

Prime Join Matrices and The Reciprocal S-Prime Join Matrices on Posets

KEYWORDS

Lattice, S- prime Join, arithmetical functions and Mobius function

Dr.N.Elumalai	R.Anuradha
Associate Professor of Mathematics, A.V.C.College (Autonomous),Mannampandal - 609 305, Mayiladuthurai.India	Assistant Professor of Mathematics, A.V.C. College (Autonomous),Mannampandal-609, 305,Mayiladuthurai,India

ABSTRACT We consider S-prime Join matrices as an abstract generalization of S-prime Least common multiple matrices. We also found determinant and inverse of both S-prime and reciprocal S-prime join matrices are discussed and also discussed some of the most important properties of S-prime Join matrices are presented interms of S- prime Join matrices

INTRODUCTION

$$
\text { Let } \mathrm{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \text { be }
$$

a set of n positive integers
with $x_{1}<x_{2}<\ldots<x_{n}$ and let $f: P \rightarrow \mathbb{C}$ be a complex valued function on Z_{+}(i.e., arithmetic function). Let
$\left(\mathrm{X}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ denotes the greatest common divisor (gcd) of x_{i} and x_{j} and defines the $n \times n$ matrix $(S)_{f}$ by $\left((S)_{f}\right)_{i j}=f\left(x_{i}, x_{j}\right)$. We refer to $(S)_{f}$ as the GCD Matrix on S with respect to f.The Set S is said to be gcd-closed if $\left(x_{i}, x_{j}\right) \in S$ whenever $x_{i}, x_{j} \in S$. The set S is said to be factor-closed if it contains every positive divisor of each $x_{i} \in S$.Clearly, a factor-closed set is always gcd-closed but the converse does not hold. Let $\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right.$] denotes the least common multiple (1 cm) of x_{i} and x_{j} and defines the $n \times n$ matrix $[S]_{f}$ by $\left([S]_{f}\right)_{i j}=f\left[x_{i}, x_{j}\right]$.We refer to $[S]_{f}$ as the LCM Matrix on S with respect to f.The set S is said to be lcm-closed if $\left[x_{i}, x_{j}\right] \in S$ whenever $x_{i}, x_{j} \in S$. The set S is said to be multiple-closed if it is lcm-closed and $x_{i}|d| x_{n} \Rightarrow d \in S$. Here \mid stands for the usual divisibility relation of integers.

In 1876, the concept of Classical Smith determinant with entries on Z_{+}
was introduced by H.J.S. Smith [12] is
$\operatorname{det}\left[\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)\right]_{\mathrm{n} \times \mathrm{n}}=\phi\left(x_{1}\right) \cdot \phi\left(x_{2}\right) \cdot \phi\left(x_{3}\right) \cdot . \phi\left(x_{n}\right)$
H.J.S.Smith also calculated the determinant of the LCM Matrix on a factor-closed set.

In 1876, H.J.S. Smith results extended L.E.Dickson proved that if $\alpha_{i j}=(i, j) ; i, j=1,2,3, \ldots r$ then $\operatorname{det}\left(\left(\alpha_{i j}\right)=\varphi(1) \varphi(2) \ldots \varphi(r)\right.$ where φ is the Euler φ function.

In 1991, S.Beslin [3,4,5] defined the LCM Matrix, which is an $n \times n$ matrix whose i, j - entry is the least common multiple of $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$. In 1992, K.Bourque and S.Ligh $[6,7,8]$ proved that the LCM Matrix [S] is nonsingular if S is Factor Closed set. They also conjectured that the LCM Matrix [S] is non singular if S is GCD closed.

