

Synthesis of α -Diazoketone by The Action of Diazoalkane On Carboxylic Acid Chloride

KEYWORDS

Diazoalkane, Azelaoyl Chloride and iso-phthaloyl chloride.

DEVENDRA KUMAR GANGWAR

Department of Chemistry, Bareilly College, Bareilly, U.P.-243001 (India)

A.K. AGARWAL

Department of Chemistry, Bareilly College, Bareilly, U.P.-243001 (India)

ABSTRACT The diazoketone, 1,11-bis-(diazo 1,11-diamyl) undecan-2, 10-di-one was synthesised by the action of Azelaoyl Chloride on diazo-n-hexane and 1,3-bis- α -diazo-n-heptanoyl benzene on diazo-n-hexane. The diazoketones were characterized by various physico-chemical techniques.

1. Introduction :

The action of diazo-alkanes on acid chlorides give rise to diazoketones¹⁻⁴. The survey of chemical literature reveals that a large number of diazoketones have been synthesized, But the field is quite open in the case higher honeologues⁵⁻¹². A member of methods for the synthesis of diazoketones are available in the literature, Arndt-Eistest method¹³ (or modified)¹⁴, Newmann and Bear method¹⁵, Robinson and Bear method¹⁶ etc. A variety of acid chlorides¹⁷ have been used for the synthesis of diazoketones.

Keeping these facts in view, we have selected Azelaoyl chloride and Iso-phthaloyl chloride for these diazoketones.

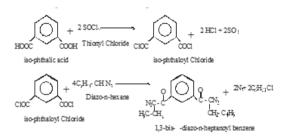
2. Experimental :

1. Synthesis of 1,11-bis(diazo 1,11-diamyl undecan-2,10di-one :

It was prepared by the action of Azelaoyl Chloride (2.25g, 1 mol.) on diazo-n-hexane (5.6g, 5 mol.) using Arndt-Eistest method.

The diazoketone so obtained is a light yellow oily liquid. The easily removable diazogroup, prevented its purification by distillation even under vacuum.

 $\rm HOOC$ – $\rm (CH_2)_7$ – COOH + 2SOCl_ CIOC – $\rm (CH_2)_7$ COCl + 2SO_ + 2HCl


$$4C_{5}H_{11} - CH N_{2} + ClOC - (CH_{2})_{7} - COCl \rightarrow N_{2}C - C - (CH_{2})_{7} - C - CN_{2}$$

Diazo-n-hexane
$$Azelaoyl Chloride H_{9}C_{4} - CH_{2} CH_{2}C_{4}H_{9}$$

 $+ 2C_6H_{13}Cl + 2N_2$

The diazoketone so obtained was characterized by elemental analyses and its reactions with 2,4-dinitrophenyl hydrazine, benzoic acid, phenol and dry hydrochloric acid.

2. Synthesis of 1,3-bis- -diazo-n-heptanoyl benzene :

It was prepared by adding dry etheral solution of isolphthaloyl (1.65g, 1 mol.) chloride to a cold etheral solution of diazo-n-hexane (6.48g, 4 mol.) at 0°C. The reaction mixture was kept overnight. On removal of ether, a yellow viscous liquid was obtained.

The diazoketone so obtained was characterised by elemental analyses and its reactions with 2,4-dinitro-phenyl hydrazine, benzoic acid, phenol and dry hydrochloric acid.

The elemental analyses and IR spectral studies were carried out at CDRI Lucknow.

3. Results and Discussion:

1. Characterization of 1, 11-bis-(diazo 1,11-diamyl) undecan-2,10-dione :

(a) Formation of osazone (reaction with 2,4-dinitrophenylhydrazine) - It was treated with an aqueous sulphuric acid solution of 2, 4-dinitrophenyl hydrazine then an osazone was obtained. This on crystallisation from ethanol gave orange product.

$$(NO_{2})_{2}H_{3}C_{6}HN.N = C-C-(C+C_{1})_{7}C-C-N. NH C_{6}H_{3} (NO_{2})_{2}$$

$$(NO_{2})_{2}H_{3}C_{6}HN.N=C-C-(C+C_{1})_{7}C-C-N. NH C_{6}H_{3} (NO_{2})_{2}$$

$$H_{9}C_{4}-H_{2}C = C_{4}H_{9}$$

(Osazone) Physical State - orange crystalline solid

M.P. - 164°C

Elemental Analyses :

C= 50.37% (obs. 50.25), H=4.85% (obs. 4.79), N=20.89% (20.78)

I.R. (KBr) : 3455 (-NH), 1620(C=N), 1350 (C-NO₂), 720 cm $^{\text{-1}}$ (CH $_{2}$ rock in – C $_{5}\text{H}_{11}$)

(b) Action of Benzoic Acid :

