RESEARCH PAPER	Mathematics	Volume : 6 Issue : 3 March 2016 ISSN - 2249-555X IF : 3.919 IC Value : 74.50
Color Handler	Soft Alexandroff Spaces in Soft Ideal Topological Spaces	
KEYWORDS	soft I _{ng} - open set, soft I _{ng} - closed set, soft Alexandroff space, soft I - Alexandroff space, soft I _{ng} - Alexandroff space	
A. Selvi		I. Arockiarani
Department of Mathematics, Nirmala College for Women, Coimbatore, India.		Department of Mathematics, Nirmala College for Women, Coimbatore, India.
ABSTRACT In this paper, we present some new spaces namely Alexandroff spaces in soft topological spaces. Several		

characterizations of this concept are established.

1. Introduction

Molodtsov[13] introduced soft set theory in 1999. This theory has been applied to many fields such as optimization theory, basic mathematical analysis etc. Shabir and Naz[17] appilied this theory to topological structure and studied about soft topological spaces. R. Sahin and A. kucuk[15] initiated the concept of soft ideal. Then Mustafa and Sleim[14] defined a different version of soft ideal. Using this definition Kandil et al[11] presented a soft *-topology finer than soft topology. Alexandroff spaces were first studied by Alexandroff[1]. It is a topological space in which arbitrary intersection of open sets is open. Equivalently each singleton set has a minimal neighbourhood base. Arenas et al[2] studied some weaker separation aioms related with Alexandroff topological spaces. The notion of I-Alexandroff and Ig-Aleandroff ideal topological spaces are derived by Erdal Ekici[4]. In this paper we derive the notion of soft Alexandroff ideal spaces and examine some of their Properties.

2. Preliminaries

Throughout this paper, X will be a nonempty initial universal set and E will be a set of parameters. Let P(X) denote the power set of X and S(X) denote the set of all soft sets of X.

Definition: 2.1[13]

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the power set of X and A be a non-empty subset of E. A pair (F, A) denoted by F_A is called a soft set over X, where F is a mapping given by F: A \rightarrow P(X).

Definition: 2.2[3]

A subset (A, E) of a topological space X is called soft regular closed, if cl(int(A,E)) = (A,E). The complement of soft regular closed set is soft regular open set.

Definition: 2.3[3]

The finite union of soft regular open sets is said to be soft π -open. The complement of soft π -open is said to be soft π -closed.

RESEARCH PAPER

Definition: 2.4[3]

A subset (A, E) of a topological space X is called soft πg -closed in a soft topological space (X, τ , E), if cl(A, E) \cong (U, E) whenever (A, E) \cong (U, E) and (U, E) is soft π -open in X. The complement of soft πg -closed set is soft πg -open set.

Definition: 2.5[17]

Let (X, τ, E) be a soft topological space over X and $x, y \in X$ such that $x \neq y$. If there exist soft open sets (F, E) and (G, E) such that $x \in (F, E)$ and $y \notin (F, E)$ and $y \in (G, E)$ and $x \notin (G, E)$, then (X, τ, E) is called a soft T₁-space.

Definition: 2.6[11]

Let I be a non-null collection of soft sets over a universe X with the same set of parameters E.

Then $I \in SS(X)_E$ is called a soft ideal on X with the same set E, if

(1) $(F, E) \in I$ and $(G, E) \subseteq (F, E)$ implies $(G, E) \in I$

(2) $(F, E) \in I$ and $(G, E) \in I$ implies $(F, E) \cup (G, E) \in I$

Definition: 2.7[11]

Let X be a universe set. Then $I_n = \{(G, E) \subseteq SS(X)_E: int(cl(G,E)) = \phi\}$ is called soft ideal of nowhere dense soft sets in (X, τ, E) .

Definition: 2.8[11]

Let (X, τ, E) be a soft topological space and I be a soft ideal over X with the same set of parameters E. Then $(F,E)^*(I, \tau) = \bigcup \{x_e \in X : O_{x_e} \cap (F,E) \notin I \forall O_{x_e} \in \tau \}$ is called the soft local function of (F,E) with respect to I and τ , where O_{x_e} is a τ -open soft set containing x_e .