In 2003, A.A. Oval established various results concerning GCD Matrices and Least Common Multiple (LCM) Matrices. In 1968, Wilf has proved, let $f: P \rightarrow R$ where P a Meet semi-lattice and let M be the matrix with $\mathrm{Mx}_{\mathrm{X}, \mathrm{Y}}=f(X \wedge Y)$ then
$\operatorname{det}(\mathrm{M})=\prod_{Z \in P} \mathrm{~g}(\mathrm{Z}) \quad$ where
$\mathrm{g}(\mathrm{Z})=\sum_{W \leq Z} \mu(W, Z) f(W)$.
In 1960, L.Carlitz [9], gave a new form of gcd-matrices and determinant value,
$[\mathrm{f}(\mathrm{i}, \mathrm{j})]_{\mathrm{n}}=\mathrm{C}(\operatorname{diag}(\mathrm{g}(1), \ldots, \mathrm{g}(\mathrm{n}))) \mathrm{C}^{\mathrm{T}}$ where $\mathrm{C}=\left(\mathrm{C}_{\mathrm{ij}}\right)_{\mathrm{nxn}}$;
$C_{i j}=\left\{\begin{array}{lll}1 & \text { if } & j / i \\ 0 & \text { if } & j \mid i\end{array} \quad\right.$ and
$\mathrm{D}=\left(\mathrm{d}_{\mathrm{ij}}\right)$ diagonal matrix
$d_{i j}=\left\{\begin{array}{lll}g(i) & \text { if } & i=j \\ 0 & \text { if } & i \neq j\end{array}\right.$
$\therefore \operatorname{det}[f(i, j)] n \times n=g(1) \cdot g(2) \ldots g(n)$

2.The origin of the Join Matrices on Posets

In this section, we define preliminary concepts that are needed to understand the summaries of the articles in this section.
Definition :2.1

$$
\text { Let }(\mathrm{P}, \underline{\preceq}) \subseteq\left(Z^{+}, \mid\right) \text {be a }
$$

partially ordered set. We call P a Join-semi lattice if for any $\mathrm{x}, \mathrm{y} \in P$ there exists a unique $z \in P$ such that

$$
\begin{align*}
& \mathrm{x} \leq \mathrm{z} \text { and } \tag{i}\\
& \mathrm{y} \leq \mathrm{z} \text { and }
\end{align*}
$$

(ii) If $\mathrm{x} \leq \mathrm{w}$
and $\mathrm{y} \leq \mathrm{w}$
for some
$\mathrm{w} \in P$ then $\mathrm{z} \leq \mathrm{w}$

In such a case z is called the Join of x and y and it is denoted by $\mathrm{x} \vee \mathrm{y}$.
A Join semi-lattice, which is also a Meet-Semi lattice, is called a lattice.

Definition :2.2

Let ($\mathrm{P}, \preceq, \wedge$) be a Meet-Semi lattice and defined the partial order \preceq on P by $x \preceq y \Leftrightarrow y \preceq x$. Then for any $\mathrm{x}, \mathrm{y} \in P$ there exists a unique $z=x \vee y=x \wedge y$ that satisfies (i) and (ii) above for \preceq. Thus ($\mathrm{P}, \preceq, \vee$) is a Join-semi lattice and it is said to be the dual of ($\mathrm{P}, \preceq, \wedge$).

Definition: 2.3

Let ($\mathrm{P}, \preceq, \wedge, \vee$) be a lattice in which every principal order ideal is
finite. Let $\mathrm{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a subset of P such that $\mathrm{x}_{\mathrm{i}} \preceq \mathrm{x}_{\mathrm{j}} \Rightarrow \mathrm{i} \leq \mathrm{j}$ and let $f: P \rightarrow \mathbb{C}$
be a function. Then the nxn matrices $[\mathrm{S}]_{\mathrm{f}}$ are defined by $[S]_{f}=\left\lfloor f\left(x_{i} \vee x_{j}\right)\right\rfloor \quad$ is called the Join Matrix on S associated with f . Definition: $\mathbf{2 . 4}$

In this lattices S is a finite set of positive integers, $f: P \rightarrow C$ is an arithmetical function and the S prime Join Matrix is called LCM Matrices, which is defined as $\left([S]_{f}\right)_{i j}=f\left(\operatorname{lcm}\left(x_{i}, x_{j}\right)\right)$.

