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1. Introduction 

Molodtsov[13] introduced soft set theory in 1999. This theory has been applied to many 

fields such as optimization theory, basic mathematical analysis etc. Shabir and Naz[17] 

appilied this theory to topological structure and studied about soft topological spaces. R. 

Sahin and A. kucuk[15] initiated the concept of soft ideal. Then Mustafa and Sleim[14] 

defined a different version of soft ideal. Using this definition Kandil et al[11] presented a soft 

∗-topology finer than soft topology. Alexandroff spaces were first studied by Alexandroff[1]. 

It is a topological space in which arbitrary intersection of open sets is open. Equivalently each 

singleton set has a minimal neighbourhood base. Arenas et al[2] studied some weaker 

separation aioms related with Alexandroff topological spaces. The notion of I-Alexandroff 

and Ig-Aleandroff ideal topological spaces are derived by Erdal Ekici[4]. In this paper we 

derive the notion of soft Alexandroff ideal spaces and examine some of their Properties. 

2. Preliminaries 

Throughout this paper, X will be a nonempty initial universal set and E will be a set of 

parameters. Let P(X) denote the power set of X and S(X) denote the set of all soft sets of X. 

Definition: 2.1[13]  

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the power set of X 

and A be a non-empty subset of E. A pair (F, A) denoted by FA is called a soft set over X, 

where F is a mapping given by F: A → P(X). 

Definition: 2.2[3] 

 A subset (A, E) of a topological space X is called soft regular closed, if cl(int(A,E)) = (A,E). 

The complement of soft regular closed set is soft regular open set.  

 

Definition: 2.3[3] 

The finite union of soft regular open sets is said to be soft 𝜋𝜋-open. The complement of soft π-

open is said to be soft π-closed
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Definition: 2.4[3]

A subset (A, E) of a topological space X is called soft πg-closed in a soft topological space (X,𝜏𝜏, 

E), if cl(A, E) ⊂̃ (U, E) whenever (A, E) ⊂̃ (U, E) and (U, E) is soft π-open in X. The complement 

of soft πg-closed set is soft πg-open set. 

Definition: 2.5[17] 

 Let (X, τ, E) be a soft topological space over X and x, y ∈ X such that x ≠ y. If there exist 

soft open sets (F, E) and (G, E) such that x ∈ (F, E) and y ∉ (F, E) and y ∈ (G, E) and x ∉ (G, 

E), then (X, τ, E) is called a soft T1-space. 

Definition: 2.6[11] 

Let I be a non-null collection of soft sets over a universe X with the same set of parameters E. 

Then I ∈ SS(X) E is called a soft ideal on X with the same set E, if 

(1)  (F, E) ∈ I and (G, E) ⊆ (F, E) implies (G, E) ∈ I 

 (2)  (F, E) ∈ I and (G, E) ∈ I implies (F, E) ∪ (G, E) ∈ I 

 Definition: 2.7[11] 

Let X be a universe set. Then In = {(G, E) ⊆ SS(X)E: int(cl(G,E)) = ϕ} is called soft  ideal of 

nowhere dense soft sets in (X, τ ,E). 

Definition: 2.8[11] 

Let (X, τ, E) be a soft topological space and I be a soft ideal over X with the same set of 

parameters E. Then (F,E)*(Ι, τ ) = ∪{xe ∈ X : 𝑂𝑂𝑥𝑥𝑒𝑒 ∩ (F,E) ∉  I ∀ 𝑂𝑂𝑥𝑥𝑒𝑒 ∈ τ } is called the soft 

local function of (F,E) with respect to I and τ , where 𝑂𝑂𝑥𝑥𝑒𝑒is a τ -open soft set containing xe. 

Definition: 2.9[16] 

A subset (A, E) of a soft ideal space (X, τ, E, Ι) is said to be soft Ιπg - closed, if (A, E)* ⊆(U, 

E) whenever (A, E) ⊆ (U, E) and (U, E) is soft π-open. The complement of soft Ιπg - closed 

set is soft Ιπg - open set. 

Theorem: 2.10[16] 

A subset (A, E) of a soft ideal space (X, τ, E, Ι) is soft Iπg - open if and only if (F, E) ⊆  
int*(A, E) whenever (F, E) is soft π- closed and (F, E) ⊆ (A, E). 

