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ABSTRACT Separation of variables is one of the methods for  integrability  of Hamil tonian systems . Other several 
methods are known. In this paper  we treat the problem of integrability of Hamiltonian systems geometri-

cally. The set up that we use is the Cartan method of moving frame. The killing tensor is the  major entity that we use 
to determine  the separation variables. 
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1. Introduction 

The problem of the itegrability of Hamiltonian system is a long standing 
problem. Several trials has been achieved to approach a complete solution. In fact 
there has been roughly three main approaches. The first approach is the classical 
approach where one seeks first integrals of the Hamiltonian system and then the 
solution is written via these integrals. A first integral F satisfies: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + {𝐹𝐹, 𝐻𝐻} = 0 ,    Where {, } is the Poisson bracket and H is the Hamiltonian 
function . In this approach one uses Calculus as an analytical tool. However one can 
also utilize Lie bracket instead of Poisson bracket. The Lie bracket is considered as 
a geometrical approach, where we involve vector fields, called Hamiltonian vector 
fields, corresponding to Hamiltonian functions. The next stage in the development 
of integrability of Hamiltonian system is due to Eisenhart and Cartan. Eiserhart used 
the frame field and Cartan used the coframe field and thus exterior Calculus is to be 
the geometrical tool for a free coordinates description of Hamiltonian system and 
Hamilton’s equation. In this late approach we prove existance and uniqueness of 
solutions of the system , which is the problem of  integrability . Of particular interest 
to us as a technique to solve Hamiltonian system is the method of separation of 
variables . The key idea behind this method is to seek a k-set of special coordinates 
: 𝑞𝑞 = (𝑞𝑞1, … , 𝑞𝑞𝑘𝑘) in which corresponding Hamilton- Jacobi partial differential 
equation admits a complete integral of the form  

𝑤𝑤(𝑞𝑞, 𝐶𝐶) = 𝑤𝑤1(𝑞𝑞1, 𝐶𝐶) + ⋯ + 𝑤𝑤𝑛𝑛(𝑞𝑞𝑛𝑛, 𝐶𝐶). 

 This method of separability has been considered by several mathematician 
such as Dall’ Acqua, Eisenhart, Levi-Civita , Riai , Stackel and others. In this paper 
we develop the method of separability and use it in some cases. 
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2. Preliminaries 

1. The first and second fundament forms on a surface 

     Let 𝑆𝑆 ⊂  𝑅𝑅3 be a surface and let the dot product of 𝑅𝑅3 be given by 〈. , . 〉. let a 
local chart fors be given by the map 𝑋𝑋: 𝑉𝑉 → 𝑆𝑆 where 𝑉𝑉 ⊂ 𝑅𝑅2 is an open set in a 
neighbourhood of a point we choose a local orthonormal frame, smooth vector 
fields {𝑒𝑒1 , 𝑒𝑒2, 𝑒𝑒3} such that  

〈𝑒𝑒𝑖𝑖, 𝑒𝑒𝑗𝑗〉 = 𝛿𝛿𝑖𝑖𝑗𝑗  , 𝑖𝑖, 𝑗𝑗 = 1,2,3                                               (1) 

We choose the frame a dappled in such a way that 𝑒𝑒3 is the unit normal vector and 
𝑒𝑒1 and 𝑒𝑒2 span the tangent space  𝑇𝑇𝑝𝑝𝑆𝑆. The corresponding coframe field of one 
forms {𝑤𝑤𝑖𝑖} is defined by the differential 

𝑑𝑑𝑋𝑋 = 𝑤𝑤1𝑒𝑒1  +  𝑤𝑤2𝑒𝑒2                                                       (2) 

In local coordinated (𝑢𝑢1, 𝑢𝑢2) ∈ 𝑈𝑈 the one forms are linear functional of the form 

𝑤𝑤(. ) =  𝑝𝑝1(𝑢𝑢1, 𝑢𝑢2)du1 + 𝑝𝑝2(𝑢𝑢1, 𝑢𝑢2)du2                        (3) 

Where 𝑝𝑝 is a smooth function in 𝑈𝑈, 𝑑𝑑𝑢𝑢𝑖𝑖 are the differential for the coordinate 
functions 𝑢𝑢𝑖𝑖: 𝑈𝑈 → 𝑅𝑅 which for a basis for the linear functional on the vector space 
𝑇𝑇(𝑢𝑢1,𝑢𝑢2)𝑈𝑈. 