Definition: 2.9[16]

A subset (A, E) of a soft ideal space (X, τ , E, I) is said to be soft $I_{\pi g}$ - closed, if (A, E)^{*} \subseteq (U, E) whenever (A, E) \subseteq (U, E) and (U, E) is soft π -open. The complement of soft $I_{\pi g}$ - closed set is soft $I_{\pi g}$ - open set.

Theorem: 2.10[16]

A subset (A, E) of a soft ideal space (X, τ , E, I) is soft $I_{\pi g}$ - open if and only if (F, E) \subseteq int^{*}(A, E) whenever (F, E) is soft π - closed and (F, E) \subseteq (A, E).

Theorem: 2.11[16]

Let (X, τ, E, I) be a soft ideal space. Then every subset of (X, τ, E, I) is soft $I_{\pi g}$ - closed set if and only if every soft π -open set is soft *- closed set.

3. Soft I-Alexandroff spaces

Definition: 3.1

A soft ideal space (X, τ , E) is said to be a soft Alexandroff space, if any intersection of soft open sets is soft open.

Definition: 3.2

A soft ideal space (X, τ , E, I) is said to be a soft I- Alexandroff space, if any intersection of soft open sets is soft *- open.

Theorem: 3.3

Let (X, τ, E, I) be a soft ideal topological space. Then the following properties are equivalent:

(1) (X, τ , E, I) is soft I-Alexandroff space

(2) Any union of soft closed sets in (X, τ , E, I) is soft *-closed

Proof:

It follows from the fact that the complement of a soft *-open set is soft *-closed.

Definition: 3.4

A function f: $(X, \tau, E, I) \rightarrow (Y, \sigma, E, J)$ is said to be soft *- closed , if f(A, E) is soft *- closed in (Y, σ, E, J) for every soft *-closed subset (A, E) of (X, τ, E, I) .

Theorem: 3.5

Let f: $(X, \tau, E, I) \rightarrow (Y, \sigma, E, J)$ be a soft continuous and soft *- closed surjective function. If (X, τ, E, I) is a soft I - Alexandroff space then (Y, σ, E, J) is a soft I - Alexandroff space.

Proof:

Suppose that f: $(X, \tau, E, I) \rightarrow (Y, \sigma, E, J)$ is a soft continuous and soft *- closed function. Let (X, τ, E, I) be a soft I - Alexandroff space. Suppose that $\{(M_i, E) : i \in I\}$ is a family of soft closed sets in (Y, σ, E, J) . Since f: $(X, \tau, E, I) \rightarrow (Y, \sigma, E, J)$ is a soft continuous, then $(N, E) = \bigcup_{i \in I} f^{-1}(M_i, E)$ is a soft *-closed set in X. We take $(M, E) = \bigcup_{i \in I} (M_i, E)$. Since f: $(X, \tau, E, I) \rightarrow (Y, \sigma, E, J)$ is a soft *-closed function, then $f(N, E) = f(\bigcup_{i \in I} f^{-1}(M_i, E)) = (M, E)$ is soft *-closed. It follows that Y is a soft I - Alexandroff space.

Theorem: 3.6

Let (X, τ , E, I) be a soft ideal topological space and I = { ϕ }, then the following properties are equivalent:

(1) (X, τ , E, I) is a soft Alexandroff space

(2) (X, τ , E, I) is a soft I - Alexandroff space

Proof:

Since $I = \{\phi\}$ then we have $\tau = \tau^*$, it follows that (X, τ, E, I) is a soft Alexandroff space if and only if X is a soft I- Alexandroff space.

Theorem: 3.7

For a soft ideal topological space (X, τ , E, I) the following conditions are equivalent:

(1) X is soft T_1 and soft I-Alexandroff space

(2) X is soft discrete space

Proof:

$(1) \Rightarrow (2)$

For each $x_e \in X$ and $y_e \neq x_e$ there exists a soft open set (U, E) containing x_e , such that $y_e \notin (U, E)$. E). Since X is soft I- Alexandroff and since $\{x_e\} = \bigcap_{y_e \neq x_e} (U, E)$ then $\{x_e\}$ is soft open. Thus X is soft discrete.