Theorem: 2.11[16] 

Let (X, τ, E, Ι) be a soft ideal space. Then every subset of (X, τ, E, Ι) is soft Iπg - closed set if 

and only if every soft π-open set is soft ∗- closed set. 

3. Soft I-Alexandroff spaces 

Definition: 3.1 
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A soft ideal space (X, τ, E) is said to be a soft Alexandroff space, if any intersection of soft 

open sets is soft open. 

Definition: 3.2 

A soft ideal space (X, τ, E, I) is said to be a soft I- Alexandroff space, if any intersection of 

soft open sets is soft ∗- open. 

Theorem: 3.3 

Let (X, τ, E, I) be a soft ideal topological space. Then the following properties are equivalent: 

(1) (X, τ, E, I) is soft I-Alexandroff space 

(2) Any union of soft closed sets in (X, τ, E, I) is soft ∗-closed  

Proof: 

It follows from the fact that the complement of a soft ∗-open set is soft ∗-closed. 

Definition: 3.4 

A function f: (X, τ, E, I) ⟶ (Y, 𝜎𝜎, E, J) is said to be soft ∗- closed , if f(A, E) is soft ∗- closed 

in (Y, 𝜎𝜎, E, J) for every soft ∗-closed subset (A, E) of (X, τ, E, I). 

Theorem: 3.5 

Let f: (X, τ, E, I) ⟶ (Y, 𝜎𝜎, E, J) be a soft continuous and soft ∗- closed surjective function. If 

(X, τ, E, I) is a soft Ι - Alexandroff space then (Y, 𝜎𝜎, E, J) is a soft Ι - Alexandroff space.  

Proof: 

Suppose that f: (X, τ, E, I) ⟶ (Y, 𝜎𝜎, E, J) is a soft continuous and soft ∗- closed function. Let 

(X, τ, E, I) be a soft Ι - Alexandroff space. Suppose that {(Mi, E) : i ∈ I} is a family of soft 

closed sets in (Y, 𝜎𝜎, E, J). Since f: (X, τ, E, I) ⟶ (Y, 𝜎𝜎, E, J) is  a soft continuous, then (N, E) 

= ⋃ 𝑓𝑓−1𝑖𝑖∈𝐼𝐼 (Mi, E) is a soft ∗-closed set in X. We take (M, E) = ⋃ (𝑀𝑀𝑖𝑖𝑖𝑖∈𝐼𝐼 , 𝐸𝐸). Since f: (X, τ, E, 

I) ⟶ (Y, 𝜎𝜎, E, J) is  a soft∗- closed function, then f(N, E) = f(⋃ 𝑓𝑓−1𝑖𝑖∈𝐼𝐼 (Mi, E)) = (M, E) is 

soft ∗-closed. It follows that Y is a soft Ι - Alexandroff space. 

Theorem: 3.6 

Let (X, τ, E, I) be a soft ideal topological space and I = {ϕ}, then the following properties are 

equivalent: 

(1) (X, τ, E, I) is a soft Alexandroff space 

(2) (X, τ, E, I) is a soft I - Alexandroff space 

Proof: 

Since I = {ϕ} then we have τ = τ*, it follows that (X, τ, E, I) is a soft Alexandroff space if and 

only if X is a soft I- Alexandroff space. 

Theorem: 3.7 
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For a soft ideal topological space (X, τ, E, I) the following conditions are equivalent: 

(1) X is soft T1 and soft I-Alexandroff space 

(2) X is soft discrete space 

Proof: 

(1) ⟹ (2) 

For each xe ∈ X and ye ≠ xe there exists a soft open set (U, E) containing xe, such that ye  ∉ (U, 

E). Since X is soft I- Alexandroff and since { xe} = ⋂ (𝑈𝑈, 𝐸𝐸)𝑦𝑦𝑒𝑒 ≠𝑥𝑥𝑒𝑒  then { xe} is soft open. 

Thus X is soft discrete. 

(2) ⟹ (1) 

Let X be a soft discrete space then every singleton set is soft open. Therefore for any two soft 

points xe and ye we can find two soft open sets such that xe ∈ (U, E) and ye  ∉ (U, E). Similarly   

ye ∈ (V, E) and xe  ∉ (V, E). Hence it is soft T1- space. Also since the underlying space is soft 

discrete, arbitrary intersection of soft open sets is soft ∗-open set. Therefore X is soft I-

Alexandroff space. 

Theorem: 3.8 

If X and Y are soft I-Alexandroff spaces then X × Y is soft I- Alexandroff space. 

