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ABSTRACT The purpose of this paper is to utilize statistical tests to show the AGRM, a cross sectional price statistic, 
is a valid asset and stock pricing model based upon its distributions for nine SIC groups totaling 4,843 

companies.  The AGRM is the quotient of total assets at market capitalization value and total revenue.  The importance 
of the AGRM is that it may be used to price total assets and common equity from total revenue. 

Popular statistical tests of the AGRM frequency distributions indicate that it is log-normally distributed for all nine SIC 
groups.  The Box and Cox transformation indicate that the logarithmic transformation is appropriate to describe the 
distribution of the AGRM across the nine data sets.   Bartlett’s test for equality of variances showed that seven of the 
nine distributions of LNAGRM are highly similar and the remaining two are somewhat similar to the other seven.  The 
standard deviations of the seven groups of LnAGRM vary from 0.66 to 0.78 and all nine vary from 0.66 to 0.99 with a 
coefficient of variation of 0.14.

KeywORds

Introduction 
The purpose of this research is to provide statistical sup-
port for an asset and stock-pricing model using the Asset 
Gross Revenue Multiplier (AGRM), which may explain asset 
and stock prices.  The AGRM has been subject of only one 
prior study by one of the authors. [Kelting [1]] 

The AGRM is defined as 

           Total assets at market capitalization value (TAMCV)
AGRM = ----------------------------------------------------------------
                              Total Revenue (TR)

TAMCV is the sum of the market capitalization value of 
common equity [CEMCV; Number shares CE outstanding 
(NSO) x Price per share] plus the cost of total liabilities 
including minority interests (TL).  Cost rather than market 
value of total liabilities is used to have a readily available 
measure of TL amount from the financial statements and in 
computerized databases.  

The AGRM is a cross sectional price statistic that is de-
rived from market data and may be used to value total 
assets (i.e., TAMCV = AGRM x TR) and common equity 
(i.e., [CEMCV/share = (AGRM x TR – TL)/NSO] assuming 
no preferred stock.  The AGRM implicitly takes earnings 
predictions and the discount rate into account, while the 
discounted cash flow model (i.e., DCFM; PV = ∑ Rt/(1+k)t] 
makes explicit predictions of these in Rt, annual cash flow, 
and k, the discount rate often defined by the weighted av-
erage cost of capital.  Indeed, the DCFM must be used for 
project investments to assure that financial management 
has support for the time dimensions of revenue, costs, and 
expenses for a new project that contributes to the NPV of 
the firm.  Exogenous explicit predictions of these by in-
vestment analysts for asset and stock pricing are supremely 
difficult because of their inadequate knowledge of busi-
ness operations.

The nearest cross sectional price statistic to the AGRM is 
the Enterprise Value to Sales (EVS) ratio.  Most frequently, 
the EVS ratio is defined as the sum of common and pre-
ferred equity plus interest bearing debt less cash divided 

by sales or total revenue; thus, both cash and current lia-
bilities are omitted in enterprise value. But there are slight 
variations in the definition of enterprise value [Alexson [2]; 
Bhojraj [3]; Casta [4]; Compustat [5]; Harbula [6]; Kim [7]; 
Lie [8]; Panteleo [9]; White [10]].

The advantages of the AGRM to value total assets or com-
mon equity are that it (1) matches the highest level of to-
tal assets and revenue based upon the accounting identity, 
TA = TL + Equity Capital from the financial statements, 
(2) takes into account all operating financial requirements 
necessary for business operations, including project invest-
ments, acquisitions, and extra cash required for expected 
downturns in business activity, (3) is simple to calculate 
knowing only TAMCV and total revenue, (4) and may be 
used by market participants to set stock prices based upon 
the frequency distributions in this study across nine stand-
ard industrial classifications (SICs) and the earlier multiple 
regression analysis by one of the authors.           

Materials and Methods
The database for AGRM research
In order to determine if stock prices in the public markets 
are set by the AGRM, we formulated a research plan to 
calculate the AGRM by industry group and used Standard 
and Poor’s Capital IQ database at the Graduate School 
of Business Library at Stanford University.  This database 
contained about 9,300 lines of data (one line per compa-
ny). After elimination of cases containing missing data or 
outliers, we had 6,039 AGRM-calculated companies. We 
grouped these companies by four-digit Standard Industrial 
Classification (“4DSIC”).  