The vectors in local coordinates have the expression 

𝑉𝑉 =  𝑣𝑣1(𝑢𝑢1, 𝑢𝑢2) ∂
∂u1 + 𝑣𝑣2(𝑢𝑢1, 𝑢𝑢2) ∂

∂u2 

The one form (3) acts by: 

𝑤𝑤(𝑣𝑣) = 𝑣𝑣1(𝑢𝑢1, 𝑢𝑢2)p1(𝑢𝑢1, 𝑢𝑢2) + 𝑣𝑣2(𝑢𝑢1, 𝑢𝑢2)p2(𝑢𝑢1, 𝑢𝑢2) 

The usual identification between 𝑋𝑋: 𝑈𝑈 → 𝑋𝑋(𝑈𝑈) or  𝑑𝑑𝑋𝑋: 𝑇𝑇(𝑢𝑢1, 𝑢𝑢2)U →  TpS, the one 
forms can be interpreted as linear functional on TpS as well. For example if we 
choose vector fields 𝐸𝐸𝑖𝑖 in 𝑈𝑈 such that 𝑑𝑑𝑋𝑋(𝐸𝐸𝑖𝑖) =  𝑒𝑒𝑖𝑖 then we may set             
�̅�𝑤(𝑒𝑒𝑖𝑖) = 𝑤𝑤(𝐸𝐸𝑖𝑖). 

In particular  �̅�𝑤𝑖𝑖(𝑒𝑒𝑗𝑗) =  𝛿𝛿𝑗𝑗
𝑖𝑖. It also means that metric takes the form  
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𝑑𝑑𝑠𝑠2 = (𝑤𝑤1)2 + (𝑤𝑤2)2 then   𝑤𝑤𝑖𝑖is a coframe and the vector fields 𝑒𝑒𝑖𝑖 determined by 
duality �̅�𝑤𝑖𝑖(𝑒𝑒𝑗𝑗) =  𝛿𝛿𝑗𝑗

𝑖𝑖 are corresponding orthonormal frame. 

   Two one forms may be multiplied (wedged) to give a two-form, which is asxer 
symmetric bilinear form on the tangent space. For example if 𝜃𝜃 and 𝜔𝜔 are one 
forms then for vector field 𝑋𝑋, 𝑌𝑌 we have the form 

(𝜃𝜃 ∧  𝜔𝜔)(𝑋𝑋, 𝑌𝑌) =  𝜃𝜃(𝑋𝑋)𝜔𝜔(𝑌𝑌) − 𝜃𝜃(𝑌𝑌)𝜔𝜔(𝑋𝑋) 

In local coordinates this gives 

𝑝𝑝1𝑑𝑑𝑢𝑢1 + 𝑝𝑝2𝑑𝑑𝑢𝑢2) ∧ (𝑞𝑞1𝑑𝑑𝑢𝑢1 + 𝑞𝑞2𝑑𝑑𝑢𝑢2) =  (𝑝𝑝1𝑞𝑞2 −  𝑝𝑝2𝑞𝑞1) 𝑑𝑑𝑢𝑢1 ∧ 𝑑𝑑𝑢𝑢2  

Because three vectors are dependent there are no skew symmetric three forms in 
𝑅𝑅2 and the most general two forms is 

𝛽𝛽 = 𝐴𝐴(𝑢𝑢1, 𝑢𝑢2)𝑑𝑑𝑢𝑢1 ∧ 𝑑𝑑𝑢𝑢2. 

When evaluated on the vectors 

𝑉𝑉 =  𝑣𝑣1(𝑢𝑢1, 𝑢𝑢2) ∂
∂u1 + 𝑣𝑣2(𝑢𝑢1, 𝑢𝑢2) ∂

∂u2, 

  𝑍𝑍 =  𝑧𝑧1(𝑢𝑢1, 𝑢𝑢2) ∂
∂u1 + 𝑧𝑧2(𝑢𝑢1, 𝑢𝑢2) ∂

∂u2     

The two forms give 

𝛽𝛽(𝑉𝑉, 𝑍𝑍) = 𝐴𝐴(𝑢𝑢1, 𝑢𝑢2)(𝑣𝑣1(𝑢𝑢1, 𝑢𝑢2)𝑧𝑧2(𝑢𝑢1, 𝑢𝑢2) −  𝑣𝑣2(𝑢𝑢1, 𝑢𝑢2)𝑧𝑧1(𝑢𝑢1, 𝑢𝑢2 

       The metric, has the expression form 

𝑑𝑑𝑆𝑆2 = 〈𝑑𝑑𝑋𝑋, 𝑑𝑑𝑋𝑋〉  = (𝑤𝑤1)2 + (𝑤𝑤2)2                                                                         

Which is called the first fundamental form. 