Proof: 

Let { (Wi, E) : i ∈ I } be a collection of soft open sets in X × Y and let (W, E) be its 

intersection. Suppose (W, E) is not a soft ∗-open set. Then there exists (xe , ye) ∈ (W, E) and 

soft open sets (U, E) ⊆ X and (V, E) ⊆ Y with (xe , ye) ∈ U × V and (U × V) ∩ int(W, E) = ϕ. 

For each i ∈ I there exists soft open sets (Fi, E) ⊆ X and (Gi, E) ⊆ Y with (xe , ye) ∈ (Fi × Gi, 

E) ⊆ (Wi , E). Since X and Y are soft I- Alexandroff spaces, there exist a non-empty soft ∗-

open sets (H, E) ⊆ X and   (K, E) ⊆ Y with (H, E) ⊆ (U, E) ∩ (⋂ (𝐹𝐹𝑖𝑖𝑖𝑖∈𝐼𝐼 , E)) and (K, E) ⊆ (V, 

E) ∩ (⋂ (𝐺𝐺𝑖𝑖𝑖𝑖∈𝐼𝐼 , E)). Clearly   (Hi × Ki, E) ⊆ (U × V) ∩ int(W, E) which is a contradiction. 

Hence X × Y is soft I- Alexandroff space. 

4. Soft Ιπg -Alexandroff spaces 

Definition: 4.1 

A soft ideal space (X, τ, E) is said to be a soft πg - Alexandroff space, if any intersection of 

soft open sets is soft πg - open. 

 

Definition: 4.2 

A soft ideal space (X, τ, E, I) is said to be a soft Ιπg - Alexandroff space, if any intersection of 

soft open sets is soft Ιπg - open. 
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Theorem: 4.3 

Let (X, τ, E, I) be a soft ideal topological space. If there exists a soft point xe ∈ X such that xe 

has only soft ∗- neighbourhood which is X itself, then (X, τ, E, I) is soft Ιπg - Alexandroff 

space. 

Proof: 

Suppose that there exists a soft point xe ∈ X such that xe has only soft ∗- neighbourhood 

which is X itself. Let {(Ki , E): i ∈ I} is a family of soft open sets in (X, τ, E, I) for each i ∈ I. 

We take   (K, E) =⋂ (𝐾𝐾𝑖𝑖𝑖𝑖∈𝐼𝐼 , E). Let (M, E) = (K, E) and (M, E) be soft closed set. Suppose (M, 

E) = ϕ, then (M, E) ⊆ int*(K, E). Suppose (M, E) ≠ ϕ. If (M, E) = X then (M, E) ⊆ (K, E) = 

X. Hence (M, E) ⊆ int*(K, E). If (M, E) ≠ X then X – (M, E) is soft open set. It follows that 

xe ∉ X – (M, E) and then xe ∈ (M, E). Since (M, E) = (K, E) then xe ∈ (Ki, E) for i ∈ I. Since xe 

has only soft ∗- neighbourhood which is X itself then (Ki, E) = X for i ∈ I. Moreover we have 

(Ki, E) = X and then (M, E) ⊆ int*(K, E). Hence (K, E) is soft Ιπg – open. Thus (X, τ, E, I) is 

soft Ιπg - Alexandroff space. 

Theorem: 4.4 

Let (X, τ, E, I) be a soft ideal topological space. If X is soft Ι - Alexandroff space then it is 

soft Ιπg - Alexandroff space. 

Proof: 

The proof follows from the fact that any soft ∗-open set is soft Ιπg - open. 

Remark: 4.5 

The reverse implication of the above theorem need not be true as shown in the following 

example. 

Example: 4.6 

X = {a, b, c} and E = {e1, e2}. 