Definition: 2.5

If $(\mathrm{P}, \preceq) \subseteq\left(Z^{+}, \mid\right)$then the Join Matrices respectively LCM Matrices on S.The set S is said to be upperclosed if for every $\mathrm{x}, \mathrm{y} \in P$ with $x \in S$ and $\mathrm{x} \preceq \mathrm{y}$ we have $y \in S$. The set S is said to be Joinclosed if for every $\mathrm{x}, y \in S$. We have $\mathrm{x} \vee \mathrm{y} \in S$.

Definition:2.6

We say that f is a semimultiplicative function on P , if $f(x \wedge y) f(x \vee y)=f(x) f(y)$ for all $x, y \in P$.

Definition :2.7

Let x and y be the two elements of the poset P and μ is the mobius function of the $\operatorname{poset}(S, \prec)$ then
$\mu(x, y)=\left\{\begin{array}{llc} & \text { if } & x \neq y \\ 0 & \text { if } & x=y \\ -\sum_{z z \leq y} \mu(x, z) & \text { otherwise }\end{array}\right.$

Lemma:2.8

Let g be an incidence function of
P.Then $g(x, y)=\sum_{x \leq \Sigma s y}(\mu * g)(z, y)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{P}$.

Lemma:2.9

Let $\uparrow S=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{r}\right\}$ with $w_{i}<w_{j} \Rightarrow i<j$ and let A denote the $n \times n$ matrix defined by $a_{i j}= \begin{cases}\sqrt{\left(\mu * f_{u}\right)\left(w_{j}, 1\right)} & \text { if } x_{i} \leq w_{j} \\ 0 & \text { otherwise }\end{cases}$

Then $[S]_{\mathrm{f}}=\mathrm{AA}^{\mathrm{T}}$.

Proof:

For $1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{r}$ we have

$$
\begin{aligned}
& \left(\mathrm{AA}^{\mathrm{T}}\right)_{\mathrm{ij}}=\sum_{k=1}^{r} a_{i k} a_{j k}= \\
& \sum_{\substack{x_{i} \leq w_{k} \leq 1 \\
x_{j} \leq w_{k} \leq 1}}\left(\mu * f_{u}\right)\left(w_{k}, 1\right) \\
& \qquad=\sum_{x_{i} \times x_{j} \leq w_{k} \leq 1}\left(\mu * f_{u}\right)\left(w_{k}, 1\right)
\end{aligned}
$$

By lemma (2.8), $\left(\mathrm{AA}^{\mathrm{T}}\right)_{\mathrm{ij}}=$ $f_{u}\left(x_{i} \vee x_{j}, 1\right)$

$$
=f\left(x_{i} \vee x_{j}\right)
$$

This completes the proof.

Lemma:2.10(Join Matrix in terms of

 a
certain Meet Matrix)

Let $\mathrm{D}=\operatorname{diag}\left(\mathrm{f}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)\right)$ then
$[S]_{f}=D(S)_{\frac{1}{f}} D$

Proof:

Since $\left(D(S)_{\frac{1}{f}} D\right)_{i j}=f\left(x_{i}\right)\left((S)_{\frac{1}{f}}\right)_{i j} f\left(x_{j}\right)$

$$
=
$$

$\frac{f\left(x_{i}\right) f\left(x_{j}\right)}{f\left(x_{i} \wedge x_{j}\right)}=f\left(x_{i} \vee x_{j}\right)$
we have $[S]_{f}=D(S)_{\frac{1}{f}} D$

3.The Structure of S - Prime Join Matrices on Posets

Definition :3.1

Let $\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and Y
$=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$ be two subsets of P and the nxn

S-Prime Join Matrix on X and Y with respect to f is defined as $\mathrm{M}=[\mathrm{X}, \mathrm{Y}]_{\mathrm{f}}$ $=\left[\mathrm{f}_{\mathrm{ij}}\right]$ where $f_{i j}=\frac{\left(4 x_{i}+1\right)\left(4 y_{j}+1\right)}{4\left(x_{i} \wedge y_{j}\right)+1}$.