The Weingarten equations express the rotation of frame when moved along the 
surfaces 

𝑑𝑑𝑒𝑒𝑖𝑖 =  ∑ 𝑤𝑤𝑗𝑗
𝑖𝑖 𝑒𝑒𝑖𝑖                                                         (4)   

      In local coordinates the second fundamental form is given using (2), (4)  
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          II(. , . ) = (𝑑𝑑𝑒𝑒3, 𝑋𝑋)                                                   

                      = (𝑤𝑤3
1𝑒𝑒1 + 𝑤𝑤3

2𝑒𝑒2, 𝑤𝑤1𝑒𝑒1 + 𝑤𝑤2𝑒𝑒2  

              = −𝑤𝑤3
1 ⊗  𝑤𝑤1 −  𝑤𝑤3

2 ⊗  𝑤𝑤2 

= 𝑤𝑤1
3 ⊗  𝑤𝑤1 −  𝑤𝑤2

3 ⊗  𝑤𝑤2                               (5) 

We may express the connection forms using the basis  

𝑤𝑤1
2 =  ℎ11𝑤𝑤1 + ℎ12𝑤𝑤2                                                    

𝑤𝑤2
3 =  ℎ21𝑤𝑤1 + ℎ22𝑤𝑤2                                   (6) 

Thus inserting into (5): 

(.,.) = ∑ ℎ𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖 ⊗  𝑤𝑤𝑖𝑖 

In particular, if one searches through all unit tangent  

𝑉𝑉∅ ≔  cos(∅) 𝑒𝑒1 + sin(∅) 𝑒𝑒2 

For which (𝑉𝑉∅, 𝑉𝑉∅) is maximum and minimum, one finds that the extreme occur as 
eigenvectors of ℎ𝑖𝑖𝑖𝑖 and the principal curvatures 𝑘𝑘𝑖𝑖 are the corresponding 
eigenvalues. The GauB and mean curvatures are 

2.2 Covariant differentiation: 

      Covariant differentiation of a vector field y in direction of another vector field 

𝑉𝑉 =  ∑ 𝑣𝑣𝑖𝑖 𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖 on 𝑈𝑈 is a vector field denoted  ∇𝑣𝑣𝑦𝑦. It is determined by orthogonal 

projection the tangent space  ∇𝑣𝑣𝑦𝑦 ≔ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑑𝑑(𝑣𝑣)). Hence in the local frame 

∇𝑣𝑣𝑦𝑦 ≔ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑑𝑑(𝑣𝑣)) = ∑ 𝑤𝑤𝑖𝑖
𝑖𝑖(𝑣𝑣) 𝑒𝑒𝑖𝑖   

Covariant differentiation extends to all smooth vector fields, 𝑣𝑣, 𝑤𝑤 on 𝑈𝑈 and 𝑦𝑦, 𝑧𝑧 on 
𝑆𝑆 and smooth functions ∅, 𝜑𝜑 by the formulas: 

i) ∇∅𝑣𝑣 + 𝜑𝜑𝑤𝑤𝑧𝑧 = ∅∇𝑣𝑣𝑧𝑧 +  𝜑𝜑∇𝑤𝑤𝑧𝑧    (linearily). 
ii) ∇𝑣𝑣(∅𝑦𝑦 + 𝜑𝜑𝑧𝑧) = 𝑥𝑥(∅)𝑦𝑦 + ∅∇𝑣𝑣𝑦𝑦 + 𝑥𝑥(𝜑𝜑)𝑧𝑧 + 𝜑𝜑∇𝑣𝑣𝑧𝑧     (lebinilz). 
iii) 𝑣𝑣〈𝑦𝑦, 𝑧𝑧〉 =  〈∇𝑣𝑣𝑦𝑦, 𝑧𝑧〉 +  〈𝑦𝑦, ∇𝑣𝑣𝑧𝑧〉          (metric compatibility). 
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  With these formulas one can deduce ∇𝑣𝑣(∑ 𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖). As  

