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This paper provides an overview of elliptic curves and their use in cryptography.
The focus of the paper is on the performance of mathematical background required. The main difference between RSA and 

Elliptic Curve Cryptography is that unlike RSA, Elliptic Curve Cryptography offers the same level of security for smaller key sizes. Elliptic 
Curve Cryptography is highly mathematical in nature. While conventional public-key cryptosystems (RSA, Diffie - Hellman and DSA) 
operate directly on large integers, an Elliptic Curve Cryptography operates over points on an elliptic curve using elliptic curve cryptography 
instead of traditional cryptosystemssuch as RSA. Specific applications to secure messaging and identity-based encryptionare also 
discussed.
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I. Introduction
Elliptic Curve Cryptography (ECC) is a public key cryptogra-
phy. In public key cryptography each user or the device taking 
part in the communication generally have a pair of keys, a public 
key and a private key, and a set of operations associated with the 
keys to do the cryptographic operations. Only the particular 
user knows the private key whereas the public key is distributed 
to all users taking part in the communication. Some public key 
algorithms may require a set of predefined constants to be 
known by all the devices taking part in the communication. 
'Domain parameters' in Elliptic

History of Elliptic Curve Cryptography
Elliptic curves were proposed for use as the basis for discrete 
logarithm-based cryptosystems almost 20 years ago, independ-
ently by Victor Miller ofIBM and Neal Koblitz of the University 
of Washington. At that time, elliptic curves being used in 
various cryptographic contexts, such as integer factorization 
and primarily proving.

Modulo arithmetic:
Let d be an integer and let n be a positive integer. Let q and r be 
the quotient and remainder obtained from dividing d by n, The 
relationship between d,n,q, and r is 

d=n*q+r, 0<r<n (1)

Note that r is a non negative integer less than, d and n are the 
dividend and the divisor, respectively, we say “d is equal to r 
modulo n “if the remainder from dividing d by n is r. This is 
expressed as 

r ≡ d(mod n)                       (2)

for a given value of n and r there are an infinite number of (d,q) 
pairs that satisfy  Eq.1 
let n=10 and r=3
then 13,23,33 etc all satisfy with quotient 1,2,3  etc in fact each 
element of the set below satisfies eq(2.2)
{………-37,-27,-17,-7, 3, 13, 23, 33, 43……}

Congruence:
Any two numbers in the above set are said to be congruent 
modulo 10 and the set itself is referred to as a congruence class. 
It is helpful to visualize the modulo n relationship using the 
integers are laid out along a spiral with n integers on a single 
circle starting with 0 we encounter the positive integers in 
sequence as we traverse the spiral clockwise direction. The set 
of elements along a given radius constitute one of the congru-
ence class modulo n. There is n congruence classes' mod n. It is 
convenient to represent a class by the smallest non-negative 

integer in that class.

Two distinct integers a and b that are congruent modulo n map 
to the same radius in the spiral counting from a to b involves one 
or more revolutions. it follows that :

Fact: If two integers are congruent modulo n, then they differ by 
an integral multiple of n algebraically, if 
a mod n=r and b mod n=r,

Then a=n*q +r and1

b=n*q +r2

Where q  and q  are integers.1 2

Subtracting we get
a-b=n(q -q )1 2

Since q  and q  are integers a and b differ by an integral multiple 1 2

of n,
Many useful properties of modulo arithmetic can be proved 
using the above fact.

1.(a+b) mod n=((a mod n)+(b mod n)) mod n
2.(a-b) mod n=((a mod n)-(b mod n)) mod n
3.(a*b) mod n=((a modn) * (b mod n)) mod n

Greatest common divisor: Having introduced the concept of a 
divisor of an integer, we will now deal with the concept of the 
common divisor of two (or more) integers.

Given two integers a and b, the integer c is a common divisor of a 
and b, if c | a and c| b. A notion of greatest common divisor is a 
very important one. It is the largest possible common divisor of 
a and b and is formally defined as

Definition: Let a, b, c and d∈Z with d > 0. d is the greatest 
common divis or of a and b denoted d = gcd(a, b) if:

1. d| a and d | b
2. Whenever c | a  and c | b, then c | d.

Example:
The common divisors of 12 and 18 are ±1, ±2, ±3, ±6, and gcd 
(12, 18) = 6. gcd(20, 30) = 10 and gcd(−12, 8) = 4.

We notice that the greatest common divisor gcd(a, b) of two 
integers a and b always exists and is unique. Furthermore, it can 
be written as a linear combination of a and b. This combination 
is however, not unique. For instance, gcd(24, 9) = 3 = 3 · 9 + (−1) · 
24 = (−5) · 9 + 2 · 24

Theorem: If a, b ∈ Z, are not both 0, then their greatest common 
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divisor gcd (a, b) exists, is unique, and moreover can be written 
as linear combination of a and b, i.e. gcd(a, b) = xa + yb for some 
suitable integers x and y.