$(2) \Rightarrow (1)$

Let X be a soft discrete space then every singleton set is soft open. Therefore for any two soft points x_e and y_e we can find two soft open sets such that $x_e \in (U, E)$ and $y_e \notin (U, E)$. Similarly $y_e \in (V, E)$ and $x_e \notin (V, E)$. Hence it is soft T₁- space. Also since the underlying space is soft discrete, arbitrary intersection of soft open sets is soft *-open set. Therefore X is soft I-Alexandroff space.

Theorem: 3.8

If X and Y are soft I-Alexandroff spaces then $X \times Y$ is soft I- Alexandroff space.

Proof:

Let { (W_i, E) : i ∈ I } be a collection of soft open sets in X × Y and let (W, E) be its intersection. Suppose (W, E) is not a soft *-open set. Then there exists $(x_e, y_e) \in (W, E)$ and soft open sets $(U, E) \subseteq X$ and $(V, E) \subseteq Y$ with $(x_e, y_e) \in U \times V$ and $(U \times V) \cap int(W, E) = \phi$. For each i ∈ I there exists soft open sets (F_i, E) ⊆ X and (G_i, E) ⊆ Y with $(x_e, y_e) \in (F_i \times G_i, E) \subseteq (W_i, E)$. Since X and Y are soft I- Alexandroff spaces, there exist a non-empty soft *-open sets (H, E) ⊆ X and (K, E) ⊆ Y with (H, E) ⊆ (U, E) ∩ (∩_{i∈I}(F_i, E)) and (K, E) ⊆ (V, E) ∩ (∩_{i∈I}(G_i, E)). Clearly (H_i × K_i, E) ⊆ (U × V) ∩ int(W, E) which is a contradiction. Hence X × Y is soft I- Alexandroff space.

4. Soft $I_{\pi g}$ -Alexandroff spaces

Definition: 4.1

A soft ideal space (X, τ , E) is said to be a soft πg - Alexandroff space, if any intersection of soft open sets is soft πg - open.

Definition: 4.2

A soft ideal space (X, τ , E, I) is said to be a soft $I_{\pi g}$ - Alexandroff space, if any intersection of soft open sets is soft $I_{\pi g}$ - open.

Theorem: 4.3

Let (X, τ, E, I) be a soft ideal topological space. If there exists a soft point $x_e \in X$ such that x_e has only soft *- neighbourhood which is X itself, then (X, τ, E, I) is soft $I_{\pi g}$ - Alexandroff space.

Proof:

Suppose that there exists a soft point $x_e \in X$ such that x_e has only soft *- neighbourhood which is X itself. Let {(K_i, E): i \in I} is a family of soft open sets in (X, τ , E, I) for each i \in I. We take (K, E) = $\bigcap_{i \in I}(K_i, E)$. Let (M, E) = (K, E) and (M, E) be soft closed set. Suppose (M, E) = ϕ , then (M, E) \subseteq int^{*}(K, E). Suppose (M, E) $\neq \phi$. If (M, E) = X then (M, E) \subseteq (K, E) = X. Hence (M, E) \subseteq int^{*}(K, E). If (M, E) \neq X then X – (M, E) is soft open set. It follows that $x_e \notin X$ – (M, E) and then $x_e \in$ (M, E). Since (M, E) = (K, E) then $x_e \in$ (K_i, E) for i \in I. Since x_e has only soft *- neighbourhood which is X itself then (K_i, E) = X for i \in I. Moreover we have (K_i, E) = X and then (M, E) \subseteq int^{*}(K, E). Hence (K, E) is soft I_{πg} – open. Thus (X, τ , E, I) is soft I_{πg} - Alexandroff space.

Theorem: 4.4

Let (X, τ, E, I) be a soft ideal topological space. If X is soft I - Alexandroff space then it is soft $I_{\pi g}$ - Alexandroff space.

Proof:

The proof follows from the fact that any soft *-open set is soft $I_{\pi g}$ - open.

Remark: 4.5

The reverse implication of the above theorem need not be true as shown in the following example.