𝑑𝑑𝑢𝑢1⋀𝑑𝑑𝑢𝑢2 = 0  

2.3  The structure equations: 

      differentiating (2) and (4)we get 

0 =  𝑑𝑑2𝑋𝑋 = 𝑑𝑑(∑ 𝑤𝑤𝑖𝑖𝑒𝑒𝑖𝑖) = ∑ 𝑑𝑑𝑤𝑤𝑖𝑖𝑒𝑒𝑖𝑖 − ∑ 𝑤𝑤𝑖𝑖⋀𝑑𝑑𝑒𝑒𝑖𝑖  

= ∑ 𝑑𝑑𝑤𝑤𝑖𝑖𝑒𝑒𝑖𝑖 + ∑ 𝑤𝑤𝑖𝑖⋀𝑤𝑤𝑖𝑖
1𝑒𝑒𝑖𝑖       

      0 =  𝑑𝑑2𝑒𝑒𝑗𝑗 = 𝑑𝑑( ∑ 𝑤𝑤𝑗𝑗
𝑘𝑘𝑒𝑒𝑘𝑘) =   ∑ 𝑑𝑑𝑤𝑤𝑗𝑗

𝑘𝑘𝑒𝑒𝑘𝑘 −  ∑ 𝑤𝑤𝑗𝑗
𝑘𝑘𝑑𝑑𝑒𝑒𝑘𝑘    

=   ∑ 𝑑𝑑𝑤𝑤𝑗𝑗
𝑘𝑘𝑒𝑒𝑘𝑘 −  ∑ 𝑤𝑤𝑗𝑗

𝑘𝑘⋀𝑤𝑤𝑘𝑘
𝑙𝑙 𝑒𝑒𝑙𝑙   

Now collect coefficients for the basis vectors 𝑒𝑒𝑗𝑗and 𝑒𝑒𝑖𝑖 

0 = 𝑑𝑑𝑤𝑤𝑗𝑗 − ∑ 𝑤𝑤𝑖𝑖 ⋀𝑤𝑤𝑗𝑗
𝑖𝑖,                                                             

0 = 𝑑𝑑𝑤𝑤𝑗𝑗
𝑙𝑙 −  ∑ 𝑤𝑤𝑗𝑗

𝑘𝑘 ⋀ 𝑤𝑤𝑘𝑘
𝑙𝑙                                         (7) 

These are called the first and second structure equations. By taking also the 𝑒𝑒3 
coefficient of 𝑑𝑑2𝑋𝑋, 

0 = ∑ 𝑤𝑤𝑖𝑖⋀ 𝑤𝑤𝑗𝑗
3  

So that by (1.14) and (1.15) 

0 = ∑ 𝑤𝑤𝑖𝑖 ⋀(ℎ𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗) = (ℎ12 − ℎ21)𝑤𝑤1 ⋀ 𝑤𝑤2  

It follows that ℎ𝑖𝑖𝑗𝑗 =  ℎ𝑗𝑗𝑖𝑖 is a symmetric matrix. In the test, we saw this when we 
proved the shape operator. 𝑑𝑑𝑒𝑒3 was self adjoint. 

The second structure equation enables us to compute the Gauss curvature form the 
connection matrix indeed by (1.14): 

𝑑𝑑𝑤𝑤1
2 = ∑ 𝑤𝑤1

𝑖𝑖 ⋀ 𝑤𝑤𝑖𝑖
2 = 𝑤𝑤1

3  ⋀ 𝑤𝑤3
2 = 𝑤𝑤1

3  ⋀ 𝑤𝑤2
3                                                

= −(ℎ11𝑤𝑤1 + ℎ12𝑤𝑤2) ⋀(ℎ21𝑤𝑤1 + ℎ22𝑤𝑤2)                                         
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= −(ℎ11ℎ22 − ℎ12
2) 𝑤𝑤1 ⋀ 𝑤𝑤2 = −𝑘𝑘 𝑤𝑤1 ⋀ 𝑤𝑤2                    (8)  

The remarkable thing is that the conditions (1.12) and (1.15) 

                        𝑑𝑑𝑤𝑤𝑖𝑖 =  ∑ 𝑤𝑤𝑗𝑗 ⋀ 𝑤𝑤𝑗𝑗
𝑖𝑖              

𝑤𝑤𝑖𝑖
𝑗𝑗 +  𝑤𝑤𝑗𝑗

𝑖𝑖 = 0                                                   (9) 

Determine 𝑤𝑤1
2 uniquely. Since 𝑤𝑤𝑖𝑖 is known once the metric is known by (1.4) this 

says that 𝑤𝑤1
2 and thus k (an be determine form the metric alone). 