Definition :3.2

Let (P, \preceq) be a lattice in which every principal order is finite and let f be a complex valued function on P.Let $\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\mathrm{Y}=\left\{\mathrm{y} 1, \mathrm{y} 2, \ldots, \mathrm{yn}_{\mathrm{n}}\right\}$ be two subsets of P.Let the elements of X and Y be arranged so that $x_{1}<x_{2}<\ldots<x_{n}$ and $y_{1}<y_{2}<\ldots<y_{n}$.

Let $\mathrm{D}=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ be any subsets of P containing the elements $x_{i} \vee y_{j} ; \mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{n}$.Let the elements of D be arranged so that $d_{1}<d_{2}<\ldots<d_{m}$.

Definition:3.3

We define $g_{D, \frac{1}{f}}$ on D inductively as
$g_{D, \frac{1}{f}}\left(d_{k}\right)=f\left(d_{k}\right)-\sum_{d_{v}<d_{k}} g_{D, \frac{1}{f}}\left(d_{v}\right)$
or $f\left(d_{k}\right)=\sum_{d_{v} \leq d_{k}} g_{D, \frac{1}{f}}\left(d_{v}\right) \quad$ then
$g_{D, \frac{1}{f}}\left(d_{k}\right)=\sum_{d_{v} \leq d_{k}} \frac{\mu_{D}\left(d_{v}, d_{k}\right)}{f\left(d_{v}\right)}$ where
μ_{D} is the mobius function on the poset (D, \preceq).

Definition:3.4

Let $\mathrm{E}(\mathrm{X})=\left(\mathrm{e}_{\mathrm{ij}}(\mathrm{X})\right)$ and $\mathrm{E}(\mathrm{Y})=$ $\left(\mathrm{e}_{\mathrm{ij}}(\mathrm{Y})\right)$ denotes the $n \times m$ matrices defined by
$\left(e_{i j}(X)\right)=\left\{\begin{array}{l}1 \text { if } d_{j} \leq x_{i} \\ 0 \quad \text { otherwise }\end{array}\right.$ and
$\left(e_{i j}(Y)\right)=\left\{\begin{array}{l}1 \text { if } d_{j} \leq y_{i} \\ 0 \quad \text { otherwise }\end{array}\right.$
We also denote
$\Lambda_{D, \frac{1}{f}}=\operatorname{diag}\left(g_{D, \frac{1}{f}}\left(d_{1}\right), \ldots, g_{D, \frac{1}{f}}\left(d_{m}\right)\right)$.

Theorem:3.5

If $\mathrm{D}, \mathrm{E}(\mathrm{X}), \mathrm{E}(\mathrm{Y})$ and
$\Lambda_{D, \frac{1}{f}}$ as defined above then $[\mathrm{X}, \mathrm{Y}]_{\mathrm{f}}$
$=\mathrm{E}(\mathrm{X}) \Lambda_{D, \frac{1}{f}} \mathrm{E}(\mathrm{Y})^{\mathrm{T}}$.

Proof:

The i,jth entry in

$$
\begin{aligned}
& \left(\mathrm{E}(\mathrm{X}) \Lambda_{\mathrm{D}, \frac{1}{\mathrm{f}}} \mathrm{E}(\mathrm{Y})^{\mathrm{T}}\right)_{i j}=\sum_{k=1}^{n} e_{i k} \Lambda_{k} e_{k j} \\
& =\sum_{\substack{x_{i}^{\leq d} \\
x_{i} \leq d_{k}}} g\left(d_{k}\right)=\sum_{x_{x_{i}} \times x_{j} \leq \leq d_{k}} g\left(d_{k}\right)=[X, Y]_{f}
\end{aligned}
$$

$$
\text { Hence }[\mathrm{X}, \mathrm{Y}]_{\mathrm{f}}=\mathrm{E}(\mathrm{X})
$$

$\Lambda_{D, \frac{1}{f}} \mathrm{E}(\mathrm{Y})^{\mathrm{T}}$.