On treatment with molten benzoic acid, a nitrogen free brown liquid was obtained which on treatment with 2,4-di-

nitropheneyl hydrazine gave hydrazone. It was crystallised from ethanol as orange solid.

$$\begin{array}{cccc} & O & O \\ H_5 C_6 & COOHC - C - (CH_{2)_7} - C - CHOOC C_6 H_5 \\ & & & \\ H_9 C_4 - H_2 C & & CH_2 - C_4 H_9 \end{array}$$

Nitrogen free compound (ester)

$$\begin{array}{ccccccccc} (O_2 N)_2 H_3 C_6 HN. N & N. \ NH \ C_6 H_3 \ (NO_2)_2 \\ & \parallel & \parallel \\ H_5 \ C_6 \ \ COOHC \ - C \ (CH_2)_7 \ - C \ - CHOOC \ C_6 H_5 \\ & \mid \\ H_9 C_4 \ - H_2 C & CH_2 \ - C_4 H_9 \end{array}$$

(Hydrazone)

Physical State - orange crystalline solid

M.P. - 222°C

Elemental Analyses :

C= 61.03% (obs. 60.92), H= 6.06% (obs. 5.96), N=12.12% (obs. 11.98)

I.R. (KBr) : 3360 (-NH), 1622(C=N), 1580 (C_{_{0}}H_{_{5}}), 1335 (C-NO_{_{2}}), 745 cm^{-1} (CH_{_{2}} rock in - C_{_{5}}H_{_{1}})

(c) Action of Phenol :

With phenol, it gave a reddish brown liquid. This on treatment with 2,4-dinitrophenyl hydrazine yielded an orange solid hydrazone.

$$\begin{array}{ccccc} & & & & & O \\ H_5 C_6 & OHC - C - (CH_2)_7 & - & C - CHO C_6 H_5 \\ H_9 C_4 CH_2 & & & CH_2 C_4 - H_6 \end{array}$$

Nitrogen free compound (Ether)

(Hydrazone)

Physical State - orange crystalline solid

M.P. - 222°C

Elemental Analyses :

C= 61.03% (obs. 60.92), H= 6.06% (obs. 5.96), N=12.12% (obs. 11.98)

I.R. (KBr) : 3360 (-NH), 1622(C=N), 1580 (-C₄H₂), 1335 (C-NO₂), 745 cm⁻¹ (CH₂ rock in $-C_{e}H_{1,1}$)

Physical State–orange crystalline solid M.P. - $254^{\circ}C$

Elemental Analyses :

C= 62.21% (obs. 62.10), H= 6.45% (obs. 6.41), N=12.90%

Volume : 6 | Issue : 3 | March 2016 | ISSN - 2249-555X | IF : 3.919 | IC Value : 74.50

(12.87)

I.R. (KBr) : 3352 (-NH), 1625(C=N), 1590 (C_6H_5), 1335(C-NO_1), 1273(C-O-C), 725 cm^{-1} (CH_2 rock in $-C_6H_{-1}$)

(d) Action of dry HCl gas :

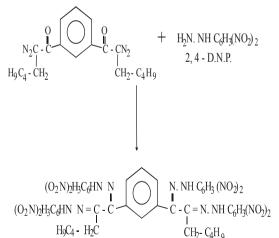
A red liquid was obtained, which possesses chlorine but no nitrogen. It was extracted as chloroketone. This on treatment with 2,4-dinitrophenyl hydrazine gave hydrazone.

$$\begin{array}{cccc} & & & & O & & \\ & & & & \\ & & & \\ CI & H & C & -C & -(CH_2)_7 & -C & -CH & CI \\ & & & & & \\ H_9 & C_4 & -H_2 & C & & CH_2 & -C_4 & H_9 \end{array}$$

Chloroketone

Physical State - orange crystalline solid

M.P. - 210°C


Elemental Analyses :

C= 52.58% (obs. 52.29), H= 6.10% (obs. 5.98), N=14.87% (14.80), Cl = 9.42% (obs. 9.39)

I.R. (KBr) : 3320 (-NH), 1633 (C=N), 1620 (C₆H₅), 1385 (C-NO₂), 720 cm⁻¹ (CH₂ rock in – C₅H₁₁), 645 Cm⁻¹ (C-Cl)

Characterization of 1,3-bis- -diazo-n-heptanoyl benzene .

(a) Formation of Osazone (Reaction with 2,4-dinitrophenyl Hydrazine :

It was treated with an aqueous alcoholic sulphuric acid solution of 2,4-dinitrophenyl hydrazine, then an osazone was obtained. This on crystallization from ethanol gave red product.

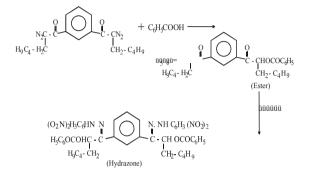
The osazone, so obtained was characterized by elemental analyses and IR spectra.