2.4 Intrinsic Geometry: 

 Computation of curvature from the metric. 

     Let us compute the curvature of a metric in orthogonal coordinates. For 
simplicity sake. I take coefficients to squares thus we are given the metric 

𝑑𝑑𝑠𝑠2 = 𝐸𝐸2𝑑𝑑𝑢𝑢2 + 𝐺𝐺2𝑑𝑑𝑑𝑑 

Where 𝐸𝐸(𝑢𝑢, 𝑑𝑑), 𝐺𝐺(𝑢𝑢, 𝑑𝑑) > 0 are smooth functions in 𝑈𝑈. It is natural to guess that 

𝑤𝑤1 = 𝐸𝐸𝑑𝑑𝑢𝑢,      𝑤𝑤2 = 𝐺𝐺𝑑𝑑𝑑𝑑 

Then, differentiating 

𝑑𝑑𝑤𝑤1 =  𝐸𝐸𝑣𝑣𝑑𝑑𝑑𝑑 ⋀𝑑𝑑𝑢𝑢 = 𝑤𝑤2⋀𝑤𝑤2
1 = 𝐺𝐺𝑑𝑑𝑑𝑑 ⋀ 𝐸𝐸𝑣𝑣

𝐺𝐺 𝑑𝑑𝑢𝑢   

𝑑𝑑𝑤𝑤2 =  𝐺𝐺𝑣𝑣𝑑𝑑𝑢𝑢 ⋀𝑑𝑑𝑑𝑑 = 𝑤𝑤1⋀𝑤𝑤1
2 = 𝐸𝐸𝑑𝑑𝑢𝑢 ⋀ 𝐺𝐺𝑢𝑢

𝐸𝐸 𝑑𝑑𝑑𝑑  

Thus we may take 

𝑤𝑤1
2 = − 𝑤𝑤2

1 = 𝐺𝐺𝑢𝑢
𝐸𝐸 𝑑𝑑𝑑𝑑 − 𝐸𝐸𝑣𝑣

𝐺𝐺 𝑑𝑑𝑢𝑢 

Hence by differentiating again 

−𝑘𝑘𝑤𝑤1 ⋀ 𝑤𝑤2 = −𝑘𝑘𝐸𝐸𝐺𝐺𝑑𝑑𝑢𝑢 ⋀ 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑤𝑤1
2 = ( 𝜕𝜕

𝜕𝜕𝑢𝑢 (𝐺𝐺𝑢𝑢
𝐸𝐸 ) + 𝜕𝜕

𝜕𝜕𝑣𝑣 (𝐸𝐸𝑣𝑣
𝐺𝐺 ))𝑑𝑑𝑢𝑢 ⋀ 𝑑𝑑𝑑𝑑    

Form which it follows that 
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𝑘𝑘 = 1
𝐸𝐸𝐸𝐸 ( 𝜕𝜕

𝜕𝜕𝜕𝜕 (𝐸𝐸𝑢𝑢
𝐸𝐸 ) + 𝜕𝜕

𝜕𝜕𝜕𝜕 (𝐸𝐸𝑣𝑣
𝐸𝐸 ))  

 

3. Orthogonal separation of variables 

     For simplicity we consider the geodesic Hamiltonian defined by  

 𝐻𝐻𝑔𝑔 = 1
2 𝑔𝑔𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖                                                         (10) 

The 𝑛𝑛 − 1 first integrals 𝐹𝐹1, … , 𝐹𝐹𝑛𝑛−1 are given by  

𝐹𝐹𝑟𝑟 = 1
2 𝐾𝐾𝑟𝑟

𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖                        𝑟𝑟 = 1, … , 𝑛𝑛 − 1 

that satisfy  

{ 𝐻𝐻𝑔𝑔,  𝐹𝐹𝑟𝑟} = 0,                     𝑟𝑟 = 1, … , 𝑛𝑛 − 1 

This implies that  

[𝑔𝑔, 𝑘𝑘 ] = 0 

Which is equivalent to  

 𝐾𝐾𝑟𝑟(𝑎𝑎𝑎𝑎,𝑐𝑐) = 0                𝑟𝑟 = 1, … , 𝑛𝑛 − 1 

The characterization of orthogonal separability interms of the single killing tensor 
was obtained by Benenti [14] via the following 

3.1 Theorem (Benenti) 

     A Hamiltonian system defined by (10) is orthogonally separable if and only if 

there exists a valence two killing tensor 𝐾𝐾 with pointwise simple and real 

eigenvalues, orthogonally integrable eigenvectors and such thatd (K̃dV) = 0, where 

the linear operator K̃ is given by K̃ ≔ Kg (or in the index forK̃j
i ≔ Kilglj) .  