      (F1, E) = {(e1, {a, b}), (e2, {a, b})} 

      (F2, E) = {(e1, {b}), (e2, {a, c})} 

      (F3, E) = {(e1, {b, c}), (e2, {a})} 

      (F4, E) = {(e1, {b}), (e2, {a})} 

      (F5, E) = {(e1, {a, b}), (e2, X)} 

      (F6, E) = {(e1, X) , (e2, {a, b})}  

      (F7, E) = {(e1, {b, c}), (e2, {a, c})} 

where (F1, E) , (F2, E) , (F3, E) , (F4, E) , (F5, E) , (F6, E) , (F7, E) are soft sets over X and            

𝜏𝜏 = {�̃�𝑋, �̃�𝜙, (F1, E) , (F2, E) , (F3, E) , (F4, E) , (F5, E) , (F6, E) , (F7, E) } is a soft topology over 
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X. Let Ι = {�̃�𝜙, (Ι1, E)} be a soft ideal over X, where (Ι1, E) = {(e1, {b}), (e2, b)}. Take (F, E) = 

{(e1, {a, b}), (e2, {b, c})} and (G, E) = {(e1, {a}), (e2, {a, c})} which are soft sets in X. Then 

(F, E) ∩ (G, E) = {(e1, {a}), (e2, {c})} is soft Ιπg - open set but not soft ∗-open set. Hence    

(X, τ, E, I) is soft Ιπg - Alexandroff space but not soft Ι - Alexandroff space. 

Theorem: 4.7 

Let (X, τ, E, I) be a soft ideal topological space and (M, E) ⊆  X. If X is a soft Ιπg - 

Alexandroff space and (M, E) is soft  closed then (M, E) is a soft Ιπg - Alexandroff space. 

Proof: 

Let (X, τ, E, I) be a soft ideal topological space and (M, E) ⊆ X be a soft closed set. Suppose 

that {{(Si , E): i ∈ I} is a family of soft open sets in ((M, E), τM) .We take (S, E) =⋂ (𝑆𝑆𝑖𝑖𝑖𝑖∈𝐼𝐼 , E). 

It follows that (Si , E) = (M, E) ∩ (Ki , E) where (Ki , E) is a soft open set in (X, τ, E, I) for 

each  i ∈ I. Let (N, E) ⊆ (M, E) be a soft closed set in ((M, E), τM) and (N, E) ⊆ (S, E). This 

shows that (N, E) is a soft closed set in (X, τ, E, I) and (N, E) ⊆ ⋂ (𝐾𝐾𝑖𝑖𝑖𝑖∈𝐼𝐼 , E). Since X is Ιπg - 

Alexandroff space then (N, E) ⊆ int*(⋂ (𝐾𝐾𝑖𝑖𝑖𝑖∈𝐼𝐼 , E)). Also we have (M, E) ∩ int*(⋂ (𝐾𝐾𝑖𝑖𝑖𝑖∈𝐼𝐼 , E)) 

⊆ (S, E).Since (M, E) ∩ int*(⋂ (𝐾𝐾𝑖𝑖𝑖𝑖∈𝐼𝐼 , E)) is a soft ∗-open set in (M, E) then (N, E) ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀
∗ (S, 

E). This implies that (S, E) is soft Ιπg - open in (M, E). Hence (M, E) is a soft Ιπg - 

Alexandroff space. 

Theorem: 4.8 

Let (X, τ, E, I) be a soft ideal topological space and (S, E) ⊆ X be soft Ιπg - closed. If f: (X, τ, 

E, I) ⟶ (Y, 𝜎𝜎, E, J) is a soft continuous and soft ∗- closed function then f(S, E) is a soft Ιπg - 

closed set in Y. 

Proof: 

Suppose that (S, E) ⊆ X is a soft Ιπg - closed set and f: (X, τ, E, I) ⟶ (Y, 𝜎𝜎, E, J) is a soft 

continuous and soft ∗-closed function. Let f(S, E) ⊆ (K, E) where (K, E) is soft open in Y. It 

follows that (S, E) ⊆ 𝑓𝑓−1(K, E). Since f is a soft continuous function and (S, E) is a soft Ιπg - 

closed set, then we have cl*(S, E) ⊆ 𝑓𝑓−1(K, E). Moreover f(cl*(S, E)) ⊆ f(𝑓𝑓−1(K, E)) ⊆ (K, 

E). Since f is a soft ∗-closed function, cl*(f(S, E)) ⊆ cl*f(cl*(S, E)) = f(cl*(S, E)) ⊆ (K, E). 

This implies that cl*(f(S, E)) ⊆ (K, E). Hence f(S, E) is a soft Ιπg - closed set in Y. 

Theorem: 4.9 

Let f: (X, τ, E, I) ⟶ (Y, 𝜎𝜎, E, J) be a soft continuous and soft ∗- closed surjective function.  

If (X, τ, E, I) is a soft Ιπg - Alexandroff space then (Y, 𝜎𝜎, E, J) is a soft Ιπg - Alexandroff 

space.  

