
		13.326	14.642	1.316*	0.132

* Significance at 0.05 level. It is evident from the Table 12 that the mean differences with respect to sub-scapular skin fold measurement of all the experimental groups were found to be significantly greater than that of control group. However, no significant difference among the three experimental groups was found with respect to sub-scapular skin fold measurement.

TABLE – 13 (Significance of Difference betw	en Pre-Test and Post-Test	t Means of the three Experimental (Groups and
the Control Group in Sit and Reach)			

Groups	Pre-test mean±SE	Post-test mean±SE	Diff. between means	SE	't' ratio
Circuit training	25.900±0.522	29.733±0.431	3.833	0.292	13.129*
Plyometric training	25.800±0.463	29.633±0.417	3.833	0.250	15.363*
Interval training	25.800±0.564	29.833±0.431	4.033	0.293	13.740*
Control	25.867±0.552	25.833±0.424	0.033	0.206	0.162

* Significant at 0.05 level of confidence, 't' $_{0.05}$ (29) = 2.045. Table 13 reveals that all the experimental groups improved significantly yielding 't' value of 13.129, 15.363 and 13.740 with regard to circuit training, plyometric training and interval training, respectively, where as the control group did not show any significant improvement in sit and reach performance of subjects indicating 't' values of 0.162. The needed 't' value for significance at 0.05 level of confidence with 29 degrees of freedom was 2.045

TABLE – 14 (Analysis of Variance and Covariance of the Means of three Experimental Groups and the Control Group in Sit and Reach)

	Circuit train- ing	Plyometric training	Interval train- ing	Control	Sum of squares	df	Mean square	F ratio
Pre-test means	25.900	25.800	25.800±0.564	25.867±0.552	B 0.225	3	0.075	0.009
	±0.522	±0.463	23.000±0.304	25.007±0.552	W 965.762	116	8.326	0.007
Post-test means	29.733	29.633	29.833±0.431	25.833±0.424	B 342.825	3	114.275	21.002*
T OST-LEST MEANS	±0.431	±0.417	27.033±0.431	23.033±0.424	W 631.167	116	5.441	21.002
Adjusted post-test	29.692	29.663	29.863	29.816	B 347.035	3	115.678	85.981*
means	±0.212	±0.212	±0.212	±0.212	W 154.720	115	1.345	03.701

* Significant at 0.05 level of confidence, N = 120, B = Between group variance, W = Within group variance. The analyses of variance for sit and reach test performance showed that the resultant 'F' ratio of 0.009 was not significant in case of pre test means. The post test means yielded 'F' ratio of 21.002, which was found to be significant. The adjusted final means yielded the 'F' ratio of 85.981 and was found significant. The 'F' ratio, needed for significance at 0.05 level of confidence (df 3, 116) was 2.680.

TABLE – 15 (Paired Adjusted Final Means and Differenc-
es between Means for the three Experimental Groups
and the Control Group in Sit and Reach)

Circuit training	Plyo- metric training	Interval training	Control	Diff. be- tween means	Critical diff. for adjusted mean
29.692	29.663			0.029	0.032
29.692		29.863		0.171*	0.032
29.692			29.816	0.124*	0.032
	29.663	29.863		0.200*	0.032
	29.663		29.816	0.153*	0.032
		29.863	29.816	0.047*	0.032

* Significance at 0.05 level, It is evident from the Table 15 that the mean differences with respect to sit and reach of all the experimental groups were found to be significantly greater than that of control group. Further, significant difference between interval training group and other two experimental groups was observed making interval group significantly superior. However, no significant difference was found between circuit and plyometric training group with respect to sit and reach performance.

CONCLUSION:The analysis of data revealed that the three experimental groups, administered with circuit training, plyometric training and interval training showed significant gains in performance of fitness components after administration of training for duration of 12 weeks. The control group did not show any significant increase in the performance of any variable under study. Plyometric training schedule could enhance the performance in sit ups with higher intensity than both circuit and interval training. Similarly interval training could prove to be significantly better than both circuit and plyometric training towards enhancing performance of subjects in sit and reach. Above all each fitness parameters under present study was improved through all three trainings. The results of the study coincided with the general conception that plyometric exercise improves speed and agility, circuit training helps improve strength and endurance and interval training helps flexibility and endurance of the players in a progressive manner.

REFERENCE 1. Mishra, S.R. (2008) Effect of Circuit Training on the Muscle Power. Readings on Principle and Practices of Physical Education, Human Movement Series, Vol. I 2. Mishra, S.R.. (2011) Effects of a Ploymetric Training Programme on Selected Physiological Variables of Adolescent School Going Boys. Journal Physical Education and Sports Science, Online Journal, National association of Physical Education and Sports Science, Volume 2/1 (http:// www.napess.org). 3. Mishra, S.R., Karak, Kalidas and Sen, Bipul (2015) The Effect of Plyometric Training Programme on Volleyball Players. Global Journal for Research Analysis, Volume 4/ Issue 5/ May 2015