Theorem:3.6

(i) If $\mathrm{n}>\mathrm{m}$, then $\operatorname{det}[\mathrm{X}, \mathrm{Y}]_{\mathrm{f}}=\operatorname{det}[\mathrm{M}]=$ 0
and (ii) If $n \leq m$, then

$$
\begin{aligned}
\operatorname{det}(M) & =\prod_{i=1}^{n} f\left(x_{i}\right) f\left(y_{i}\right) \\
& \times \sum_{1 \leq k_{1}<k_{2}<\ldots<k_{n} \leq \mathrm{m}} \operatorname{det} \mathrm{E}(\mathrm{X})_{(\mathrm{k} 1, k 2, \ldots, \mathrm{kn})} \operatorname{det} \mathrm{E}(\mathrm{Y})_{(\mathrm{k} 1, k 2, . . \mathrm{kn})}
\end{aligned}
$$

$$
g_{D, \frac{1}{f}}\left(\mathrm{~d}_{\mathrm{k}_{1}}\right) g_{D, \frac{1}{f}}\left(\mathrm{~d}_{\mathrm{k}_{2}}\right) \ldots g_{D, \frac{1}{f}}\left(\mathrm{~d}_{\mathrm{k}_{n}}\right)
$$

Proof:

$[\mathrm{X}, \mathrm{Y}]_{\mathrm{f}}=\mathrm{D}_{\mathrm{x}, \mathrm{f}}(\mathrm{X}, \mathrm{Y})_{1 / \mathrm{f}} \mathrm{D}_{\mathrm{y}, \mathrm{f}}=\mathrm{D}_{\mathrm{x}, \mathrm{E}} \mathrm{E}(\mathrm{X})$
$\wedge_{D, f} \mathrm{E}(\mathrm{Y})^{\mathrm{T}} \mathrm{D}_{\mathrm{y}, \mathrm{f}}$
Also $\mathrm{M}=\mathrm{D}_{\mathrm{x}, \mathrm{f}} \tilde{M} \mathrm{D}_{\mathrm{y}, \mathrm{f}} \Rightarrow$
$\operatorname{det} \mathrm{M}=\operatorname{det}\left(\mathrm{D}_{\mathrm{x}, \mathrm{f}}\right) \operatorname{det}(\tilde{M}) \operatorname{det}\left(\mathrm{D}_{\mathrm{y}, \mathrm{f}}\right)$

$$
=\operatorname{det}(\tilde{M})
$$

$\prod_{i=1}^{n}\left[4\left(x_{i}+1\right)\right]\left[4\left(y_{j}+1\right)\right]$

Theorem:3.7

In the case of semi-
multiplicative function $\mathrm{M}=[\mathrm{X}, \mathrm{Y}]_{\mathrm{f}}$
$=D_{X} M D_{Y}$, where $D_{X}=\operatorname{diag}\left(4 \mathrm{x}_{1}+1\right.$, $\left.4 \mathrm{x}_{2}+1, \ldots, 4 \mathrm{x}_{\mathrm{n}}+1\right), \quad D_{Y}=\operatorname{diag}$
$\left(4 \mathrm{y}_{1}+1,4 \mathrm{y}_{2}+1, \ldots, 4 \mathrm{y}_{\mathrm{n}}+1\right)$ and M
has the entry $\tilde{f}_{i j}=\frac{1}{4\left(x_{i} \wedge y_{j}\right)+1}$.

Proof:

Since $[X, Y]_{f}=M=\left[f\left[x_{i} \vee y_{j}\right]\right]$
$=\left[f\left(x_{i}\right) \frac{1}{f\left(x_{i} \wedge y_{j}\right)} f\left(y_{j}\right)\right]=D_{X} \tilde{M} D_{Y}$
Theorem:3.8
If D is Meet closed and f
and g are arithmetical functions then
(i) $\mathrm{f}\left(\mathrm{d}_{\mathrm{k}}\right)=\sum_{z \leq d_{k}} g_{D, f}\left(d_{k}\right)$
implies and implied by
(ii) $\quad g_{D, f}\left(d_{k}\right)=\sum_{\substack{z \leq d_{k} \\ z \leq d_{z} \\ t<k}} \sum_{t} f(w) \mu_{P}(w, z)$

