LEFT-STAR AND RIGHT-STAR PARTIAL ORDERING OF S-UNITARY MATRICES

KEYWORDS

left-star partial ordering , right-star partial ordering, star partial ordering, s-unitary matrix.

A. Govindarasu

Associate Professor of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai- 609 305, Tamilnadu, India

ABSTRACT
Some results relating to left-star,right-star partial ordering of s-unitary matrices are obtained. Based on these results , theorems relating to several characterizations of left-star partial ordering between rightstar partial ordering of s-unitary matrices are derived.

1.INTRODUCTION

The relationship between the star and minus partial ordering was settled by Baksalary [3] . Hartwig and Styan [4] developed some characterization of the star partial ordering for matrices and rank subtractivity. Jurgen Grob observed some remarks on partial ordering of hermitian matrices in [7].Liu and Yang [11] have shown some results on the partial ordering of block matrices.In [6] Jorma.K.Merikoski and Xiaogi Liu have developed star partial ordering on normal matrices. Krishnamoorthy and Govindarasu derived theorems relating to lowener partial ordering and star partial ordering [10]. The concept of ' θ ' partial ordering [Theta partial ordering] of s-unitary matrices was also introduced by Krishnamoorthy and Govindarasu [9].Some characterizations of the left-star,right-star and star partial ordering between matrices of the same size are obtained Hongxing Wang and Jin Xu[5].

2.PRELIMINARIES

Let $C_{n x n}$ be the space of nxn_complex_matrices of order n. Let $A^{T}, \bar{A}, A^{*}, A^{S}, \bar{A}^{S}\left(=A^{\theta}\right)$ denote transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose of a matrix A respectively. Anna Lee[1] has initiated the study of secondary symmetric matrices. Also she has shown that for a complex matrix A, the usual transpose $A^{T} A^{T}$ and secondarv transpose A^{S} are related as $A^{S}=V A^{T} V$ $A^{S}=V A^{T} V$ where ' V 'is the associated permutation matrix whose elements on the sec-
ondary diagonal are 1 and other elements are zero. Also \bar{A}^{S} denotes the conjugate secondary transpose of A. i.e $\bar{A}_{S}^{S}=\left(c_{\mathrm{ij}}\right)$ where $\mathrm{c}_{\mathrm{ij}}=\overline{a_{n-j+1, n-i+1}}$ [2] and $\bar{A}^{S}=V A^{*} V=A^{\theta}$ Also ' V ' satisfies the following properties. $V^{T}=V^{\theta}=\bar{V}=V^{*}=V$ and $V^{2}=I$.

Definition 2.1

A matrix $A \in C_{n x n}$ is said to be s-unitary(Secondary unitary) if $A^{\theta} A=A A^{\theta}=I[8]$.

Definition 2.2 Star partial ordering

Let $\ddot{u}, \quad \in$
$A \underset{*}{<} B$ iff $A^{*} A=A^{*} B$ and $A A^{*}=B A^{*}$.

3.LEFT-STAR AND RIGHT -STAR PARTIAL ORDERING

Definition 3.1 Left-Star partial ordering
Let $A, B \in C_{n x n}$,

$$
A^{*} \leq B \text { iff } A^{*} A=A^{*} B \text { and } R(\mathrm{~A}) \subseteq \mathrm{R}(\mathrm{~B}) .
$$

Definition 3.2 Right -Star partial ordering
Let $A, B \in C_{\text {nxn' }} \quad A \leq * B \quad$ iff $A A^{*}=B A^{*}$ and
$R\left(\mathrm{~A}^{*}\right) \subseteq \mathrm{R}\left(\mathrm{B}^{*}\right)$
Theorem 3.3 Let $A V^{*} \leq V A$.If A is unitary then $A_{\text {is s-unitary. }}$
Proof: Let $A V^{*} \leq V A$
$A V^{*} \leq V A \Rightarrow(A V)^{*} A V=(A V)^{*} V A$ and
$R(A V) \subseteq \mathrm{R}(V A)$
$\Rightarrow V^{*} A^{*} A V=V^{*} A^{*} V A$
$\Rightarrow V I V=V A^{*} V A \quad$ [since A is unitary.]
$\Rightarrow I=V A^{*} V A$
$\Rightarrow A^{-1}=V A^{*} V$
$\Rightarrow A^{-1}=A^{\theta}$
Therefore A is s-unitary.
Theorem 3.4 Let $V A^{*} \leq A V$.If A is unitary then A is s-unitary.