Preliminary exploratory analysis of the AGRM data led us 
to hypothesize that the distributions of the AGRMs would 
be log normal with a long right tail. Furthermore, large 
AGRMs (e.g., 500) would skew the distributions of the 
four-digit SICs (4DSIC). Thus, we used the Coefficient of 
Variation, CV<1, as the criteria to eliminate some of these 
outliers; however, the CV<1 criterion was avoided if the 
distribution of large AGRMs was continuous in the sense of 
a large number of continuously large AGRMs. This set of 
criteria led to 5.3% reduction in the total number of com-
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panies considered. We originally predicted five-percent 
outliers; thus the 6,039 companies for which we calculated 
the AGRM, was reduced by 318 outliers (5.3 percent) to a 
net number of companies of 5,760.  We did not calculate 
the cumulative percentage of 4DSIC outliers to assure in-
dependence between 4DSIC group outlier eliminations. 
We further eliminated 917 companies in ten four- digit 
SICs because their AGRMs differed substantially from the 
remaining companies in each of the nine, four-digit SIC 
groups yielding 4,843 companies in nine, four-digit SIC 
groups subject to distributional analysis.

An introduction to statistical analysis of the AGRM
In statistical literature the terminology “modeling” applies 
to two distinct concepts. Namely, curve fitting and distribu-
tion fitting. These two concepts are very different and re-
quire different kinds of data analysis. One is fitting a curve 
to a set of points, which involves modeling a response var-
iable as a function of one or more covariates or predictor 
variables. Simple and multiple regression, general linear 
and none-linear modeling, Ridge regression, The Lasso, 
and time series analysis are appropriate in this case with a 
wide range of applications. They are part of the so-called 
supervised learning as discussed by Hastie et.al [11]. 

Distribution fitting on the other hand falls under the um-
brella of unsupervised learning. We are not required to 
make any prediction in this case. It involves modeling the 
probability distribution of one or more variables. In the 
univariate case one seeks to model the probability density 
function of a variable. The model usually involves one or 
more parameters. In the multivariate case the joint prob-
ability distribution is often the goal of the researcher. In 

either case the model is a normalized probability density 
function. There are several software packages, which fit 
distributions to data interactively. One such package is:

UNIFIT [12], which is an interactive computer package for 
fitting probability distributions to observed data.

Our objective in this paper is to find, fit, and statistically 
test a univariate family of distributions, which best de-
scribe the distribution of each of the nine AGRM data 
groups mentioned earlier. We first do some exploratory 
analysis by computing the usual sample moments, namely, 
mean, standard deviation, coefficient of skewness, and co-
efficient of kurtosis, as well as histograms of each of the 
nine groups of data. Based on this descriptive analysis, 
we postulate the likely distributions, which might describe 
the data adequately. Finally, we perform various statistical 
tests on each data set to assess the goodness of the fit-
ted distribution. In particular we consider the lognormal as 
a viable model for fitting the available data from the nine 
industry segments. 

Exploratory analysis and descriptive statistics
As previously stated, we will demonstrate that AGRM is a 
simple and viable multiplier in the asset pricing process 
and financial market analysis. The available data consist of 
the AGRM multiplier for 4843 companies. These compa-
nies are from nine different market segments.  Table-1 and 
Table-2 depict the descriptive statistics for both the AGRM 
and Ln-AGRM, the natural logarithm of AGRM respectively 
for all nine data sets. 

