

Simplicity of Group Rings and Ideals of RG

KEYWORDS

Dr. Sushma Saini

Post Graduate department of mathematics DAV College, sector 10 Chandigarh

ABSTRACT The group ring RG of a group G over a commutative unital ring R is an interesting object of study for both group theory and ring theory [4]. Tahara [3] defines on integral group ring ZG to be simple if and only if I is an ideal of ZG, then G (1+I)=1 or G. We propose to call such a group ring Tahara-simple. We generalize this definition.

Definition 1: Let R be a commutative ring with unity. Then the group ring RG is Tahara – simple iff the following condition holds :

If I is an ideal of RG then $G \cap (1+I)=1$ or G.

We prove the followings :

Theorem 1.1:Let G be a group.Then G is simple if and only if thegroup ring RG is Tahara-Simple.

<u>Proof</u> : Let G be a simple group. Then for any ideal I of RG, $G \cap (1+I)$ is a normal subgroup of G and hence $G \cap (1+I)=1$ or G conversely assume that if I is any ideal of RG, then $G \cap (1+I)=1$ or G. let $N \neq 1$ be normal subgroup of G.

We consider a canonical ring homomorphism

 \overline{f} : RG \rightarrow R (G/N)

Then ker \overline{f} = RG (N–1) is an ideal of RG, and hence by the assumption, we have N = G \cap (1+RG. (N–1) = 1 or G and therefore N=G. Thus G is simple. Next we can determine all ideals I of RG with property $G \cap (1+I) = G$ as follows.

Theorem 1.2 : Let R be a principal ideal domain and I be any ideal of RG then $G \cap (1+I)=G$ if and only if there exists an element $x \in R$ such that.

I = $\Delta(G)$ +xR, where $\Delta(G)$ is the augmentation ideal of RG.

<u>Proof</u> : Assume that I is an ideal of RG with $G \cap (1+I)=G$. Let g be an element of G. Then $g \in G = G \cap (1+I)$ and hence $g-1 \in I$. Thus $\Delta(G)$ is contained in I

We consider the quotient ring.

RG/ Δ (G) \rightarrow I/ Δ (G). Here RG/ Δ (G) is isomorphic to R, and hence I/ Δ (G) is identified with some ideal of R say J. Since R is a principal ideal domain,

 \therefore J is a principal ideal and hence \exists an element x \in R such that J=<x>. Since I/ Δ (G) is identified with J, \therefore I is equal to Δ (G)+xR.

Conversely assume that $I = \Delta$ (G)+xR for some $x \in R$ Then $G \cap (1+I) = G \cap (1+\Delta (G)+xR)$ $\supseteq G \cap (1+\Delta (G))$ = G

and hence $G \cap (1+I)=G$

From theorems [1.1] and [1.2], In order to determine if a given group G is simple or not we have to characterize all ideal I with property $G \cap (1+I)=1$. Thus we have the following problem :

Problem : Characterization of all ideal I of RG, with property $G \cap (1+I)=1$

Next we recall the definition of a simple ring.

Definition 2 : ([1,2]) A ring R is simple if and only if for any ideal I of R, I=0 or R. That is the set of all ideals of R is equal to $\{0, R\}$.

Now we propose the following definition for the simplicity of the group ring RG.

Definition 3 : The group ring RG is simple if and only if for any ideal I of RG, G \cap (1+I)=1 or G, that is the set of all ideal of RG is equal to { Δ (G)+xR, x \in R}. In other words, the group ring RG is simple if and only if the group G is simple.

Thus in order to classify simple group rings we need to characterize all ideals I of RG with the property G \cap (1+I)=1 or G.

[1] C.Musili : Introduction to Rings and Modules, Narosa Publishing house (1994) [2] I.N. Herstein, "Topics in Ring Theory, the University of Chicago Press, 1969. [3] Ken-Ichi Tahara : Problems on integral group Rings (1986) [4] S.K. Sehgal : Topics in group rings, Marcel Denker, New