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ABSTRACT The group ring RG of a group G over a commutative unital ring R is an interesting object of study for 
both group theory and ring theory [4]. Tahara [3] defines on integral group ring ZG to be simple if and 

only if I is an ideal of ZG, then G (1+I)=1 or G. We propose to call such a group ring Tahara-simple. We generalize this 
definition.

Definition 1: Let R be a 

commutative ring with unity. Then 

the group ring RG is Tahara – simple 

iff the following condition holds : 

 

If I is an ideal of RG then G (1+I)=1 

or G. 

 

We prove the followings : 

Theorem 1.1: Let G be a group. 

Then G is simple if and only if the 

group ring RG is Tahara-Simple. 

Proof : Let G be a simple group. 

Then for any ideal I of RG, G (1+I) 

is a normal subgroup of G and 

hence G (1+I)=1 or G conversely 

assume that if I is any ideal of RG, 

then G (1+I)=1 or G. let N1 be 

normal subgroup of G. 

 

We consider a canonical ring 

homomorphism  

 f : RG R (G/N) 

Then ker f  = RG (N–1) is an ideal 

of RG, and hence by the 

assumption, we have N = G  

(1+RG. (N–1) = 1 or G and therefore 

N=G. Thus G is simple. 

Next we can determine all ideals I of 

RG with property  

 G (1+I)= G as follows. 

 

Theorem 1.2 :  Let R be a principal 

ideal domain and I be any ideal of 

RG then G (1+I)=G if and only if 

there exists an element xR such 

that. 

 

I =  (G)+xR, where  (G) is the 

augmentation ideal of RG. 

Proof : Assume that I is an ideal of 

RG with G (1+I)=G. Let g be an 

element of G. Then gG= G (1+I) 

and hence g-1I. Thus  (G) is 

contained in I  

 

We consider the quotient ring. 

 

RG/ (G)   I/ (G). Here RG/  (G) 

is isomorphic to R, and hence I/

(G) is identified with some ideal of R 

say J. Since R is a principal ideal 

domain,  

 

 J is a principal ideal and hence   

an element xR such that J=<x>. 
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Since I/  (G) is identified with J,  I 

is equal to  (G)+xR. 

 

Conversely assume that I =

(G)+xR for some xR 

Then G (1+I)= G (1+  (G)+xR) 

G (1+  (G)) 

= G  

and hence G (1+I)= G 

From theorems [1.1] and [1.2], In 

order to determine if a given group 

G is simple or not we have to 

characterize all ideal I with property 

G  (1+I)=1. Thus we have the 

following problem : 

Problem : Characterization of all 

ideal I of RG, with property G

(1+I)=1 

Next we recall the definition of a 

simple ring. 

 

Definition 2 : ([1,2]) A ring R is 

simple if and only if for any ideal I of 

R, I=0 or R. That is the set of all 

ideals of R is equal to {0, R}. 

Now we propose the following 

definition for the simplicity of the 

group ring RG. 

 

Definition 3 : The group ring RG is 

simple if and only if for any ideal I of 

RG, G (1+I)=1 or G, that is the set 

of all ideal of RG is equal to {

(G)+xR, xR}. In other words, the 

group ring RG is simple if and only if 

the group G is simple. 

 

Thus in order to classify simple 

group rings we need to characterize 

all ideals I of RG with the property G

 (1+I)=1 or G. 