Example: 4.6

 $X = \{a, b, c\} \text{ and } E = \{e_1, e_2\}.$ $(F_1, E) = \{(e_1, \{a, b\}), (e_2, \{a, b\})\}$ $(F_2, E) = \{(e_1, \{b\}), (e_2, \{a, c\})\}$ $(F_3, E) = \{(e_1, \{b, c\}), (e_2, \{a\})\}$ $(F_4, E) = \{(e_1, \{b\}), (e_2, \{a\})\}$ $(F_5, E) = \{(e_1, \{a, b\}), (e_2, X)\}$ $(F_6, E) = \{(e_1, X), (e_2, \{a, b\})\}$ $(F_7, E) = \{(e_1, \{b, c\}), (e_2, \{a, c\})\}$

where (F₁, E), (F₂, E), (F₃, E), (F₄, E), (F₅, E), (F₆, E), (F₇, E) are soft sets over X and $\tau = \{\tilde{X}, \tilde{\phi}, (F_1, E), (F_2, E), (F_3, E), (F_4, E), (F_5, E), (F_6, E), (F_7, E)\}$ is a soft topology over

X. Let I = { $\tilde{\phi}$, (I₁, E)} be a soft ideal over X, where (I₁, E) = {(e₁, {b}), (e₂, b)}. Take (F, E) = {(e₁, {a, b}), (e₂, {b, c})} and (G, E) = {(e₁, {a}), (e₂, {a, c})} which are soft sets in X. Then (F, E) \cap (G, E) = {(e₁, {a}), (e₂, {c})} is soft I_{πg} - open set but not soft *-open set. Hence (X, τ , E, I) is soft I_{πg} - Alexandroff space but not soft I - Alexandroff space.

Theorem: 4.7

Let (X, τ, E, I) be a soft ideal topological space and $(M, E) \subseteq X$. If X is a soft $I_{\pi g}$ -Alexandroff space and (M, E) is soft closed then (M, E) is a soft $I_{\pi g}$ - Alexandroff space.

Proof:

Let (X, τ, E, I) be a soft ideal topological space and $(M, E) \subseteq X$ be a soft closed set. Suppose that {{ $(S_i, E): i \in I$ } is a family of soft open sets in $((M, E), \tau_M)$. We take $(S, E) = \bigcap_{i \in I} (S_i, E)$. It follows that $(S_i, E) = (M, E) \cap (K_i, E)$ where (K_i, E) is a soft open set in (X, τ, E, I) for each $i \in I$. Let $(N, E) \subseteq (M, E)$ be a soft closed set in $((M, E), \tau_M)$ and $(N, E) \subseteq (S, E)$. This shows that (N, E) is a soft closed set in (X, τ, E, I) and $(N, E) \subseteq \bigcap_{i \in I} (K_i, E)$. Since X is $I_{\pi g}$ -Alexandroff space then $(N, E) \subseteq int^*(\bigcap_{i \in I} (K_i, E))$. Also we have $(M, E) \cap int^*(\bigcap_{i \in I} (K_i, E))$ $\subseteq (S, E)$.Since $(M, E) \cap int^*(\bigcap_{i \in I} (K_i, E))$ is a soft *-open set in (M, E) then $(N, E) \subseteq int^*_M(S, E)$. This implies that (S, E) is soft $I_{\pi g}$ - open in (M, E). Hence (M, E) is a soft $I_{\pi g}$ -Alexandroff space.

Theorem: 4.8

Let (X, τ, E, I) be a soft ideal topological space and $(S, E) \subseteq X$ be soft $I_{\pi g}$ - closed. If f: $(X, \tau, E, I) \rightarrow (Y, \sigma, E, J)$ is a soft continuous and soft *- closed function then f(S, E) is a soft $I_{\pi g}$ - closed set in Y.

Proof:

Suppose that $(S, E) \subseteq X$ is a soft $I_{\pi g}$ - closed set and f: $(X, \tau, E, I) \rightarrow (Y, \sigma, E, J)$ is a soft continuous and soft *-closed function. Let $f(S, E) \subseteq (K, E)$ where (K, E) is soft open in Y. It follows that $(S, E) \subseteq f^{-1}(K, E)$. Since f is a soft continuous function and (S, E) is a soft $I_{\pi g}$ closed set, then we have $cl^*(S, E) \subseteq f^{-1}(K, E)$. Moreover $f(cl^*(S, E)) \subseteq f(f^{-1}(K, E)) \subseteq (K, E)$. E). Since f is a soft *-closed function, $cl^*(f(S, E)) \subseteq cl^*f(cl^*(S, E)) = f(cl^*(S, E)) \subseteq (K, E)$. This implies that $cl^*(f(S, E)) \subseteq (K, E)$. Hence f(S, E) is a soft $I_{\pi g}$ - closed set in Y.