Table-1

VAR AGRM 1 AGRM 2 AGRM 3 AGRM 4 AGRM   5 AGRM    6 AGRM   7 AGRM    8 AGRM  9

N (sample 
size) 415 157 477 1253 537 442 753 649 160

Mean 6.5 2.1 1.6 2 3.2 1.1 9.3 3.3 1.7

Median 4.9 1.8 1.2 1.4 2.7 .74 7 2.4 1.3

SD 5.7 1.5 1.3 1.8 2.5 1.1 9 3.1 1.2

Min .39 .31 .22 .25 .11 .1 .1 .05 .25

Max 47.83 8.75 7.93 18.51 16.79 9.61 66.95 21.49 7.77

Range 47.44 8.44 7.71 18.26 16.68 9.51 66.84 21.44 7.52

Skewness 3.17 1.82 2.1 3.6 2.1 3.7 2.5 2.3 1.93

Kurtosis 17.16 7.2 8.35 23.04 9.22 22.76 11.7 10.11 7.93

SE .28 .12 .06 .05 .05 .05 .33 .12 .07

Table-2

VAR Ln-AGRM1 Ln-AGRM2 Ln-
AGRM3

Ln-
AGRM4

Ln-
AGRM5

Ln

AGRM6

Ln

AGRM7

Ln

AGRM8

Ln

AGRM9
N(sample size) 415 157 477 1253 537 442 753 649 160

Mean 1.6 .53 .23 .4 .9 -.24 1.81 .85 .27

Median 1.6 .57 .21 .36 .99 -.3 1.95 .86 .29

SD .72 .66 .7 .71 .78 .74 .99 .86 .69

Min -.94 -1.17 -1.51 -1.39 -2.21 -2.3 -2.21 -3 -1.39

Max 3.87 2.17 2.07 2.92 2.82 2.26 4.2 3.07 2.05

Range 4.81 3.34 3.58 4.3 5.03 4.57 6.41 6.07 3.44

Skew -.06 -.07 .09 . 4 -.54 .34 -.56 -.15 -.04

Kurt 3.8 2.71 2.76 3.12 3.78 3.31 3.53 3.18 2.7

SE .04 .05 .03 .02 .03 .04 .04 .03 .05
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Notes and observations:
1. The mean of AGRM is larger than its median for all 

nine groups, indicating a positively skewed distribu-
tion. 

2. The mean and median are essentially the same for 
the Ln-AGRM for all nine groups, indicating a sym-
metric distribution. 

3. The SD’s of all nine groups for the Ln-AGRM are fairly 
similar varying from 0.66 to 0.99 (mean = 0.76, SD 
= .10, CV = 0.14), meaning that the market dynam-
ics for all nine industry segments and their volatility as 
measured by Ln- AGRM is relatively stable. 

4. The means of Ln-AGRM are different for the nine 
market segments, as each industry has it’s particular 
characteristic. 

5. Kurtosis coefficient is 3 in case of the normal distri-
bution. The estimated kurtosis range from 2.7 to 3.8, 
which is not very different from 3 for the normal dis-
tribution. 

6. Finally, the coefficient of Skewness of Ln-AGRM is less 
than 0.57 in absolute value for all groups. This coeffi-
cient is zero in case of the normal distribution. Based 
on the above observations we suspect that lognor-
mal distribution might be a viable candidate to de-
scribe the AGRM distribution. We shall perform vari-
ous rigorous test of normality of Ln-AGRM for all nine 
groups.  Figure-1 depicts the boxplot of Ln-AGRM for 
all nine datasets. The corresponding histograms are 
given in Figure-2.

Figure-1, Ln-AGRM Box Plots

Figure-2 Histogram of Ln-AGRM for all nine datasets

Distribution fitting and parameter estimation 
We explored several positively skewed distributions as 
possible candidates to our data. See Johnson et.al [13]. 
For brevity, we only report the analysis for the AGRM1, 
the data set from the first market segment. The analy-
sis led us to conclude that the lognormal describes the 
AGRM distribution well. A random variable X is said to 
have a lognormal distribution if the logarithm X has a nor-
mal distribution.  The mean and variance of the log normal 
distribution are functions of the mean and variance of the 
corresponding normal distribution as the following formu-
lae indicates. 

