
154 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 10 | October 2015 | ISSN - 2249-555XReseaRch PaPeR

Heart Beat Scanner for Smart Phones

Rohan Kelkar
J-Block, VIT Men's Hostel, VIT University, Vellore

Engineering

Keywords Heart Beat Scanner, MATLAB, Arduino microcontroller, IR sensor, pulse, signal filter.

ABSTRACT In today's world of mobile technology, every other person owns a smart phone using which he/she car-
ries out numerous number of tasks in a day. Estimates show that almost 2 billion consumers will own

smart phones by 2016[1]. Since smart phones are always carried by almost all individuals, certain health related tech-
nologies can be installed in the devices as standard such as a heart beat scanner which can prove to be life-saving in
certain scenarios of emergency. This led to the prototyping of a cheap and easy to build heart beat scanner using an
IR sensor interfaced with an Arduino Uno microcontroller, 'Processing' software and MATLAB. This prototype has been
designed to detect change of blood flow in our veins caused due to the beating of the heart, and thus give a reading
of our pulse rate after undergoing the necessary calculations and filtration techniques.

INTRODUCTION
This project attempts to successfully create a cheap pulse
rate calculator system for smart phones which uses IR sen-
sors to detect the fluctuation of blood flow in the veins
which takes place according to the heart beat and further
uses MATLAB and Processing to graphically display the
pulse graph as well as the reading in BPM on the comput-
er screen.

The generated signal from the IR sensor is made to pass
through two low pass filters connected in series which suc-
cessfully eliminate the low frequency noise introduced in
the signal due to various factors such as temperature fluc-
tuations etc. The filtered signal is then transferred via a
USB interface to the Processing software which plots the
graph of the input signal on the screen.

MATLAB is also made to run in parallel and fetches the
same signal via the USB interface. A peak detection algo-
rithm is run in MATLAB which counts the number of peaks
generated in the signal in a predefined amount of time.
Thus the pulse rate is calculated and displayed.

HARDWARE
The IR sensor is designed by using a standard IR emitter
and detector. Whenever the detector receives radiation
emitted by the emitter, a voltage fluctuation is observed
at the output terminal of the detector[2]. This signal con-
sists of a lot of noise due to various unavoidable natural
problems such as temperature fluctuations etc. These fluc-
tuations cannot be contained in the real world therefore
various filtering techniques need to be applied in order to
obtain a cleaner, low noise signal.

This signal is made to pass through LM386 amplifier IC
which amplifies the amplitude of the signal making the
fluctuations easy to detect. Pin1 and Pin8 of the IC are
coupled with a 1uF capacitor in order to ensure uniform
amplification over a long range of frequencies. The sig-
nal received from the LM386 amplifier is made to pass
through two passive RC low pass filters connected in se-
ries in order to eliminate the low frequency noise and thus
leave us with a cleaner signal which can be further pro-
cessed for peak detection[3].

We have further used an Arduino microcontroller to inter-

face the circuit with the computer via a USB interface[4].
The amplified and the filtered signal from the previous cir-
cuit is taken as input in one of the analog pins of the Ar-
duino microcontroller. A baud rate of 9600 bits per second
is set as a serial communication parameter initially. The
baud rate of the transmitter, which is the Arduino, and that
of the receiver, which is the Processing software, must be
set to the same value. If the baud rate of the receiver dif-
fers from the baud rate of the transmitter, loss of data may
occur and successful transfer of observed signal will not
take place. The signal is then transferred to the Processing
software to plot a graph.

SOFTWARE
Processing is the software used for mapping the fluctua-
tions of the input signal on the screen. Importing the serial
library was necessary as building a serial communication
interface had to be done in order to receive the input sig-
nal from the microcontroller[5]. A serial event handler was
used which is called every time data is received from the
serial interface. It calls a draw() function which is basically
responsible for mapping the graph on the screen based on
the amplitudes received.

MATLAB is responsible for calculating the pulse rate from
the signal received. It too needs to receive the signal from
the serial port and thus it is connected to the same COM
port as the Arduino with baud rate set to 9600 bits per
second. This software also has a serial event handler which
is called every time data is received[6]. Its main purpose
is to note the number of peaks in the input signal with re-
spect to time and thus calculate the pulse rate as every
peak corresponds to a diastole or a systole of the heart.

WORKING
The IR sensor is placed in such a way under the tip of our
finger, that IR radiations enter the vein at an oblique an-
gle and reflect back due to the presence of blood flow[7].
Whenever there is a random change in the blood flow, the
intensity of the reflected radiation changes which helps in
marking a heartbeat. Whenever the heart beats, the signal
received at the receiver end fluctuates in an unusual man-
ner. This can either be a systole or a diastole of the heart
but is considered as one beat.

INDIAN JOURNAL OF APPLIED RESEARCH X 155

Volume : 5 | Issue : 10 | October 2015 | ISSN - 2249-555XReseaRch PaPeR

The fluctuations at the receiver end are of a very low in-
tensity. Due to this, it becomes very difficult to differenti-
ate between the actual signal and noise. Therefore the sig-
nal is made to pass through the LM386 amplifier IC[8]. This
amplifier amplifies all the fluctuations present in the signal
and thus helps us get a stronger signal. Every minute de-
tail now becomes very clear and thus the signal becomes
relatively easy to process. But, this amplifier IC cannot dif-
ferentiate between the noise signal and the actual signal.
The noise introduced by the passive components in the
circuit is of a particular low frequency.