Euclidean Algorithm: The Euclidean algorithm is an efficient 
algorithm for computing the greatest common divisor of two 
integers that does not require the factorization of the integers. It 
is based on the following simple theorem

Theorem: Let a, b ∈ Z. Then,

1. ifb = 0, then gcd(a, b) = |b|,
2. ifb ≠ 0, then gcd(a, b) = gcd(|b|, a mod |b|) .

The previous theorem enables the computation of the greatest 
common divisor gcd(a, b) as follows:
We suppose r  = a, r  = b and a > b > 0, then we introduce the 0 1

notation
r +1 = r −1 mod r  for each integer i ≥ 1 and r ≠ 0i i i i 

Then, we compute r +1 = r −1 mod r  for i = 1, 2, 3 . . . until we i i i

obtain for a fixed 
i  ≥ 1: o

r +1 = 0.i

Then, the greatest common divisor is ri0.
If a = 0 resp. b = 0, then gcd(a, b) = b resp. gcd(a, b) = a.

Example:
We want to determine gcd (110, 40). Using the notation 
introduced above, we Obtain the following table

Table: 2.3

From the table we get r  = 0, i.e. i  = 3 and r  = 10 is the greatest 4 0 3

common divisor of 110 and 40, i.e. gcd(110, 40) = 10.

Extended Euclidean Algorithm:
The Euclidean algorithm can be extended so that it not only 
yields the greatest Common divisor of two integers a and b, but 
also integers x and y satisfying the
Linear combination:
ax+ by = gcd(a, b).

This algorithm is called the Extended Euclidean algorithm and is 
very Important, since it can be used to compute a multiplicative 
inverse in Groups.

Corollary: For all a, b, n ∈ N, the equation ax + by = n has two 
integers xand y as solution if gcd (a, b) divides n.

This corollary means that the equation ax + by = gcd (a, b) is 
always solvable. Given two integers a and b as input, with the 
Extended Euclidean algorithm the two Unknown integers x and 
y as well as the greatest common divisor of a and b can be 
determined so that
ax+ by = gcd(a, b).

This will be illustrated in what follows
Let r  = a, r  = b, r  = a mod b and q =     .0 1 2 1 

If r  ≠0, then:2

r  = r  mod r  and q  =3 1 2 2

Generally, we continue with this notation until r = 0:i

r  = r  mod r   and q  = ri|, 1 ≤ i ≤ n.i+1 i-1 i i

We start with x  = 1, y  = 0, x  = 0, y  = 1 and compute in every 0 0 1 1

further iterate

Euler’s phi-function
Euler’s phi-function, φ(n), which is some times called the 

Euler’s totient function plays a very important role in cryptogra-
phy. The function finds the number of integers that are both 
smaller 23than n and relatively primes to n. The set Z * contains n

then number of elements in this set. The following helps to find 
the value of φ(n).

1. φ(1)=0.
2. φ(p)=p-1 if p is prime.
3. φ(mxn)=φ(m)xφ(n) if m and n are relatively prime.

e e e-14. φ(p )=p -p  if p is a prime.

We can combine the above four rules to find the value of 
                                 then we combine the third and the fourth 
rule to find
it is very important to notice that the value of φ(n for large 
composites can be found only if the number n can be factored 
into primes. In other words the difficulty of finding φ(n) 
depends on the difficulty of finding the factorization of n.

Fermat’s little theorem: Fermat’s little theorem plays a very 
important role in number theory and cryptography. We 
introduce two versions of the theorem here.

First version: The first version says that if p is a prime and a is an 
integer such that p does not divide a , then ap-1≡ 1 mod p.

Second version The second version removes the condition on a. 
It says that p is  a prime and a is an integer, then ap≡a mod p.

Exponentiation Fermat’s little theorem sometimes is helpful for 
quickly finding a solution to some exponentiations. The 
following examples show the idea.

Example. Find the result of 610 mod 11=1.This is the first 
version of Fermat’s little theorem where p=11.

12Find the result of 3  mod 11.
Here the exponent (12) and the modulus (11) are not the same. 
With substitute this can be solved using Fermat's little theorem.

12 11 113  mod 11=(3 x3) mod 11=(3  mod 11)(3 mod 11)=(3x3)mod 
11=9
Multiplicative inverse. A very interesting application of 
Fermat's little theorem is in finding some multiplicative 
inverses quickly if the modulus is a prime .If p is a prime and a is 

-1 p-2an integer such that p does not divide a (p/a), then a  mod p=a  
mod p.
This can be easily proved if we multiply both sides of the 
equality by a and use the first version of Fermat's little theorem: 

-1 p-2 p-1axa  modp= axa  mod p=a  mod p=1 mod p
Example. The answers to multiplicative inverses modulo prime 
can be found without using the extended algorithm:

-1 17-2 15a. 8  mod 17=8  mod 17=8  mod 17=15 mod 17
-1 23-2 21b. 5  mod 23=5  mod 23=5  mod 23=14 mod 23

-1 101-2 99c. 60  mod 101=60 mod 101=60 mod 101=32 mod 101
-1 211-2 209 d. 22 mod 211=22 mod 211=22 mod 211=48 mod 211
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