Proof:

Assume (i) and prove (ii)
Consider $\sum_{z \leq d_{k}} \mu(z)=\sum_{z z=d_{k}} f\left(z^{\prime}\right) \mu(z)$

$$
\begin{gathered}
=\sum_{z^{\prime} z=d_{k}} \mu(z) \sum_{e \leq z^{\prime}} g(e)=\sum_{e h^{\prime} z=d_{k}} \mu(z) g(e) \\
=\sum_{e h^{\prime} z=d_{k}} g(e) \sum_{z \leq h^{\prime}} \mu(z)
\end{gathered}
$$

Since the sum $\sum_{z \leq h^{\prime}} \mu(z)$ has the value 0 if $h^{\prime}>1$ and the value 1 if $h^{\prime}=1$.
Hence $\sum \mu(z) f\left(\frac{d_{k}}{z}\right)=g\left(d_{k}\right)$
To prove the converse: we consider
$\sum_{z \leq d_{k}} g(z)=\sum_{z \leq d_{k} z^{\prime} \leq d_{k}} \sum \mu\left(z^{\prime}\right) f\left(\frac{z}{z^{\prime}}\right)$
$=\sum_{e h^{\prime}=d_{k}} \mu\left(z^{\prime}\right) f(e)=\sum_{e h^{\prime}=d_{k}} f(e) \sum_{z^{\prime} \leq h^{\prime}} \mu\left(z^{\prime}\right)$
As before, the sum of $\sum_{z^{\prime} \leq h^{\prime}} \mu\left(z^{\prime}\right)$ has the value 0 if $h>1$ and the value 1 if $\mathrm{h}^{\prime}=1$.

$$
\text { Hence } \sum_{z \leq d_{k}} g\left(d_{k}\right)=f\left(d_{k}\right) \text {. }
$$

Theorem:3.9
If D is Join-closed set then
$g_{D, \frac{1}{f}}\left(d_{k}\right)=\sum_{z \leq d_{k}} \sum \frac{\mu(w, z)}{f(w)}$ where μ is
the mobius function of P .

Proof:

It is similar to the proof of the theorem(3.8).
Theorem:3.10 $(\mathrm{X}, \mathrm{Y})_{\mathrm{f}}=\mathrm{Dx}[\mathrm{X}, \mathrm{Y}]_{1 / f}$ Dy.

Proof:

Now we consider the example
$S=\{1,2\}$ and $T=\{2,3\}$
$\mathrm{D}_{\mathrm{X}}=\operatorname{diag}(5,9)$ and $\mathrm{D}_{\mathrm{Y}}=\operatorname{diag}(9,13)$
$(\mathrm{S})_{\mathrm{f}}=(\mathrm{X}, \mathrm{Y})_{\mathrm{f}}=$

$$
\begin{aligned}
&\left(\begin{array}{ll}
4(1 \wedge 2)+1 & 4(1 \wedge 3)+1 \\
4(2 \wedge 2)+1 & 4(2 \wedge 3)+1
\end{array}\right) \\
&=\left(\begin{array}{ll}
5 & 5 \\
9 & 5
\end{array}\right)
\end{aligned}
$$

$[\mathrm{X}, \mathrm{Y}]_{1 / \mathrm{f}}=$
$\left(\begin{array}{ll}\frac{4(1 \wedge 2)+1}{(4(1)+1)(4(2)+1)} & \frac{4(1 \wedge 3)+1}{(4(1)+1)(4(3)+1)} \\ \frac{4(2 \wedge 2)+1}{(4(2)+1)(4(2)+1)} & \frac{4(2 \wedge 3)+1}{(4(2)+1)(4(3)+1)}\end{array}\right)$

$$
=\left(\begin{array}{cc}
\frac{1}{9} & \frac{1}{13} \\
\frac{1}{9} & \frac{5}{117}
\end{array}\right)
$$

