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ABSTRACT The formation of photo generation gratings in optical fiber by sustained exposure of the core to the 
interference pattern produced by oppositely propagating modes of argon-ion laser radiation was first re-

ported in 1978. One important nonlinear application of fiber Bragg grating is grating solitons, including gap soliton 
and Bragg soliton. This paper summarily introduces the numerous theoretical results on this field  each indicating the 
potential these solitons have in all optical switching, pulse compression, logic operations and especially important for 
the optical communication systems.

1.1.1 Introduction
After the invention of the laser, there has been much in-
terest in propagating nonlinear pulses through the periodic 
medium such as a fiber Bragg grating (FBG), which is a 
periodic variation of the refractive index of the fiber core 
along the length of the fiber. Since the first demonstration 
of  photo-induced  optical fiber Bragg gratings by Hill and 
coworkers in 1978 [1], significant progress was made in 
the fabrication technology of fiber Bragg reflectors  [2]. The 
concept of “photonic band structure” is introduced by 
Yablonovitch in the late 1980’s [6]. A notable feature of 
this linear periodic structure is the presence of stop gap 
in the dispersion curve popularly known as photonic band 
gap (PBG) [7]. This PBG exists at frequencies for which the 
medium turns highly reflective and hence the light pulse 
will not be able to propagate through the periodic struc-
ture. Light interaction with nonlinear periodic media yields 
a diversity of fascinating phenomena, among which two 
solitonic phenomena have been studied most intensively, 
namely, discrete (or lattice) solitons  [9]  and gap (or Bragg) 
solitons [10]. While discrete solitons are spatial phenomena 
in two-dimensional or  three-dimensional  arrays of coupled 
waveguides, gap solitons are usually considered as a tem-
poral phenomenon in  one-dimensional  (1D) periodic me-
dia. Perhaps the most fascinating feature of solitons is their 
particle like behavior. Survival of two such colliding solitons 
is even more remarkable if one notes that solitons interact 
strongly with each other during the collision. But for co-
propagating solitons, the interaction is either attractive or 
repulsive, depending on the relative phase between two 
solitons. In both cases the evolution of the soliton pair is 
well understood [4].

As first pointed out by Winful [5], because the dispersion 
is many orders of magnitude larger than the total disper-
sion due to the combined effects of material and wave-
guide dispersions that arise in the conventional fibers, 
the interactions lengths are reduced accordingly. Hence, 
the grating induced dispersion dominates over the total 
dispersion in the conventional fibers. When the en- tire 
spectral components of the input pulse lie within the PBG 
structure, the grating induced dispersion counter- balanced 
by the Kerr nonlinearity through the self-phase modulation 
(SPM) and  cross-phase  modulation (XPM) effects, forming 
solitons are referred to as gap solitons since their spectral 
components are within the PBG structure. Many research 
groups [8] theoretically predicted the existence of gap soli-

tons and Bragg grating solitons in FBG and the investiga-
tions on these exciting entities are going on. However, it 
can be noticed that, in literatures, nowadays the distinction 
between gap soli- tons and Bragg solitons is hardly main-
tained and, in general, they are simply called grating soli-
tons [9]. Ul [5], because the dispersion is many orders of 
magnitude larger than the total dispersion due to the com-
bined effects of material and waveguide dispersions that 
arise in the conventional fibers, the interactions lengths 
are reduced accordingly. Hence, the grating induced dis-
persion dominates over the total dispersion in the conven-
tional

fibers. When the entire spectral components of the input 
pulse lie within the PBG structure, the grating induced dis-
persion counterbalanced by the Kerr nonlinearity through 
the  self-phase  modulation (SPM) and cross- phase modu-
lation (XPM) effects, forming solitons are referred to as 
gap solitons since their spectral compo- nents are within 
the PBG structure. Many research groups  [3]  theoretically 
predicted the existence of gap solitons and Bragg grating 
solitons in FBG and the investigations on these exciting 
entities are going on. However, it can be noticed that, in 
literatures, nowadays the distinction between gap solitons 
and Bragg solitons is hardly maintained and, in general, 
they are simply called grating solitons [2].

1.1.2  Theory
The usual quantitative description of grating solitons em-
ploys coupled-mode  theory leading to the nonlinear  cou-
pled-mode equations. In addition, in the appropriate 
limit, the envelope of the electric field satisfies the non-
linear Schrödinger (NLS) equation. The pulse propaga-
tion through the FBG is described by the non-linear-cou-
pled  mode (NLCM) equations which are non-integrable in 
general. Therefore, the analytical solutions of the NLCM 
equations are not solitons but solitary waves that can prop-
agate through FBG without changing their shape. These 
are obtained from the approximated non- linear Schröding-
er (NLS) equation that results from reducing the NLCM 
equations using the multiple scale analysis. The relation 
between the NLSE and the more general CME description, 
which was discussed earlier [2], is important. Gap solitons 
are obtained from the NLCM equations and their spectra 
lie within the pho- tonic bandgap structure. There is an-
other class of solitons called Bragg solitons obtained from 
the NLS equations whose frequencies fall close to, but out-
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side, the band edge of the photonic bandgap. Generally 
speaking, the gap solitons are the special class of Bragg 
solitons.