To eliminate the noise present in the circuit, two passive
RC low pass filters are used in series[9]. This ensures that
the low frequency noise be eliminated and we thus obtain
a cleaner signal which can be easily processed further in
order to calculate the pulse rate. The low pass filters intro-
duce a voltage drop in the signal but it is not a significant
drop and thus it does not reduce the probability and the
ease of finding the peaks.

After amplification and filtration of the signal, it is then
made to pass into an Arduino microcontroller. The Ardui-
no microcontroller receives the analog signal at one of its
analog input pins. The microcontroller is programmed to
fetch this input stream of analog data and assign it to the
serial port. An input stream event handler function is writ-
ten which on receiving any data on the input pin, writes it
to the assigned serial port and keeps doing it until no data
is received. The baud rate is set to 9600 bits per second
and thus the input signal is sampled according to this rate
and is further transferred to the Processing software via the
serial interface.

The Processing software is responsible for mapping the in-
put signal stream in the form of a graph[10]. Initially the
software creates a window in which all the drawing takes
place. In the Setup() function, various parameters such as
the size of the window, thickness of the brush, color of
the brush, color of the background etc are set. Next, an
event handler function is written which runs every time
data is received via the serial port. This function calculates
the amplitude of the received signal and assigns it to the
y-axis variable. The signal is plotted with respect to time
and therefore, time is assigned to the x-axis variable. The
time variable depends on the sampling rate of the system.
After assigning values to the x-axis and the y-axis vari-
ables, the draw() function is called and these parameters
are passed. This function draws the lines connecting all the
points. Since the sampling rate of the system is very high,
a high resolution signal with a smooth graph is obtained.

MATLAB runs simultaneously and is responsible for calcu-
lating the pulse rate from the input signal. Since the cal-
culations done in MATLAB are dependent on the same in-
put signal, this software too receives data from the same
serial port. It is also set to receive data at 9600 bits per
second. An inbuilt function called findpeaks() is used in or-
der to calculate the number of peaks experienced. Certain
parameters such as minimum peak height and frequen-
cy range were set so that unnecessary fluctuations could
be ignored and the target portion of the signal could be
focused upon. Initially a delay of two seconds is intro-
duced which acts as a buffer time for the signal to settle
and attain uniformity in its fluctuations. Next, the number
of peaks are calculated for every 1 second. Thus, after
multiplying the figure by 60 we estimate the number of
peaks occurring in a minute. This amounts to the number
of times the heart beats in a second. This figure is then

displayed on the screen. The findpeaks() function is called
after every 5 seconds and thus it keeps displaying a re-
freshed amount.

RESULTS:
Trail Number 1
No. of peaks 6
Bits per Sample 8
Buffer Length 0.1000
DeviceID -1
Number Of Buffers 10
Number of Channels 1
Running ‘on’
Sample Rate 9600
Timer Period 5 sec
 BPM 72

Trial Number 2
No. of peaks 5
Bits per Sample 8
Buffer Length 0.1000
DeviceID -1
Number Of Buffers 10
Number of Channels 1
Running ‘on’
Sample Rate 9600
Timer Period 5 sec
BPM 60

Trial Number 3
No. of peaks 7
Bits per Sample 8
 Buffer Length 0.1000
DeviceID -1
Number Of Buffers 10
Number of Channels 1
Running ‘on’
Sample Rate 9600
Timer Period 5 sec
BPM 84

156 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 5 | Issue : 10 | October 2015 | ISSN - 2249-555XReseaRch PaPeR

APPLICATIONS
•	 This prototype can be implemented in modern day

smart phones. People with high blood pressure will
find this feature extremely handy as they will be able
to check if their pulse rate has elevated or not with
great ease.

•	 During cases of emergency in which there is a threat
of a person dying, this feature will prove extremely
useful as we can easily check the availability of a
pulse.

•	 This system can also be installed on smart watches
and thus there will be no need to place the finger on
the sensor as the sensor will be placed right under
the vein on our wrist.

FUTURE PROSPECTS

•	 If this system is connected through internet, a regis-
tered doctor can immediately be notified or an am-
bulance can immediately be summoned at the time of
an emergency.

•	 If the system detects a problem, it can also send text
messages to people who are closest to the devices
current location and thus can call for help.

REFERENCE [1 http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694 | [2http://www.elprocus.com/infrared-
ir-sensor-circuit-and-working/ | [3]http://www.electronics-tutorials.ws/filter/filter_2.html | [4] https://www.arduino.cc/en/Reference/Serial | [5]

https://processing.org/reference/libraries/serial/ | [6]http://in.mathworks.com/help/matlab/matlab_external/events-and-callbacks.html | [7]http://vtc.internshala.com/
course/content.php?topic_id=15&module_id=2&course=robotics101&demo=true | [8] http://www.ti.com/lit/ds/symlink/lm386.pdf | [9] https://en.wikipedia.org/wiki/
Low-pass_filter | [10] https://processing.org/reference/map_.html