Theorem: 4.9

Let f: (X, τ , E, I) \rightarrow (Y, σ , E, J) be a soft continuous and soft *- closed surjective function.

If (X, τ , E, I) is a soft $I_{\pi g}$ - Alexandroff space then (Y, σ , E, J) is a soft $I_{\pi g}$ - Alexandroff space.

Proof:

Suppose that f: (X, τ , E, I) \rightarrow (Y, σ , E, J) is a soft continuous and soft *- closed surjective function. Let (X, τ , E, I) be a soft I_{π g} - Alexandroff space and {(M_i, E) : i \in I} be a family of soft closed sets in (Y, σ , E, J). Since f is a soft continuous function, then (K, E) = $\bigcup_{i \in I} f^{-1}(M_i, E)$ is a soft I_{π g} - closed set in X. We take (M, E) = $\bigcup_{i \in I}(M_i, E)$. This implies that f (K, E) = f($\bigcup_{i \in I} f^{-1}(M_i, E)$) = (M, E) is soft I_{π g} -closed. Hence Y is a soft I_{π g} -Alexandroff space.

Theorem: 4.10

Let (X, τ, E, I) be a soft ideal topological space and $(A, E) \subseteq X$. If (A, E) is soft *-dense in itself and soft $I_{\pi g}$ - closed in X then (A, E) is soft πg - closed.

Proof:

Suppose (A, E) is soft *-dense in itself and soft $I_{\pi g}$ - closed in X. If (U, E) be any soft π -open set containing (A, E), then $cl^*(A, E) \subseteq (U, E)$.Since (A, E) is soft *-dense in itself, $cl(A, E) \subseteq (U, E)$. Hence (A, E) is soft πg - closed.

Corollary: 4.11

If (X, τ, E, I) be a soft ideal topological space where $I = \{\phi\}$ then (A, E) is soft $I_{\pi g}$ - closed set if and only if (A, E) is soft πg - closed.

Theorem: 4.12

Let (X, τ, E, I) be a soft ideal topological space. Suppose that every subset of X is soft *dense in itself. Then the following properties are equivalent:

(1) (X, τ , E, I) is a soft $I_{\pi g}$ - Alexandroff space

(2) (X, τ , E, I) is a soft πg - Alexandroff space

Proof:

Since every subset is soft *-dense in itself, then by theorem: 4.10, X is a soft $I_{\pi g}$ - Alexandroff space if and only if X is a soft πg - Alexandroff space.

Theorem: 4.13

For a soft ideal topological space (X, τ , E, I) where I = { ϕ }, the following properties are equivalent:

(1) (X, τ , E, I) is a soft $I_{\pi g}$ - Alexandroff space

(2) (X, τ , E, I) is a soft πg - Alexandroff space

Proof:

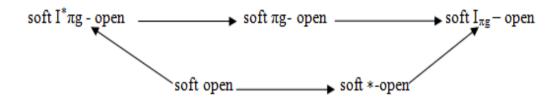
Let (X, τ, E, I) be a soft ideal topological space where $I = \{\phi\}$ and $(S, E) \subseteq X$. Since (S, E) is soft $I_{\pi g}$ - closed set if and only if X is a soft πg -closed. Then X is soft $I_{\pi g}$ - Alexandroff space if and only if X is a soft πg - Alexandroff space.

Definition: 4.14

A subset (S, E) of a soft ideal space (X, τ , E, I) is said to be soft I^{*} π g - closed, if cl(A, E) \subseteq (U, E) whenever (S, E) \subseteq (U, E) and (U, E) is soft * π -open. The complement of (S, E) is soft I^{*} π g -open set.

Remark: 4.15

Let (X, τ, E, I) be a soft ideal topological space. Then the following diagram holds for a subset (S,E) of X.



Example: 4.16

 $X = \{a, b, c, d\}$ and $E = \{e_1, e_2\}$.