Figure-3: Distribution Function of AGRM1 & the fitted 
lognormal

The difference between normal and lognormal variability 
is that both forms of variability are based on a variety of 
forces acting independently of one another. A major differ-
ence, however, is that the effects can be additive or mul-
tiplicative, leading to normal or lognormal distributions, 
respectively. This property is particularly interesting and 
applicable in finance where, a variable might be mod-
eled as lognormal if it can be thought of as the product 
of many independent positive random variables. This is the 
direct consequence of the central limit theorem in the log-
space. In finance, we often use the compound return from 
a sequence of many independent returns (each expressed 
as its return +1); or long-term discount factor can be de-
rived from the product of short-term discount factors. Con-
sidering the AGRM1 in log scale therefore seems to be 
reasonable in this finance application when dealing with 
discounted factors or compound interest that AGRM may 
inherently represent.

Figure-4 Normal Probability Plot of Ln-AGRM1
Slightly skewed to the left with negative coefficient of 
skewness of -0.06
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Figure-5 Boxplot of Ln-AGRM1: The distribution is more 
peaked than normal with Kurtosis of 3.8 compared to 3 
for normal and it is slightly skewed to the left with 
Skewness of -.06 compared to 0 for normal.  Only 8 ob-
servations out of 415 are outside the +/- 3-sigma limits. 
We conclude that Ln-normal is a reasonable fit for the 
AGRM1 data set.
 
Fitting alternate distributions to AGRM1

Figure-7: Fitting t-location-Scale, lognormal, Birnbaum-
Saunders, and Bur distribution to AGRM1.

Mean (Ln-AGRM1)= 1.6045, STD (Ln-AGRM1)= 0.7221

95% Confidence interval for the mean and SD

Mu  (1.5347   1.6769), sigma  (0.6769    .7759)

FIGURE-8 The Ln-AGRM1 empirical distribution, the fit-
ted normal curve, the estimated mean and standard de-
viation and the corresponding 95% confidence interval

3.1305

1.5 IQR

Fitting lognormal distribution to AGRM for all nine mar-
ket-segments.
We performed similar analysis for the other eight data 
sets. The lognormal proved to be a reasonable model for 
those data sets as well. In this section we show each fitted 
lognormal distribution and the corresponding parameter 
estimates as well as the 95% confidence interval for the 
mean and standard deviation. The graphs are generated 
using the Mat-lab (Math-Works) dfittool. We also used the 
kdensity tool of Mat-lab with the normal kernel to estimate 
the distribution none-parametrically. However, the resulting 
fitted distributions were not significantly different than the 
parametrically fitted lognormal distributions. 

AGRM1 Lognormal distribution
Mu = 1.60446    [1.5347, 1.67423]

Sigma = 0.723007   [0.676938, 0.775857]

Figure-9 fitted lognormal distribution to AGRM1: 
N=415
 
AGRM2 Lognormal distribution
Mu = 0.53022   [0.426943, 0.633497]

Sigma = 0.655121   [0.589791, 0.736855]

Figure-10 fitted lognormal distribution to AGRM2: 
N=157
 
AGRM3 Lognormal distribution
Mu = 0.227172      [0.164114, 0.29023]

Sigma = 0.700885      [0.659052, 0.748432]

 
Figure-11 fitted lognormal distribution to AGRM3: 
N=477
 
AGRM4 Lognormal distribution  
Mu = 0.401136   [0.361966, 0.440307]
Sigma = 0.706744   [0.680116, 0.735558]

Figure-12 fitted lognormal distribution to AGRM4: 
N=1253
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AGRM5 Lognormal distribution
Mu = 0.899827   [0.834048, 0.965605]

Sigma = 0.775962   [0.732164, 0.825376]

 
Figure-13 fitted lognormal distribution to AGRM5: 
N=537
 
AGRM6     Lognormal distribution
Mu = -0.242647   [-0.311721, -0.173573]

Sigma = 0.738896   [0.693186, 0.791109]

 
Figure-14 fitted lognormal distribution to AGRM6: 
N=442

AGRM7   Lognormal distribution
Mu = 1.81382   [1.74316, 1.88449]

Sigma = 0.987791   [0.940296, 1.04038]

Figure-15 fitted lognormal distribution to AGRM7: 
N=753
 
AGRM8   Lognormal distribution
Mu = 0.844846   [0.778522, 0.91117]

Sigma = 0.860467   [0.816065, 0.910017]

Figure-16 fitted lognormal distribution to AGRM8: 
N=649
AGRM9 Lognormal distribution
Mu = 0.272664   [0.164804, 0.380524]

Sigma = 0.690801   [0.6225, 0.77607]

Figure-17 fitted lognormal distribution to AGRM9: 
N=160

The Box and Cox transformation of the data
In this section we further transform the AGRM in each 
group using the Box and Cox power transformation [14], 
in search of a function of AGRM, which might describe the 
data more accurately. 