Proof: 
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Suppose that f: (X, τ, E, I) ⟶ (Y, 𝜎𝜎, E, J) is a soft continuous and soft ∗- closed surjective 

function. Let (X, τ, E, I) be a soft Ιπg - Alexandroff space and {(Mi, E) : i ∈ I} be  a family of 

soft closed sets in (Y, 𝜎𝜎 , E, J). Since f is a soft continuous function, then (K, E) = 

⋃ 𝑓𝑓−1𝑖𝑖∈𝐼𝐼 (Mi, E) is a soft Ιπg - closed set in X. We take (M, E) = ⋃ (𝑀𝑀𝑖𝑖𝑖𝑖∈𝐼𝐼 , 𝐸𝐸). This implies 

that f (K, E) = f(⋃ 𝑓𝑓−1𝑖𝑖∈𝐼𝐼 (Mi, E)) = (M, E) is soft Ιπg -closed. Hence Y is a soft Ιπg - 

Alexandroff space. 

Theorem: 4.10 

Let (X, τ, E, I) be a soft ideal topological space and (A, E) ⊆ X. If (A, E) is soft ∗-dense in 

itself and soft Ιπg - closed in X then (A, E) is soft πg- closed. 

Proof: 

Suppose (A, E) is soft ∗-dense in itself and soft Ιπg - closed in X. If (U, E) be any soft π-open 

set containing (A, E), then cl*(A, E) ⊆ (U, E).Since (A, E) is soft ∗-dense in itself, cl(A, E) ⊆ 

(U, E). Hence (A, E) is soft πg- closed. 

Corollary: 4.11 

If (X, τ, E, I) be a soft ideal topological space where I = {ϕ} then (A, E) is soft Ιπg - closed set 

if and only if (A, E) is soft πg- closed. 

Theorem: 4.12 

Let (X, τ, E, I) be a soft ideal topological space. Suppose that every subset of X is soft ∗-

dense in itself. Then the following properties are equivalent: 

(1) (X, τ, E, I) is a soft Ιπg - Alexandroff space 

(2) (X, τ, E, I) is a soft πg - Alexandroff space 

Proof: 

Since every subset is soft ∗ -dense in itself, then by theorem: 4.10, X is a  soft Ιπg - 

Alexandroff space if and only if X is a soft πg - Alexandroff space. 

Theorem: 4.13 

For a soft ideal topological space (X, τ, E, I) where I = {ϕ}, the following properties are 

equivalent: 

(1) (X, τ, E, I) is a soft Ιπg - Alexandroff space 

(2) (X, τ, E, I) is a soft πg - Alexandroff space 

Proof: 

Let (X, τ, E, I) be a soft ideal topological space where I = {ϕ} and (S, E) ⊆ X. Since (S, E) is 

soft Ιπg - closed set if and only if X is a soft πg -closed. Then X is soft Ιπg - Alexandroff space 

if and only if X is a soft πg - Alexandroff space. 
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Definition: 4.14 

A subset (S, E) of a soft ideal space (X, τ, E, Ι) is said to be soft Ι*πg - closed, if cl(A, E) 

⊆(U, E) whenever (S, E) ⊆ (U, E) and (U, E) is soft ∗π-open. The complement of (S, E) is 

soft Ι*πg -open set. 

Remark: 4.15 

Let (X, τ, E, I) be a soft ideal topological space. Then the following diagram holds for a 

subset (S,E) of X.  

 
                   

Example: 4.16 

X = {a, b, c, d} and E = {e1, e2}. 

      (F1, E) = {(e1, {c}), (e2, {a})} 

      (F2, E) = {(e1, {d}), (e2, {b})} 

      (F3, E) = {(e1, {c, d}), (e2, {a, b})} 

      (F4, E) = {(e1, {a, d}), (e2, {b, d})} 

      (F5, E) = {(e1, {b, c, d}), (e2, {a, b,c})} 

      (F6, E) = {(e1, {a, c, d}), (e2, {a, b, d})}  

where (F1, E) , (F2, E) , (F3, E) , (F4, E) , (F5, E) , (F6, E)  are soft sets over X and  𝜏𝜏 = {�̃�𝑋, �̃�𝜙,  

(F1, E) , (F2, E) , (F3, E) , (F4, E) , (F5, E) , (F6, E)  } is a soft topology over X. 