 $(F_1, E) = \{(e_1, \{c\}), (e_2, \{a\})\}$

 $(F_2, E) = \{(e_1, \{d\}), (e_2, \{b\})\}\$

 $(F_3, E) = \{(e_1, \{c, d\}), (e_2, \{a, b\})\}\$

 $(F_4, E) = \{(e_1, \{a, d\}), (e_2, \{b, d\})\}$

 $(F_5, E) = \{(e_1, \{b, c, d\}), (e_2, \{a, b, c\})\}$

$$(F_6, E) = \{(e_1, \{a, c, d\}), (e_2, \{a, b, d\})\}$$

where (F₁, E), (F₂, E), (F₃, E), (F₄, E), (F₅, E), (F₆, E) are soft sets over X and $\tau = \{\tilde{X}, \tilde{\phi}, (F_1, E), (F_2, E), (F_3, E), (F_4, E), (F_5, E), (F_6, E)\}$ is a soft topology over X.

Let I = { $\tilde{\phi}$, (I₁, E), (I₂, E), (I₃, E)} be a soft ideal over X, where

 $(I_1, E) = \{(e_1, \{a\}), (e_2, \phi)\}$

 $(I_2, E) = \{(e_1, \{b\}), (e_2, \phi)\}$

 $(I_3, E) = \{(e_1, \{a, b\}), (e_2, \phi)\}$

Take (G, E) = {(e₁, {a}), (e₂, {d})} which is soft $I_{\pi g}$ - open but not soft *-open.

Example: 4.17

 $X = \{a, b, c, d\} \text{ and } E = \{e_1, e_2\}.$ $(F_1, E) = \{(e_1, \{a\}), (e_2, \{c\})\}$ $(F_2, E) = \{(e_1, \{c\}), (e_2, \{a\})\}$ $(F_3, E) = \{(e_1, \{a, c\}), (e_2, \{a, c\})\}$

RESEARCH PAPER

Volume : 6 | Issue : 3 | March 2016 | ISSN - 2249-555X | IF : 3.919 | IC Value : 74.50

where (F₁, E), (F₂, E), (F₃, E) are soft sets over X and $\tau = {\tilde{X}, \tilde{\phi}, (F_1, E), (F_2, E), (F_3, E)}$ is a soft topology over X.

Let I = { $\tilde{\phi}$, (I₁, E), (I₂, E), (I₃, E)} be a soft ideal over X, where

 $(I_1, E) = \{(e_1, \phi), (e_2, \{c\})\}$

 $(I_2, E) = \{(e_1, \phi), (e_2, \{a\})\}$

 $(I_3, E) = \{(e_1, \phi), (e_2, \{a,c\})\}$

Take (H, E) = {(e₁, {a, c}), (e₂, {a, c})} which is soft $I^*\pi g$ - open but not soft open.

Theorem: 4.18

For a subset (S, E) of a soft ideal topological space (X, τ , E, I), (S, E) is soft $I^*\pi g$ - open if and only if (N, E) \subseteq int (S, E) whenever (N, E) \subseteq (S, E) and (N, E) is soft $*\pi$ - closed in X.

Proof:

Let (S, E) be a soft I^{*} π g- open set in (X, τ , E, I). Suppose that (N, E) \subseteq (S, E) and (N, E) is soft * π - closed in X. It follows that X – (S, E) \subseteq X – (N, E) and X – (N, E) is soft * π - open set in X.

Since X - (S, E) is soft $I^*\pi g$ - closed, then $cl(X - (S, E)) \subseteq X - (N, E)$. We have $cl(X - (S, E)) = X - int(S, E) \subseteq X - (N, E)$. Thus $(N, E) \subseteq int(S, E)$. The converse is similar.

Theorem: 4.19

Let (X, τ, E, I) be a soft ideal topological space. The following properties are equivalent:

(1) (X, τ , E, I) is a soft $I_{\pi g}$ - Alexandroff space

(2) Any intersection of soft $I^*\pi g$ - open sets in (X, τ , E, I) is soft $I_{\pi g}$ - open.