We also have the following criterion for orthogonal separation with respect to 
Cartesian coordinates.  
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2.2 Theorem   

     The Hamiltonian system (10) is orthogonally separable with respect to cartesian 

coordinates if the associated pseudo-Riemannian manifold (M̃, g) admits a valence 

two covariant killing tensor 𝐾𝐾 with pointwise simple eigenvalues and vanishing 

Nijenhuis tensor NK̃ . 

We now illustrate the above theorem in two –dimensional Riemannian manifold.so 

theorem (10) may be treated as follows: 

Let 𝑔𝑔𝑎𝑎𝑎𝑎 = 𝛿𝛿𝑎𝑎𝑎𝑎𝐸𝐸𝑎𝑎 ⊗ 𝐸𝐸𝑎𝑎                                                 (11) 

And 𝑘𝑘𝑎𝑎𝑎𝑎 = 𝜆𝜆𝑎𝑎𝛿𝛿𝑎𝑎𝑎𝑎𝐸𝐸𝑎𝑎 ⊗ 𝐸𝐸𝑎𝑎                                            (12) 

Where ⊗ is the symmetric tensor product and 𝑎𝑎, 𝑏𝑏 = 1, 2 and 𝜆𝜆1, 𝜆𝜆2 along with the 
dual vectors , 𝐸𝐸1, 𝐸𝐸2 are the eigenvalues and eigenvectors of k, then we have two 
independent connection coefficients Γ112, Γ212 and one component of the 
Riemannian curvature tensor 𝑅𝑅1212 for convenience we have 𝛼𝛼 ≔ Γ112, 𝛽𝛽 ≔ Γ212 
then we have  

[E1, E2] = αE1 − βE2                                                   (13) 

dE1 = αE1 ∧ E2,    dE2 = βE1 ∧ E2,                                       (14) 

R1212 = −E1β + E2α − α2 − β2,                                             (15) 

E1λ1 = 0,   E2λ1 = 2α(λ2 − λ1),   E1λ2 = 2β(λ2 − λ1), E2λ2 = 0            (16) 

where (4.14) has been used. Our next observation is that in a two-dimensional 

Riemannian manifold the conditions of orthogonal intergrability for E1and E2, 

Ea ∧ dEa = 0 , a = 1,2 are automatically satisfied. Hence, by Frobenius’ theorem, 

there exist functions 𝑓𝑓, g, 𝑢𝑢 and 𝑣𝑣 such that  

E1 = 𝑓𝑓d𝑢𝑢,    E2 = gd𝑣𝑣.                                                          (17) 
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we choose (𝑢𝑢 , 𝑣𝑣) as coordinates, while the functions 𝑓𝑓 and g remain to be 

determined by the condition of problem. Clearly with respect to (𝑢𝑢, 𝑣𝑣) we have α =
α(𝑢𝑢 , 𝑣𝑣), β = β(𝑢𝑢 , 𝑣𝑣) and the eigenvectors E1, E2  of 𝐾𝐾 are given by  

E1 = (𝑓𝑓)−1 ∂𝑢𝑢,      E2 = (g)−1 ∂𝑣𝑣.                                       (18) 

substituting (2.9) into (2.3), yields 

α = −(𝑓𝑓g)−1 ∂u𝑓𝑓,      β = (𝑓𝑓g)−1 ∂𝑣𝑣𝑔𝑔                              (19) 

The position - mometa in natural coordinates is Hamiltonian function (2.1) 

H = 1
2gabpapb + V                                                        (20) 

where gab = gijhi
ahj

b  and pa = ha
kpk, where ha

i  is defined in (4.12) and V is a 

function of 𝑢𝑢 and 𝑣𝑣. next we apply the vector field [E1, E2] to λ1 and λ2  to obtain 

the following integrability conditions : 

E1α = −3αβ,                                                              (21) 

E2β = 3αβ,                                                               (22) 

     Now it is natural to analyze the following three cases defined with respect to 

α and β. 

    ( 1)  α = β = 0 ⇔ λ1 and λ2 constant, 

     (2)  α = 0, β ≠ 0(α ≠ 0, β = 0) ⇔ λ1 constant ( λ2 constant),  

   (3)  αβ ≠ 0 ⇔ λ1 and λ2  both non − constant.  