Let Ι = {�̃�𝜙, (Ι1, E), (Ι2, E), (Ι3, E)} be a soft ideal over X, where  

       (Ι1, E) = {(e1, {a}), (e2, ϕ)} 

       (Ι2, E) = {(e1, {b}), (e2, ϕ)} 

       (Ι3, E) = {(e1, {a, b}), (e2, ϕ)} 

Take (G, E) = {(e1, {a}), (e2, {d})} which is soft Ιπg - open but not soft ∗-open. 

Example: 4.17 

X = {a, b, c, d} and E = {e1, e2}. 

      (F1, E) = {(e1, {a}), (e2, {c})} 

      (F2, E) = {(e1, {c}), (e2, {a})} 

      (F3, E) = {(e1, {a, c}), (e2, {a, c})} 
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where (F1, E), (F2, E), (F3, E) are soft sets over X and  𝜏𝜏 = {�̃�𝑋,�̃�𝜙, (F1, E) , (F2, E) , (F3, E) } is 

a soft topology over X. 

Let Ι = {�̃�𝜙, (Ι1, E), (Ι2, E), (Ι3, E)} be a soft ideal over X, where  

       (Ι1, E) = {(e1, ϕ), (e2, {c})} 

       (Ι2, E) = {(e1, ϕ), (e2, {a})} 

       (Ι3, E) = {(e1, ϕ), (e2, {a,c})} 

Take (H, E) = {(e1, {a, c}), (e2, {a, c})} which is soft Ι*πg - open but not soft open. 

Theorem: 4.18 

For a subset (S, E) of a soft ideal topological space (X, τ, E, I), (S, E) is soft Ι*πg- open if and 

only if (N, E) ⊆ int (S, E) whenever (N, E) ⊆ (S, E) and (N, E) is soft ∗π- closed in X. 

Proof: 

Let (S, E) be a soft Ι*πg- open set in (X, τ, E, I). Suppose that (N, E) ⊆ (S, E) and (N, E) is 

soft ∗π- closed in X. It follows that X − (S, E) ⊆ X − (N, E) and X − (N, E) is soft ∗π- open 

set in X.  

Since X − (S, E) is soft Ι*πg- closed, then cl(X − (S, E)) ⊆ X − (N, E). We have cl(X − (S, 

E)) = X − int(S, E) ⊆ X − (N, E). Thus (N, E) ⊆ int(S, E). The converse is similar. 

Theorem: 4.19 

Let (X, τ, E, I) be a soft ideal topological space. The following properties are equivalent: 

(1) (X, τ, E, I) is a soft Ιπg - Alexandroff space 

(2) Any intersection of soft Ι*πg- open sets in (X, τ, E, I) is soft Ιπg - open. 

Proof: 

(1) ⟹ (2) 

Let (X, τ, E, I) be a soft Ιπg - Alexandroff space. Suppose that {(Si , E): i ∈ I} is a family of 

soft Ι*πg- open sets. We take (S, E) =⋂ (𝑆𝑆𝑖𝑖𝑖𝑖∈𝐼𝐼 , E). Let (K, E) ⊆ X be a soft closed set and (K, 

E) ⊆ (S, E). We have (K, E) ⊆ (Si, E) for each i ∈ I. Since (Si, E) is soft Ι*πg- open set for 

each i ∈ I, (K, E) ⊆ int*(Si, E) for each i ∈ I. We take (M, E) =⋂ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑀𝑀𝑖𝑖𝑖𝑖∈𝐼𝐼 , E). Since X is 

soft Ιπg - Alexandroff space then (M, E) = ⋂ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑀𝑀𝑖𝑖𝑖𝑖∈𝐼𝐼 , E) is soft Ιπg - open. Since (M, E) = 

⋂ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑀𝑀𝑖𝑖𝑖𝑖∈𝐼𝐼 , E) is soft soft Ιπg - open and (K, E) ⊆ (M, E) then (K, E) ⊆ int*(S, E). It follows 

that (S, E) is soft Ιπg - open.  

(2) ⟹ (1) 

Suppose that any intersection of soft Ι*πg- open sets in X is soft Ιπg - open. Since every        

soft open set is soft Ι*πg- open, any  intersection of soft open sets in X is soft Ιπg - open. 

Thus X is a soft Ιπg - Alexandroff space. 
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Theorem: 4.20 

Let (X, τ, E, I) be a soft ideal topological space. The following properties are equivalent: 

(1) (X, τ, E, I) is a soft Ιπg - Alexandroff space 

(2) Any union of soft Ι*πg- closed sets in (X, τ, E, I) is soft πg-closed. 