Proof:

$(1) \Rightarrow (2)$

Let (X, τ, E, I) be a soft $I_{\pi g}$ - Alexandroff space. Suppose that $\{(S_i, E): i \in I\}$ is a family of soft $I^*\pi g$ - open sets. We take $(S, E) = \bigcap_{i \in I} (S_i, E)$. Let $(K, E) \subseteq X$ be a soft closed set and $(K, E) \subseteq (S, E)$. We have $(K, E) \subseteq (S_i, E)$ for each $i \in I$. Since (S_i, E) is soft $I^*\pi g$ - open set for each $i \in I$, $(K, E) \subseteq int^*(S_i, E)$ for each $i \in I$. We take $(M, E) = \bigcap_{i \in I} int(M_i, E)$. Since X is soft $I_{\pi g}$ - Alexandroff space then $(M, E) = \bigcap_{i \in I} int(M_i, E)$ is soft $I_{\pi g}$ - open. Since $(M, E) = \bigcap_{i \in I} int(M_i, E)$ is soft $I_{\pi g}$ - open. It follows that (S, E) is soft $I_{\pi g}$ - open.

$(2) \Longrightarrow (1)$

Suppose that any intersection of soft $I^*\pi g$ - open sets in X is soft $I_{\pi g}$ - open. Since every soft open set is soft $I^*\pi g$ - open, any intersection of soft open sets in X is soft $I_{\pi g}$ - open. Thus X is a soft $I_{\pi g}$ - Alexandroff space.

Theorem: 4.20

Let (X, τ, E, I) be a soft ideal topological space. The following properties are equivalent:

(1) (X, τ , E, I) is a soft $I_{\pi g}$ - Alexandroff space

(2) Any union of soft $I^*\pi g$ - closed sets in (X, τ , E, I) is soft πg -closed.

Proof:

The proof follows from Theorem: 4.19.

Theorem: 4.21

The product of two soft $I_{\pi g}$ -Alexandroff spaces is soft $I_{\pi g}$ - Alexandroff space.

Proof:

Let { (W_i, E) : i ∈ I } be a collection of soft open sets in X × Y and let (W, E) be its intersection. Suppose (W, E) is not a soft I_{πg} - open set. Then there exists (x_e , y_e) ∈ (W, E) and soft open sets (U, E) ⊆ X and (V, E) ⊆ Y with (x_e , y_e) ∈ U × V and (U × V) ∩ int(W, E) = ϕ . For each i ∈ I there exists soft open sets (F_i, E) ⊆ X and (G_i, E) ⊆ Y with (x_e , y_e) ∈ (F_i × G_i, E) ⊆ (W_i, E). Since X and Y are soft I_{πg} - Alexandroff spaces, there exist a non-empty soft I_{πg}-open sets (H, E) ⊆ X and (K, E) ⊆ Y with (H, E) ⊆ (U, E) ∩ (∩_{i∈I}(F_i, E)) and (K, E) ⊆ (V, E) ∩ (∩_{i∈I}(G_i, E)). Clearly (H_i × K_i, E) ⊆ (U × V) ∩ int(W, E) which is a contradiction. Hence X × Y is soft I_{πg} - Alexandroff space.

Definition: 4.22

Let (X, τ, E, I) be a soft ideal topological space and it is said to be a soft F^* - space if every soft open subset of X is soft *-closed.

Theorem: 4.23

Let (X, τ, E, I) be a soft ideal topological space. If X is a soft T₁- space and soft F^{*}- space then X is a soft discrete ideal space with respect to τ^* .

Proof:

Suppose that (X, τ , E, I) is a soft T₁- space and soft F^{*}- space. Since X is a soft T₁- space, then { x_e } is a soft closed set for every $x_e \in X$. Since X is a soft F^{*}- space, then { x_e } is a soft *- open set for every $x_e \in X$. It follows that X is a soft discrete ideal space with respect to τ^* .

Theorem: 4.24

Let (X, τ, E, I) be a soft ideal topological space. Then the following properties are equivalent:

(1) (X, τ , E, I) is a soft F^{*}- space

(2) Every soft subset of X is a soft $I_{\pi g}$ - closed set

Proof:

The proof follows from theorem: 2.13

Theorem: 4.25

Let (X, τ, E, I) be a soft ideal topological space. If X is a soft F^* - space, then X is a soft $I_{\pi g}$ - Alexandroff space.