This classification is intrinsic since the rigid moving frame we are using is defined 

up to a sign. The general forms of the separable metric 
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ds2 = (E1)2 + (E2)2,                                         (23) 

and the corresponding killing tensor 𝐾𝐾 (2.3) will be derived in each case. Having 

found the killing tensor, we shall derive the form of the most general separable 

potential 𝑉𝑉(𝑢𝑢, 𝑣𝑣) admitted by original Hamiltonian (2.1). To accomplish this, we 

take into consideration the condition 𝑑𝑑(𝐵𝐵𝑑𝑑𝑉𝑉) = 0 of theorem (2.1) which may be 

written in terms of the moving frame as  

E1E2V + 3βE2V − 2αE1V = 0                                         (24) 

Once the potential 𝑉𝑉 is found, we derive the second first integral of the Hamiltoni- 

an system defined by (10) given by F = Kabpapb + U or  

F(𝑢𝑢, 𝑣𝑣, p1, p2) = λ1p1
2 + λ2p2

2 + U(𝑢𝑢, 𝑣𝑣)                                        (25) 

In the moving frame, by solving the equation dU = 2BdV. writing this condition in 

the moving frame, we immediately obtain the following system  

E1U = 2λ1E1V,                                                        (26) 

E2U = 2λ2E2V,                                                       (27) 

We shall consider the following characterization   

(1) α = β = 0 

In this case we get from (2.10 ) that 𝑓𝑓 = 𝑓𝑓(𝑢𝑢)and g =g(𝑣𝑣) therefore, E1 = 𝑓𝑓(𝑢𝑢)d𝑢𝑢,     

 E2 = g(𝑣𝑣)d𝑣𝑣, and the metric takes the form   

ds2 = 𝑓𝑓2(𝑢𝑢)d𝑢𝑢2 + g2(𝑣𝑣)d𝑣𝑣2 

We observe that there exist coordinate transformations (𝑢𝑢, 𝑣𝑣) → (�̃�𝑢, �̃�𝑣) ,such that  

E1 = 𝑓𝑓(𝑢𝑢)d𝑢𝑢 = d�̃�𝑢,     E2 = g(v)d𝑣𝑣 = d�̃�𝑣                       (28) 
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Where 

�̃�𝑢 = ∫ f(𝑢𝑢)d𝑢𝑢,   �̃�𝑣 = ∫ g(𝑣𝑣)d𝑣𝑣. 

The remaining coordinate freedom is  

�̃�𝑢 = �̃�𝑢 + 𝑢𝑢0,    �̃�𝑣 = �̃�𝑣 + 𝑣𝑣0. 

Thus, for case (1) we have  

E1 = d𝑢𝑢,     E2 = d𝑣𝑣                                            (2.20) 

. Thus, the metric has the form 

ds2 = d𝑢𝑢2 + d𝑣𝑣2                                              (2.21) 

We conclude that the separable coordinates in this case are Cartesian. We also 

observe, by (2.6), that R1212 = 0, in case (1). The eigenvalues of K are constant is 

compatible with only a flat two-dimensional Riemannian space. The killing 

equations  render  when λ1 = c1 and λ2 = c2   

        K = diag(c1, c2)                                                      (2.22) 

And in view of (2.15), we have  

V(u, 𝑣𝑣) = V1(u) + V2(𝑣𝑣)                                            (2.23) 

Similarly, by making use of (2.17) and (2.18), we find the corresponding U to be 

U(u, 𝑣𝑣) = 2kV1(u) + 2LV2(𝑣𝑣)                                   (2.24) 

We conclude that a second first integral F that is functionally independent of the 

Hamiltonian H is  

F(u, 𝑣𝑣, pu, p𝑣𝑣) = p𝑣𝑣
2 + 2V2(𝑣𝑣)                                     (2.25) 
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We note that the class of Hamiltonian systems just described has the properties of 

being bi-Hamiltonian in the separable coordinates (𝑢𝑢, 𝑣𝑣) with respect to the constant 

Poisson bi-vectors P0 and P1 : 

P0 = ∂u ∧ ∂pu + ∂𝑣𝑣 ∧ ∂p𝑣𝑣,     P1 = ∂u ∧ ∂pu − ∂𝑣𝑣 ∧ ∂p𝑣𝑣,              (2.26) 

and having a Lax representation defined by matrices L and M of the form 

L = (L1 0
0 L2

) ,                 M = (M1 0
0 M2

),                                 (2.27) 

where  

Li = (
1

√2
pj 2ωj

fi(ωj)
ωj

− 1
√2

pj
),         Mi = 1

2ωj
(

0 0
d
dt (

pj

√2
) −2pj

),                         (2.28) 

where i , j = 1,2, i ≠ j, ω1 = u, ω2 = 𝑣𝑣 and f1, f2 ∈ C1(ℝ) are arbitrary functions.  