The Box–Cox power transformation is given by: 

 

Such transformation is often used to stabilize the variance 
and reduce skewness in the data distribution, thus making 
the data more normal. One application is the general lin-
ear models where the errors are assumed to be independ-
ent and normally distributed with equal variances.

The maximum likelihood estimate of λ-hat for which the 
sum of squares of error is minimum is obtained compu-
tationally. If the optimal value of λ is zero, the log trans-
formation is the most appropriate one. However, if λ-hat 
is other than zero, the power transformation given in the 
above formula is better. For groups 4-7 the λ-hat values 
differ from zero, but even in these cases the departure 
from zero is not substantial, indicating the transformation 
of the AGRM is the appropriate one as indicated in Table 
3.

AGRM λ-hat Ln AGRM λ-hat Ln

AGRM1 0.0 - AGRM6 -0.1 x

AGRM2 0.0 - AGRM7 0.17 x

AGRM3 0.0 - AGRM8 0.0 -

AGRM4 -0.2 x AGRM9 0.0 -
AGRM5 0.2 x

Table-3   λ-hat values
 
Statistical test for normality
There are many statistical tests for normality. Some are 
more sensitive than others. Our Null hypothesis H0: states 
that the distribution of the AGRMi, i=1,2…9; follow the 
normal distribution vs. the alternative hypothesis H1: It 
follows a non-normal distribution. These tests are done 
separately for each data set. By definition, the p-value for 
each is the smallest level of significance (the a value or the 
type-I error) that the null hypothesis may be rejected. 

One popular test is the Kolmogorov Smirnov test [15]…
[21]; of normality on the Ln-AGRM as well as the Box & 
Cox power transformed data sets. Table-4 shows the P-
values for these tests. If the value in the H Colum is zero, 
there is no significant departure from normality. If the value 
is one, there is statistical evidence of significant departure 
from normal distribution. Note that the values with a 1 in 
the H column correspond to p-values less that α=0.05. 

In table-4, the P-values are all greater than 0.05, after the 
Box and Cox transformation of the data. 

H
P-Val

Ln-transformation
Transformation

P-Val

Box & Cox
0 .58 Ln .58

0 .53 Ln .53
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0 .71 Ln .71

1 .03 -((X^(-.2))-1)/.2 .90

1 .02  ((X^.2)-1)/.2 .57

0 .48 -((X^.1)-1)/.1 .95

1 .01 ((X^.17)-1)/.17 .47

0 .99 Ln .99

0 .85 Ln .85

Table-4: Kolmogorov Smirnov Test for normality of Ln-
data
 
LAGRM4, LAGRM5, and LAGRM7 do not pass the KS nor-
mality test. We therefore perform the Box & Cox power 
transformation on these variables. After this transformation, 
they all pass the KS test for normality at α=0.05 signifi-
cant level, as indicated by the p-values in the last column. 
If the p-value is less than α=0.05, we reject the normal-
ity assumption. This is the case for AGRM4, AGRM5, and 
AGRM7, indicated by red color in table-3. Note that for 
AGRM6, the value of λ-hat is 0.1, which is the closest to 
0. In this case the Ln-transformation seems adequate and 
the KS test for normality does not reject H0. This analy-
sis shows that the Box and Cox transformation actually 
achieves near normal distribution for the AGRM in the nine 
industry segments. 