Proof:

Suppose that (X, τ , E, I) is a soft F^{*}- space. By theorem: 4.24, every subset of X is soft I_{π g} - closed set. This implies that X is a soft I_{π g} -Alexandroff space.

Definition: 4.26

A soft topological space (X, τ , E) is said to be a soft R₀-space, if cl({ x_e }) \subseteq (U, E) for each $x_e \in X$ and each soft open set (U, E) with $x_e \in$ (U, E).

Theorem: 4.27

Let (X, τ , E, I) be a soft ideal topological space. If X is a soft R₀-space and soft I_{π g} - Alexandroff space then X is a soft F^{*}- space.

Proof:

Let (X, τ, E, I) be a soft R₀-space and soft $I_{\pi g}$ -Alexandroff space. Suppose that $(S, E) \subseteq X$ is a soft open set. Since X is a soft R₀-space, then we have $cl(\{x_e\}) \subseteq (S, E)$ for each $x_e \in (S, E)$. This implies that $(S, E) = \bigcup_{x \in S} cl(\{x_e\})$. Since X is a soft $I_{\pi g}$ -Alexandroff space, then (S, E)is a soft $I_{\pi g}$ - closed set. Since $(S, E) \subseteq (S, E)$ and (S, E) is a soft $I_{\pi g}$ - closed set, then $cl^*(S, E)$ $\subseteq (S, E)$. This implies that (S, E) is soft $*\pi$ -closed set. We have every soft $*\pi$ -closed set is soft *-closed set. Hence X is a soft F^* - space.

References

- [1] P. Alexandroff, Diskrete Raume, Mat. S.b. 2(1937), 501-518.
- [2] F.G. Arenas, J. Dontchev, M. Ganster, On some weaker forms of Alexandroff spaces, Arabian J. sci. Eng. 23 (1A) (1998), 78-89.
- [3] I.Arockiarani and A.Selvi, Soft πg-operators in soft topological spaces, International Journal of Mathematical Archive, 5(4) (2014), 37-43.
- [4] A. Ayguoglu and H. Aygun, Some notes on soft topological spaces, Neural Computing and Applications, 21 (2012), 113-119.
- [5] Erdal Ekici, On I- Alexandroff and Ig- Alexandroff ideal topological spaces, Filomat , 25 (4) (2011), 99-108.
- [6] T. R. Hamlett and D. Jankovic, Compatible extensions of ideals, Boll. Un. Mat. Ita., 7, (1992) 453-456
- [7] S. Hussain, B. Ahmad, Some properties of soft topological spaces, Computers and Mathematics with Applications, 62 (2011), 4058-4067.
- [8] Janaki. C and Jeyanthi.V, On soft πgr-closed sets in soft topological spaces, Journal of Advances in Mathematics, 4 (3) (2013), 478-485.
- [9] D. Jankovic, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Month., 97 (1990), 295-310
- [10] K. Kannan, Soft generalized closed sets in soft topological spaces, Journal of theoretical and applied information technology, 37 (2012), 17-20.
- [11] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and A. M. Abd El-latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inf. Sci. 8 (4) (2014), 1595-1603
- [12] P. K. Maji, A. R. Roy, and R. Biswas, An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44 (2002), 1077-1083.
- [13] D.Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37, (1999), 19-31.
- [14] H. I. Mustafa and F. M. Sleim, Soft generalized closed sets with respect to an ideal insoft topological spaces, Appl. Math. Inf. Sci. 8 (2) (2014), 665-671.
- [15] R. Sahin and A. Kucuk, Soft filters and their convergence properties, Ann. Fuzzy Math. Sci. 6 (2012), 159-162.
- [16] A.Selvi and I.Arockiarani, Soft Iπg-closed sets in soft ideal topological spaces, National Conference on Ramanujan's Contributions and Recent Trends in Mathematics, December 21-23, 2015.
- [17] M. Shabir and M. Naz, On soft topological spaces, Computers and Mathematics with Applications, 61 (2011), 1786-1799.
- [18] I.Zorlutuna, M.Akdag, W.K.Min and S.Atmaca, Remarks on soft topological spaces, Annals of fuzzy Mathematics and Informatics, 3 (2012), 171-185