Proof:Let $V A^{*} \leq A V$
$V A^{*} \leq A V \Rightarrow(V A)^{*} V A=(V A)^{*} A V \quad$ a \quad n \quad d
$R(V A) \subseteq \mathrm{R}(A V)$
$\Rightarrow A^{*} V^{*} V A=A^{*} V^{*} A V$
$\Rightarrow A^{*} V V A=A^{*} V A V$
$\Rightarrow A^{*} A=A^{*} V A V$
$\Rightarrow I=A^{*} V A V \quad$ [Since A is unitary]
$\Rightarrow V I=\left(V A^{*} V\right) A V \Rightarrow V=A^{\theta} A V$
$\Rightarrow V^{2}=A^{\theta} A V^{2}$
$\Rightarrow I=A A^{\theta} \quad\left[\right.$ Since $\left.V^{2}=I\right]$
$\Rightarrow A^{-1}=A^{\theta}$
Therefore A is s-unitary.
Theorem 3.5 Let $A V \leq * V A$.If A is unitary then A is s-unitary.
Proof: : Let $A V \leq * V A$.
$A V \leq * V A \Rightarrow A V(A V)^{*}=V A(A V)^{*}$ and
$R\left((A V)^{*}\right) \subseteq \mathrm{R}\left((V A)^{*}\right)$
$\Rightarrow A V V^{*} A^{*}=V A V^{*} A^{*} \Rightarrow A V V A^{*}=V A V A^{*}$
$\Rightarrow A I A^{*}=V A V A^{*} \quad \Rightarrow A^{*} A=V A V A^{*}$
$\Rightarrow I=V A V A^{*} \quad \Rightarrow I V=V A\left(V A^{*} V\right)$
$\Rightarrow V=V A A^{\theta} \Rightarrow V^{2}=V^{2} A A^{\theta}$
$\Rightarrow I=A A$
$\Rightarrow A^{-1}=A^{\theta}$
Therefore A is s-unitary.
Theorem 3.6 Let $V A \leq * A V$. If A is unitary then A is s-unitary.

Proof: Let $V A \leq * A V$.
$V A \leq * A V \Rightarrow V A(V A)^{*}=A V(V A)^{*}$ and
$R\left((V A)^{*}\right) \subseteq \mathrm{R}\left((A V)^{*}\right)$
$\Rightarrow V A A^{*} V^{*}=A V A^{*} V^{*}$
$\Rightarrow V I V=A\left(V A^{*} V\right)=A A^{\theta}$
$\Rightarrow I=A A^{\theta}$
$\Rightarrow A^{-1}=A^{\theta}$
Therefore A is s-unitary.
4.RELATION BETWEEN LEFT-STAR AND RIGHT -STAR PARTIAL ORDERING
Theorem 4.1 Let A and B be s-unitary matrices and if
$R(A)=R\left(A^{*}\right), R(B)=R\left(B^{*}\right) \quad$ then
$A^{*} \leq B \Rightarrow A^{-1} \leq * B^{-1}$

Proof:

$A^{*} \leq B \Rightarrow A^{*} A=A^{*} B$ and $R(\mathrm{~A}) \subseteq \mathrm{R}(\mathrm{B})$.
$\Rightarrow V A^{*} A V=V A^{*} B V$
$\Rightarrow V A^{*} V V A V=V A^{*} V V B V\left[\right.$ Since $V^{2}=I_{]}$
$\Rightarrow\left(V A^{*} V\right)(V A V)=\left(V A^{*} V\right)(V B V)$
$\Rightarrow A^{-1}(V A V)=A^{-1}(V B V)$
Taking conjugate transpose of the above equation we get
$(V A V)^{*}\left(A^{-1}\right)^{*}=(V B V)^{*}\left(A^{-1}\right)^{*}$
$\Rightarrow\left(V^{*} A^{*} V^{*}\right)\left(A^{-1}\right)^{*}=\left(V^{*} B^{*} V^{*}\right)\left(A^{-1}\right)^{*}$
$\Rightarrow\left(V A^{*} V\right)\left(A^{-1}\right)^{*}=\left(V B^{*} V\right)\left(A^{-1}\right)^{*}$
$\Rightarrow\left(A^{-1}\right)\left(A^{-1}\right)^{*}=\left(B^{-1}\right)\left(A^{-1}\right)^{*}$
Given $R(A)=R\left(A^{*}\right), R(B)=R\left(B^{*}\right)$
Therefore $R\left(A^{*}\right) \subseteq R\left(B^{*}\right)$
From (1) and (2) we get

$$
A^{*} \leq B \Rightarrow A^{-1} \leq * B^{-1}
$$

Theorem 4.2 Let A and B be s-unitary matrices and if
$R(A)=R\left(A^{*}\right), R(B)=R\left(B^{*}\right) \quad$ then
$A \leq * B \Rightarrow A^{-1} * \leq B^{-1}$
Proof: $\quad A \leq * B \Rightarrow A A^{*}=B A^{*}$ and
$R\left(\mathrm{~A}^{*}\right) \subseteq \mathrm{R}\left(\mathrm{B}^{*}\right)$
$\Rightarrow V A A^{*} V=V A B^{*} V$
$\Rightarrow V A V V A^{*} V=V A V V B^{*} V\left[\right.$ since $\left.\quad V^{2}=I\right]$
$\Rightarrow(V A V)\left(V A^{*} V\right)=(V A V)\left(V B^{*} V\right)$
$\Rightarrow(V A V) A^{-1}=(V A V)\left(B^{-1}\right)$
Taking conjugate transpose of above equation we get
$\Rightarrow \quad\left(A^{-1}\right)^{*}(V A V)^{*}=\left(B^{-1}\right)^{*}(V A V)^{*}$
$\Rightarrow\left(A^{-1}\right)^{*}\left(V^{*} A^{*} V^{*}\right)=\left(V^{*} A^{*} V^{*}\right)\left(B^{-1}\right)^{*}$
$\Rightarrow\left(A^{-1}\right)^{*}\left(V A^{*} V\right)=\left(V A^{*} V\right)\left(B^{-1}\right)^{*}$
$\Rightarrow\left(A^{-1}\right)^{*}\left(A^{-1}\right)=\left(A^{-1}\right)\left(B^{-1}\right)^{*}---(1)$
Given $R(A)=R\left(A^{*}\right), R(B)=R\left(B^{*}\right)$
Therefore $R(A) \subseteq R(B) \quad--(2)$
From (1) and (2) we get $A \leq * B \Rightarrow A^{-1} * \leq B^{-1}$
Theorem 4.2 Let A and B s-unitary matrices.
$A^{*} \leq B \quad B^{*} \leq C \Rightarrow A^{*} \leq C$

Proof:
$A^{*} \leq B \Rightarrow A^{*} A=A^{*} B$ and $R(\mathrm{~A}) \subseteq \mathrm{R}(\mathrm{B})$
$B^{*} \leq C \Rightarrow B^{*} B=B^{*} C$ and $R(B) \subseteq R(\mathrm{C})$
$B^{*} \leq C \Rightarrow B^{*} B=B^{*} C$
$\Rightarrow B^{*} A A^{*} B=B^{*} C \quad$ s i \quad n c \quad e $A A^{*}=I$
$\Rightarrow B^{*} A\left(A A^{*}\right)=B^{*} C$
$\Rightarrow\left(B^{*}\right)^{-1} B^{*} A A^{*} A=\left(B^{*}\right)^{-1} B^{*} C$
$\Rightarrow A A^{*} A=C \Rightarrow A^{*} A=A C$
$\Rightarrow A^{*} A=A^{*} C---(1)$
Given $R(\mathrm{~A}) \subseteq \mathrm{R}(\mathrm{B})$ and $R(B) \subseteq R(\mathrm{C})$
$\begin{array}{llllllll}\text { T } & \text { b } & \text { e } & \text { e }\end{array}$
$R(\mathrm{~A}) \subseteq R(B), R(B) \subseteq R(\mathrm{C}) \Rightarrow R(\mathrm{~A}) \subseteq R(\mathrm{C})$