Other statistical tests for normality
Chi-SQ goodness of fit test, [22]…[23]: 

 
After the Ln-transformation the data has been further nor-
malized and are tested against the standard normal distri-
bution. The corresponding variables after normalization 
are: z1-z9. Table-5 depicts the results, obtained using the   
Mat-lab Chi2-GOFFIT tool.

z=(Ln-AGRM-Mean(Ln-
AGRM))/SD(Ln-AGRM) H P-Value

1 0 0.09

2 0 0.06

3 0 0.32

4 0 0.85

5 0 0.11

6 0 0.49

7 0 0.06

8 0 0.95

9 0 0.60

Table-5: Chi-Square for normality

The fact that H=0 in table-5, indicates we have no statis-
tical evidence that the standardized transformed data do 

not differ significantly from the standard normal distribu-
tion at α= 0.05. Note that the p-values are all greater than 
.05

The Lilliefors Test of normality
We further perform the Lilliefors test [24]…[29], which is a 
two-sided goodness-of-fit test suitable when the param-
eters of the null distribution are unknown and must be 
estimated. This is in contrast to the one-sample Kolmogo-
rov-Smirnov test, which requires the null distribution to be 
completely specified.

The Lilliefors test statistic is  Where F (x) is the empirical 
cdf of the sample data and G is the cdf of the hypothe-
sized distribution with estimated parameters equal to the 
sample parameters (In this case the normal distribution).

Table-6 summarizes the results, again, indicating no signifi-
cant departure of the transformed data from the normal 
distribution. The Lillie test tool in Mat-lab was used to get 
these results. Each z, is the normalized Ln-AGRM data and 
α=0.01

z=(Ln-AGRM-Mean(Ln-AGRM))/
SD(Ln-AGRM) H P-Value

1 0 0.17
2 0 0.13
3 0 0.30
4 0 0.50
5 0 0.16
6 0 0.50
7 0 0.09

8 0 0.50

9 0 0.50

Table-6 Lilliefors test of normality.
 
The Shapiro-Wilk Test (R-Software)
Finally we perform the Shapiro-Wilk test, [30]…[32], which 
again confirms the previous conclusions of no significant 
departure of the transformed data from the normal distri-
bution with α=. 05. Results are given in Table-7

Z=(Ln-AGRM-Mean(Ln-AGRM))/SD(Ln-
AGRM) H P-Value

1 0 0.02
2 0 0.29
3 0 0.16
4 1 0.65
5 1 0.99
6 0 0.57
7 1 0.17

8 0 0.14

9 0 0.74

Table-7 Shapiro-Wilk Test of normality
 
Bartlett’s test for equality of variances
Based on the data in tables 1 and 2 of section II; we stat-
ed that the variances of the Ln-AGRM are very similar for 
all nine groups. Six of the nine data sets have standard 
deviations between 0.66 and 0.74 and all are in the range 
of 0.66 to 0.99 with average SD of 0.76, standard devia-
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tion of 0.10, and coefficient of variation (CV) of 0.14. This 
seems to be the smallest CV for a business process and 
suggests the stock price component of the AGRM is set by 
the efficient-market hypothesis with common price deter-
minants across all nine groups.   

We now perform a test known as the Bartlett’s test [33], to 
verify similarity in the variances of Ln-AGRM statistically.  The 
Bartlett’s statistics is 164 with 8 degrees of freedom. With this 
large value of the statistic, the p-value is very small, indicating 
the rejection of the hypothesis of equality of the variances of 
all nine groups.  Further examination of the estimate of the 
standard deviations indicate that groups 7 and 8 have larger 
variance than the other 7 groups. Excluding these two groups 
and performing the Bartlett’s test again, we get the Bartlett’s 
statistics of 11.6, with 6 degrees of freedom and a p-value of 
0.07, which is not significant at α=0.05. We therefore conclude 
that the standard deviations of AGRM are statistically the same 
for groups 1-6, and 9.  A third iteration of Bartlett’s test for 
group 7 and 8 yielded a statistic value of 13.1 with one degree 
of freedom and a p-value of close to zero, indicating that the 
standard deviations of group 7 and 8 are statistically different.  
Although, these statistical tests indicate that the true standard 
deviation of AGRM are not all the same, from the practical 
point of view however, they are very comparable. This conjec-
ture is further verified by looking at the 95% confidence inter-
vals for each group standard deviation given in figures 10-17.  