Proof: 

The proof follows from Theorem: 4.19. 

Theorem: 4.21 

The product of two soft Ιπg -Alexandroff spaces is soft Ιπg - Alexandroff space. 

Proof: 

Let { (Wi, E) : i ∈ I } be a collection of soft  open sets in X × Y and let (W, E) be its 

intersection. Suppose (W, E) is not a soft Ιπg - open set. Then there exists (xe , ye) ∈ (W, E) 

and soft open sets (U, E) ⊆ X and (V, E) ⊆ Y with (xe , ye) ∈ U × V and (U × V) ∩ int(W, E) 

= ϕ. For each i ∈ I there exists soft open sets (Fi, E) ⊆ X and (Gi, E) ⊆ Y with (xe , ye) ∈ (Fi × 

Gi, E) ⊆ (Wi , E). Since X and Y are soft Ιπg - Alexandroff spaces, there exist a non-empty 

soft Ιπg -open sets (H, E) ⊆ X and (K, E) ⊆ Y with (H, E) ⊆ (U, E) ∩ (⋂ (𝐹𝐹𝑖𝑖𝑖𝑖∈𝐼𝐼 , E)) and (K, E) 

⊆  (V, E) ∩  (⋂ (𝐺𝐺𝑖𝑖𝑖𝑖∈𝐼𝐼 , E)). Clearly (Hi ×  Ki, E) ⊆  (U ×  V) ∩  int(W, E) which is a 

contradiction. Hence X × Y is soft Ιπg - Alexandroff space. 

Definition: 4.22 

Let (X, τ, E, I) be a soft ideal topological space and it is said to be a soft F*- space if every 

soft open subset of X is soft ∗-closed. 

Theorem: 4.23 

Let (X, τ, E, I) be a soft ideal topological space. If  X is a soft T1- space and soft F*- space 

then X is a soft discrete ideal space with respect to τ*. 

Proof: 

Suppose that (X, τ, E, I) is a soft T1- space and soft F*- space. Since X is a soft T1- space,   

then {xe} is a soft closed set for every xe ∈ X. Since X is a soft F*- space, then {xe} is a soft ∗-

open set for every xe ∈ X. It follows that X is a soft discrete ideal space with respect to τ*. 

Theorem: 4.24 

Let (X, τ, E, I) be a soft ideal topological space. Then the following properties are equivalent: 

(1) (X, τ, E, I) is a soft F*- space 

(2) Every soft subset of X is a soft Ιπg - closed set 

Proof: 

The proof follows from theorem: 2.13 
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Theorem: 4.25 

Let (X, τ, E, I) be a soft ideal topological space. If X is a soft F*- space, then X is a soft Ιπg -

Alexandroff space. 

Proof: 

Suppose that (X, τ, E, I) is a soft F*- space. By theorem: 4.24, every subset of X is soft Ιπg - 

closed set. This implies that X is a soft Ιπg -Alexandroff space. 

Definition: 4.26 

A soft topological space (X, τ, E) is said to be a soft R0-space, if cl({xe}) ⊆ (U, E) for each xe 

∈ X and each soft open set (U, E) with xe ∈ (U, E). 

Theorem: 4.27 

Let (X, τ, E, I) be a soft ideal topological space. If X is a soft R0-space and soft Ιπg -

Alexandroff space then X is a soft F*- space. 

Proof: 

Let (X, τ, E, I) be a soft R0-space and soft Ιπg -Alexandroff space. Suppose that (S, E) ⊆ X is 

a soft open set. Since X is a soft R0-space, then we have cl({xe}) ⊆ (S, E) for each xe ∈ (S, E). 

This implies that (S, E) = ⋃ 𝑐𝑐𝑐𝑐({𝑥𝑥𝑒𝑒𝑥𝑥∈𝑠𝑠 }). Since X is a soft Ιπg -Alexandroff space, then (S, E) 

is a soft Ιπg - closed set. Since (S, E) ⊆ (S, E) and (S, E) is a soft Ιπg - closed set, then cl*(S, E) 

⊆ (S, E). This implies that (S, E) is soft ∗π-closed set. We have every soft ∗π-closed set is 

soft ∗-closed set. Hence X is a soft F*- space. 
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