 (2) α = 0 , β ≠ 0 (α ≠ 0 , β = 0) 

We have in this case  

ds2 = du2 + g2(u)d𝑣𝑣2                                           (2.29) 

Where g(u) is an arbitrary function. To solve the killing equation and find the 

corresponding K, we observe that in view of the above β = ∂ug/g .now (2.7) 

transform into the following system of partial differential equations  

∂uλ1 = ∂vλ1 = ∂vλ2 = 0,     ∂uλ2 = ∂ugg−1(λ2 − λ1),                  (2.30) 

 Solving for λ1 and λ2 we find λ1 = k, λ2 = Lg2(u) + k, where L, k are arbitr- 

ary constants. Hence, the killing tensor in this case takes the form:  

K = diag(k, Lg2(u) + k) = kg + LK1,                                (2.31) 
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where K1 = diag(0, g2(u)) and g, K1,      span two- dimensional Abelian Lie alge-bra 

of killing tensors as in [4]. 

3. Some applications 

 We now apply to the Hamiltonian systems defined in particular Riemannian 

spaces . 

3.1 Two-dimensional Euclidean space E2 

In this case R1212 = 0, which entails 

𝐸𝐸2𝛼𝛼 − 𝐸𝐸1𝛽𝛽 = 𝛼𝛼2 + 𝛽𝛽2. 

Consider now the following three separable cases, defined with respect to the 

functions α and β. 

(1) 𝛼𝛼 = 𝛽𝛽 = 0. 

In this case the separable coordinates are obviously Cartesian and R1212 = 0, is 

automatically satisfied. 

(2) 𝛼𝛼 = 0,   𝛽𝛽 ≠ 0 (𝛼𝛼 ≠ 0,   𝛽𝛽 = 0)  

Solving Eq. (3.36) we obtain that the metric can be written as follows: 

d𝑠𝑠2 = d𝑢𝑢2 + 𝑢𝑢2d𝑣𝑣2,                                                    (3.1) 

3.2 Surfaces of rotation 

A surface of rotation is the surface generated by the rotation of a plane curve C 

around an axis in its plane. If C is parameterized by the equations ρ = ρ(u) and z = 

z(u), the position vector of the surface of rotation is r = {ρ(u) cos v, ρ(u) sin v, z(u)}, 

where u is the parameter of the curve C, ρ is the distance between a point on the 
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surface and the axis z of rotation and v is the angle of rotation, which is the ignorable 

(cyclic) coordinate. The metric of the surface of rotation is  

𝑑𝑑𝑠𝑠2 = ((𝜌𝜌′)2 + (𝑧𝑧′)2)𝑑𝑑𝑢𝑢2 + 𝜌𝜌2𝑑𝑑𝑣𝑣2.                            (3.2) 

Clearly, the metric (3.2) can be reduced to the form (3.1) by an appropriate 

coordinate transformation. Once the curvature R1212(u) is known, the function g(u) 

and the corresponding metric may be recovered from (3.36) and vice versa. Consider 

an example. The metric 

𝑑𝑑𝑠𝑠2 = 𝑎𝑎2𝑑𝑑𝑢𝑢2 +\ℓ2 (1 + 𝑎𝑎
ℓ cos 𝑢𝑢)

2
𝑑𝑑𝑣𝑣2                                 (3.3) 

defines the surface of a two-dimensional torus T 2, where a and ℓ are the radii of the 

rotating and axial circles, respectively. We note that in this paper we do not consider 

global properties of two-dimensional pseudo-Riemannian manifolds, hence here T 2 

is not a topological torus. Locally, the metric (2.6) yields one system of separable 

coordinates with g(u) = ℓ(1 + (a/ℓ) cos(u/a), R1212 = cos(u/a)/(aℓ + a cos(u/a)) and 

the other quantities as in Case (2) of Section 3 corresponding to the given g(u).  
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