Fitting distributions to AGRM using the Pearson Sys-
tem.
The statistician Karl Pearson devised a system, or family, of 
distributions that includes a unique distribution corresponding 
to every valid combination of mean, standard deviation, skew-
ness, and kurtosis [34]…[36], Given sample values for each of 
these moments from data, it is easy to find the distribution in 
the Pearson system that matches these four moments and to 
generate a random sample of that type of distribution. The 
Pearson system includes seven basic types of distribution to-
gether in a single parametric framework. It includes common 
distributions such as the normal and t distributions, simple 
transformations of standard distributions such as a shifted and 
scaled beta distribution and the inverse gamma distribution, 
and one distribution—the Type IV—that is not a simple trans-
formation of any standard distribution.  For a given set of mo-
ments, there are distributions that are not in the system that 
also have those same first four moments, and the distribution 
in the Pearson system may not be a good match to the data, 
particularly if the data are multimodal. But the system does 
cover a wide range of distribution shapes, including both sym-
metric and skewed distributions. We used Mat-lab (Pearsrnd), 
to compute the first four moments and used them as input. 
The output of Pearsrnd provides the type and the coefficients 
of the distribution in the corresponding system. The functions 
also generate random numbers from that specific distribution.  

The seven distribution types in the Pearson system corre-
spond to the following distributions: 

Normal Distribution
1. Four-parameter generalized beta distribution
2. Symmetric four-parameter beta distribution
3. Three-parameter gamma distribution
4. Not related to any standard distribution. The density is  

proportional to:

(1 + ((x - a)/b)2)-c exp(-d arctan((x - a)/b))
5. Inverse gamma location-scale distribution
6. F location-scale distribution

7. Student t- location scale distribution
 
We thus obtained the Pearson-type distribution for each of the 
nine, Ln-AGRM and the nine original AGRM based on the first 
four sample moments. The fitted CDF are given below. The 
moments are given in Table-2 of section II.

   

   

Summary of Pearson types for Ln AGRM:
Ln-
AGRM# Mean SD Skew-

ness b1=Skewness2 b2=Kurtosis Type

1 1.6 0.72 -0.06 0.0036 3.8 IV
2 0.53 0.66 -0.07 0.0049 2.71 I
3 0.23 0.7 0.09 0.0081 2.76 I
4 0.4 0.71 0.04 0.0016 3.13 I
5 .90 0.78 -0.54 0.2916 3.78 IV
6 -.24 0.74 0.33 0.1089 3.31 IV
7 1.81 0.99 -0.56 0.3136 3.51 VI
8 0.85 0.86 -0.15 0.0225 3.18 IV
9 0.27 0.69 -0.04 0.0016 2.7 I
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We also performed the analysis for AGRM and the analysis is 
given below

          

 

Summary of Pearson types for AGRM:

AGRM# Mean SD b1=Skewness2 Skew-
ness2

Kurto-
sis Type

1 6.45 5.69 3.2 10.24 17.2 I
2 2.1 1.45 1.82 3.31 7.2 I

3 1.6 1.26 2.07 4.41 8.35 I

4 1.96 8.34 3.6 12.96 23.04 I

5 3.22 2.48 2.1 4.41 9.2 I

6 1.06 1.05 3.7 13.69 22.76 IV

7 9.31 9.01 2.9 6.25 11.7 I

8 3.32 3.1 2.3 5.29 10.1 I

9 1.66 1.2 1.93 3.73 7.92 I

Based on this analysis, Pearson type-1 seems to be the 
best candidate for the AGRM. This family of distributions 
is the so called generalized Beta (GB) distribution, which 
is a  continuous probability distribution  with five parameters, 
including more than thirty named distributions as  limit-
ing  or  special cases. It has been used in the modeling 
of  income distribution, stock returns, as well as in  regression 
analysis. The  exponential generalized Beta (EGB) distribu-
tion  follows directly from the GB and generalizes other 
common distributions, [37]. Normal distribution is the limit-
ing distribution for Pearson types: I, III, IV, V, and VI.