From (1) and (2) we get $A^{*} \leq C$

$$
A^{*} \leq B \quad B^{*} \leq C \Rightarrow A^{*} \leq C
$$

Theorem 4.3 If A be any matrix and B be hermitian matrices then

$$
A^{*} \leq B \Rightarrow A^{*} \leq * B^{*}
$$

Proof:
$A^{*} \leq B \Rightarrow A^{*} A=A^{*} B$ a n d $R(\mathrm{~A}) \subseteq \mathrm{R}(\mathrm{B})$
$A^{*} A=A^{*} B \Rightarrow A^{*}\left(A^{*}\right)^{*}=\left(A^{*}\right)^{*} B$
$\Rightarrow A^{*}\left(A^{*}\right)^{*}=\left(A^{*}\right)^{*} B^{*}$
Since is hermitian $B^{*}=B \Rightarrow A^{*} \leq * B^{*}$
and $R(A) \subseteq R(B) \Rightarrow R\left(A^{*}\right) \subseteq R\left(B^{*}\right)$
Therefore $A^{*} \leq B \Rightarrow A^{*} \leq * B^{*}$
Theorem 4.5 If A be any matrix and B be hermitian matrices then $A \leq * B \Rightarrow A^{*} * \leq B^{*}$

Proof:Similar to previous one.

CONCLUSIONS

The above study has clearly indicated the relationship between left-star partial ordering and right-star partial ordering of s-unitary matrices. Also shown some results of left-star partial ordering and right-star partial ordering of s-unitary matrices.

[^0] matrices." College of Mathematics and Statistics,Choquings University 401331 ,China. |

[^0]: REFERENCE
 [1]Anna Lee,(1976), "Secondary symmetric, secondary skew symmetric secondary orthogonal matrices." Period. Math. Hungary ,Vol. 7 pp 63-70 | [2]Anna Lee,(1976),"On s-symmetric, s-skew symmetric and s-orthogonal matrices." Period Math. Hungary Vol 7, pp 71-76. | [3]Baksalary J.K. (1986) "Relationship between the star and minus ordering",Lin.Alg.Appl.,82, 163-167. | [4]Hartwig.R.E and Styan.G.P.H, (1986), "On some characterization of the star partial ordering for matrices and rank subtractivity."Lin.Alg.Appl., Vol 82, pp145-161. | [5]Hongxing Wang and Jin Xu (2014), "Some Results on | Characterizations of Matrix Partial Orderings", Journal of Applied Mathematics.,Article 11 | [6]Jorma.K.Merikoski and Xiaoji Liu ,(2006), "On the star partial ordering of normal matrices." Journal of inequalities in Pure and Applied Mathematics, Vol 7,issue 7, Art 17. [7]Jurgen Grob. (1997),"Some remarks on partial ordering on hermitian matrices." linear and Multilinear algebra, 42, pp53-60. | [8]Krishnamoorthy.S and Govindarasu. A , (2010), "On secondary unitary Matrices.", International Journal of computational science and Mathematics. Vol 2 number 3, pp 247-253. | [9]Krishnamoorthy.S and Govindarasu .A, (2011). "On the' $\mathbb{\prime}$ ' partial ordering of s-unitary matrices." "International Journal of Mathematical Archive" 2(12), pp 2534-2537. I [10]Krishnamoorthy.S and Govindarasu. A, (2012), "On the Partial Ordering of s-Unitary Matrices." "International Journal of Algebra" Vol.6, no.5, pp 227-231. | [11]Liu and yang .,(2011), "Some results on the partial ordering of block