For the first time, Chen and Mills [1] have analyzed the 
properties of these gap solitons in nonlinear periodic struc-
ture. Thereafter, Sipe and Winful published analyses show-
ing that these  “gap-solitons”  are not only fundamental 
solutions in the  weak-field  regime but could be detected 
as propagating solutions in structures of finite length [4]. 
The general gap soliton solutions to the coupled mode 
equations were first obtained in a limiting case by Chris-
todoulides and Joseph [6]. The solutions were first re-
ported in their most general form by Aceves and Wabnitz 
[7]. Aceves and Wabnitz appoint parameters to form gap 
solitons in fiber Bragg grating, and the unique dispersion 
relation of the fiber grating, and the corresponding soli-
tons, allows in theory all velocities from zero to the speed 
of light in the bare fiber. Their starting point is the mas-
sive Thirring model(MTM), and quantitative description of 
gap solitons employs coupled-mode theory, leading to the 
nonlinear  coupled-mode equations. At same time, Sipe 
and de Sterke ex- amined, in further publications  ,  the 
pulse trans- mission behavior as a function of both pulse 
energy and detuning from the Bragg resonance. Among 
the contributions of de Sterke, Sipe and others was a 
rigorous development of  coupled-wave  and  multiple-
scales  approxima- tions as well as the description of nu-
merical methods [3] suitable for examining the regimes of 
instability of these structures. In a word, Sipe and Winful , 
Christo- doulides and Joseph [6], Aceves and Wabnitz [7], 
and Winful et al.  [3] have obtained the analytical solutions 
for the grating solitons. Comprehensive analyses of Bragg 
solitons stability have also been re- ported .Still other gen-
eralizations have been discussed by Feng and Kneubuhl [5] 
and by Feng [6]. In order to better simulate experimental 
conditions, Broderick, de Sterke and Jackson presented a 
method of numerically modeling periodic structures having 
optical nonlinearities [7]. Other important extensions and 
generalizations include a series of papers by Aceves and 
coworkers extending many of these principles to wave- 
guide arrays [3].

Inverse scattering transform (IST) is currently the stand-
ard analytical technique for obtaining the soliton solution 
for the homogenous NLSE [9]. IST has been used to solve 
the  two-dimensional  space-time  NLSE with initial-bounda-
ry  conditions and coupled NLSE in the form of fundamen-
tal and  higher-order  soli- tons [3]. To our knowledge, no 
other analytical method has been published besides the 
IST for solving the NLSE systems. Another method can be 
described as effective particle pictures EPP’s, since they 
represent the continuous field distribution as a point par-
ticle with a limited number of degrees of freedom. The 

key difference between the NLSE and NLCME’s is that the 
NLSE is integrable, whereas NLCME’s are not [7], hence 
that an EPP would be more accurate in that case  .  How 
ever, previously, gap soliton propagation in the presence 
of uniform gain and loss was succesfully treated using an 
EPP [7] method, which was also used by Capobianco et al. 
to treat propagation between two quadratically nonlinear 
materials [8]. One method to analyze deep gratings is us-
ing Bloch wave solutions as the fundamental waves. Ac-
tually the modulation of a single Bloch wave is known to 
obey the nonlinear Schrödinger equation in Kerr optical 
and its fundamental soliton corresponds to gap solitons in 
this geometry. Note that the Bloch function formalism has 
the feature that the linear system needs to be solved first, 
and the nonlinearity is then considered as a perturbation 
which can be treated in a variety of approximations. A dif-
ferent formalism developed for linear gratings only to treat 
deep gratings was reported by Sipe  et al.  [5]. The linear 
properties are therefore not obtained exactly but in terms 
of an asymptotic series, only a few terms of which are re-
tained. Nonetheless, the method leads naturally to low-
order  corrections to the coupled mode equations for shal-
low gratings. Then, one may expect that the model may 
give rise to two qualitatively different families of gap soli-
tons:  low-frequency  ones, in which the  self-focusing(cubic) 
nonlinearity is balanced by the dispersion branch with a 
sign corresponding to anomalous dispersion, and  high-
power  solitons, supported by the balance between self- 
defocusing (quintic) nonlinearity and the normal branch of 
the dispersion. The simplest model of this type may be 
based on the  cubic-quintic(CQ) nonlinearity that has re-
cently attracted considerable attention, as the combination 
of the SF cubic and SDF quintic terms prevents collapse 
and makes it possible to anticipate the existence of sta-
ble solitons  [12].  Atai and Malomed introduced the quin-
tic nonlinearity into the NLCM equations and investigated 
two different families of  zero-velocity  solitons. One fam-
ily was the usual Bragg grating solitons supported by the 
cubic nonlinearity. The other family was named as twotier 
solitons supported by the quintic nonlinearity [12]. In fact, 
in the cubic model, the final soliton retains only 11.6% of 
the initial energy, while the  energy retention  share in the 
cubic-quintic model is 92.4% [11].

1.2.1  Conclusions
Clearly grating solitons have played an important role in 
past and ongoing nonlinear optical research in fiber Bragg 
grating and I believe fiber Bragg grating solitons to have 
their greatest impact in the years to come.
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