Results and Discussions
In this paper, we perform several different tests for nor-
mality, namely, the usual qq-plot, the nonparametric Chi2-
Goodness of Fit test, the Kolmogorov Smirnov test, Lil-
liefors test and the Shapiro Wilkes test. The test results 
consistently show the effectiveness of the logarithmic 
transformations performed on AGRM, when we test the 
null hypothesis H0: that each transformed variable follows 
a normal distribution vs. an alternative H1: It follows a non-
normal one. 

For each variable, the Basic methodology is to first create 
a proper distribution function from the empirical sample 
distribution, non-parametrically, that is without assuming 
any particular parametric distribution a priori; and test it 
against the normal distribution. The parametric approach 
is to assume lognormal distribution a priori and estimate 
it’s parameters using the maximum likelihood method. The 
normality assumption is then checked using the goodness 
of fit test. For brevity we only report the test for normality 
in the parametric case. The results were similar for the em-
pirical distributions created form sample data. 

The first data set, AGRM1, was initially used as a training 
set to establish the methodology. This data set consisted 
of 415 observations in metal mining, crude petroleum, 
natural gas, etc. Several analytic approaches were adopt-
ed. These included obtaining basic descriptive statistics 
and various moments as well as plotting the empirical PDF 
(Histogram), and CDF of the data. The initial plot of the 
empirical distribution revealed a positively skewed distri-
bution suggesting the lognormal distribution as a possible 
candidate for the population distribution of AGRM1. How-
ever we explored other right skewed distributions such as 
Gamma, Burr, Birnbaum-Saunders, and t-location scale in 
addition to the lognormal distribution. The graphs for the 
corresponding fitted curves for these distributions are giv-
en in section II. 

This preliminary analysis revealed that the lognormal distri-
bution was indeed the best candidate for the data at hand. 
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The lognormal had the additional advantage of tractability, 
having the desirable properties of the Normal distribution, 
once the data is transformed to the log scale. The log 
transformation is to the base e and is denoted by Ln. 

The next step was to fit the lognormal distribution to all 
nine sets of data. We did this using various tools in Matlab 
including the dfittool, distfit, makedist, ksdensity, and mle 
tools. We also used the open source R software for parts 
of the analysis where the Matlab tools were not readily 
available or cumbersome to use. 

We further applied the Box and Cox transformation, which 
confirmed the appropriateness of the lognormal model 
for some of the nine data sets. The computed maximum 
likelihood estimate of l, the parameter used in the Box 
and Cox method, applied to the nine sets are remark-
ably close to zero, indicating that the log transformation 
of the AGRM data may indeed be the appropriate model 
for achieving normality. In other words, Ln-AGRM is nearly 
normal. Additionally we analyzed each data set using the 
Pearson System of distributions based on the first four 
sample moments. The results indicated the generalized 
type-1 b-distribution might be the best parametric model 
for AGRM. Pearson system distribution is a very rich fam-
ily of distributions and is often applied in financial analysis. 
See  [38]…[40]

Conclusion
The significance of this paper is two-folded. First, it pro-
poses the novel and yet simple cross-sectional multiplier, 
Asset Gross Revenue Multiplier (AGRM), to price total as-
sets and common equity. The AGRM may be used to 
evaluate a company or a market segment in an effective 
and straightforward manner. Second, as far as we know, 
the in-depth and rigorous statistical treatment of the sub-
ject is new. The use of real market data to characterize the 
AGRM for nine market segments statistically and ascertain-
ing that this multiplier follows a lognormal in most market 
segments and nearly lognormal in others is a new finding. 
This paper is a prelude to a subsequent paper in which 
we seek to find well-known common and simple market 
indicators covariates to estimate the AGRM using gen-
eral linear models. The analysis performed here is signifi-
cant, because it establishes the parametric distribution of 
AGRM to be used later as the dependent variables in the 
linear models for which the normality assumption is gener-
ally required.  AGRM is a simple multiplier of total revenue 
to price assets and common equity. We hope to model 
AGRM, as a function common simple covariates in a follow 
up paper. 
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