Physical State - red crystalline solid

RESEARCH PAPER

Volume : 6 | Issue : 3 | March 2016 | ISSN - 2249-555X | IF : 3.919 | IC Value : 74.50

M.P. - 198°C


Elemental Analyses :

C= 50.28% (obs. 50.10), H= 4.00% (obs. 3.86), N=21.33% (Obs.21.12)

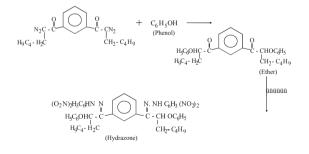
I.R. (KBr) : 3085 (C-H aromatic), 1620(C=N), 1340 (C-NO₂), 740 cm⁻¹ (CH₂ rock in– C₅H₁₁)

(b) Action of Benzoic Acid :

On treatment molten benzoic acid, a nitrogen free product was obtained, which on treatment with 2,4-dinitrophenyl hydrazine gave hydrazone.

Physical State - Reddish Yellow crystalline solid.

 $M.P. = 199^{\circ}C$


Elemental Analyses :

C= 61.20% (obs. 60.87), H= 5.10% (obs. 4.79), N=12.41% (Obs.12.76)

I.R. (kBr) : 1730 (C=O), 1620(C=N), 1275 (-E-O-C), 735 $\rm cm^{-1}$ (-CH_2 rock in – $\rm C_5H_{11}$

(c) Action of phenol :

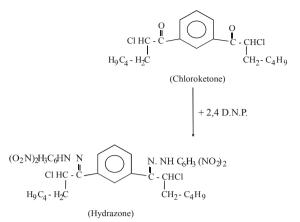
It produced nitrogen free red liquid, which reacted with 2,4-dinitrophenyl hydrazine to give hydrazone.

Characterisation :

Physical State - Orange crystalline solid

M.P. - 175°C

Elemental Analyses :


C= 62.41% (obs. 62.10), H= 5.46% (obs. 5.16), N=13.24% (Obs.12.95)

I.R. (KBr) : 1625 (C=N), 1260(C-O-C), 735 Cm 1 (CH $_{\rm 2}$ rock in – C $_{\rm 5}{\rm H}_{11}$)

(d) Action of dry HCl :

When treated with dry HCl gas it gave a nitrogen free

chloro-derivative, which on subsequent treatment with 2,4-dinitrophenyl hydrazine gave hydrazone.

Characterisation :

Physical State - Orange crystalline solid

$M.P. = 175^{\circ}C$

Elemental Analyses :

C= **5**2.53% (obs. 52.20), H= 4.92% (obs. 4.54), N=15.32% (Obs.15.64)

Cl = 9.71(obs. 9.36)

I.R. (KBr) : 1635 (C=N), 1610 (C_6H_5), 1255 (C-O-C), 746 $\rm Cm^{-1}$ (CH_2 rock in – C_6H_1)

Acknowledgement :

The authors are thankful to the principal, Bareilly College, Bareilly and Head, Department of Chemistry for providing necessary facilities and C.D.R.I., Lucknow for various infra red spectra and nitrogen estimations.

References :

- Akira, Sato, Takashi Ando. Watarace chem.. Lett.7: 1084-4 (eng.) (1983).
- 2. A. Muller, C. Vogt and N. Sewald syn lett. 837 (2006).
- 3. Grundmann and Frischmann, Annalen, **31** : 524 (1945)
- 4. A.L. Wild S, J AM Chem. Soc. 84 : 15 (1962).
- 5. Danheiser, R.L. Miller, R.F. Brisbol S.R. Org. Syn. Coll. 9, 197 (1988).
- 6. T. Toma. I. Shimokawa and T. Fukuyama org. Lett. 9, 3195
- 7. R.P. Kapoor and S.M. Gupta, J. Indian Chem. Soc. 38 : 776-778 (1961).
- 8. P.S. Skell and R.C. Wood worth, J. AM. Chem. So. 78, 4496 (1956).
- 9. J. Moore, J. Org. Chem. 20, 1607 (1955).
- 10. L. Wolf, Ann. 23, 394 (1912).
- 11. Gupta et.al 22(4) Asian J. Chem. 2939-2942 (2010)
- 12. Chakraborti and Agarwal, Orient J. Chem. 26(4) 1573-1575 (2010)
- 13. F. Arndt, B. Eistert and W Partale, Ber. **60**, 1364 (1927).
- 14. Pace V, Verniest G, et.al. J. Org. Chem. 75 (16), 5760-3 (2010).
- 15. M.S. Newmann and P. Beal III, J. Am. Chem. Soc., 71, 1506 (1949).
- Robinson and Bradley, J. AM Chem. Soc. 50: 1310 (1930), 52 : 1550 (1928).
- 17. Saxena et al Orient J.Chem. Vol. 29(3) 1085-1088 (2013).