Dx $[\mathrm{X}, \mathrm{Y}]_{1 / f} \quad \mathrm{Dy}_{\mathrm{Y}}=$
$\left(\begin{array}{ll}5 & 0 \\ 0 & 9\end{array}\right)\left(\begin{array}{cc}\frac{1}{9} & \frac{1}{13} \\ \frac{1}{9} & \frac{5}{117}\end{array}\right)\left(\begin{array}{cc}9 & 0 \\ 0 & 13\end{array}\right)$

$$
=\left(\begin{array}{ll}
5 & 5 \\
9 & 5
\end{array}\right)
$$

Hence Proved.

Theorem:3.11

Let $S=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ be S-prime Join closed. Without loss of generality we may
assume that $\mathrm{i}<\mathrm{j}$ whenever $\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{j}}$, then

the mobius function of P .

Proof:

By using the definition (3.3)

$$
f\left(x_{j}\right)=\sum_{\substack{x_{i \leq} x_{j}}} g_{s, f}\left(x_{i}\right)=\sum_{\substack{x_{i} \leq x_{j} \leq x_{j} \leq x_{j} \leq z \\ k<j}} \sum_{\substack{ \\k j_{i}}} f(w) \mu(w, z)
$$

We write,

$$
f(x)=\sum_{z \leq x} g(z) \text { or } g(x)=\sum_{z \leq x} f(z) \mu(z, x)
$$

for all $x \in P$
It has to be prove that,

$$
\sum_{z_{s} x_{j}} g(z)=\sum_{\substack{x_{i} \leq x_{j} \leq x_{j} \\ z \pm x_{i} \\ t<i}} \sum_{\substack{ \\\hline}} g(z)
$$

Now consider the sum of R.H.S of equation (1)
Let $\mathrm{x}_{\mathrm{i}} \leq \mathrm{xjand}_{\mathrm{z}} \leq \mathrm{xi}_{\mathrm{i}} \Rightarrow \mathrm{z} \leq \mathrm{x}_{\mathrm{j}}$.
Thus every z occurring on the right side of equation (1) ccurs on the left side of equation (1).
Conversely, Consider the sum on the left side
of equation (1).
Suppose that $\mathrm{z} \leq \mathrm{x}_{\mathrm{j} w}$ e have $\mathrm{z} \leq \mathrm{x}_{\mathrm{i}}$ by minimality
of i , we have $\mathrm{r}=\mathrm{i}$ or $\mathrm{x}_{\mathrm{r}}=\mathrm{x}_{\mathrm{i}}$, therefore $\mathrm{x}_{\mathrm{r}} \leq \mathrm{x}_{\mathrm{j}}$ means $\mathrm{X}_{\mathrm{r}} \leq \mathrm{x}_{\mathrm{j}}$ thus every z occurring on the side of equation (1).

This completes the proof.

Theorem:3.12

If S is lower closed subset of P
then $g_{s, f}\left(x_{j}\right)=\sum_{x_{i} \leq x_{j}} f\left(x_{i}\right) \mu\left(x_{i}, x_{j}\right)$

Proof:

Already we know that the result,
$g_{s, f}\left(x_{j}\right)=\sum_{\substack{z \leq x_{j} \\ z \nless x_{r} \\ t<j}} f(w) \mu(w, z)$
It reduces we get the proof of theorem.
Then S is lower closed.
Example :3.13

Let $S=\left\{x_{1}, \mathrm{X}_{2}, \ldots \ldots . \mathrm{x}_{\mathrm{n}}\right\}$ be a chain with $\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots \ldots .<\mathrm{x}_{\mathrm{n}}$. Then $\mathrm{g}_{\mathrm{s}, \mathrm{f}}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{1}\right)$, $\mathrm{g}_{\mathrm{s}, \mathrm{f}}\left(\mathrm{x}_{2}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)-\mathrm{f}\left(\mathrm{x}_{1}\right)$

In general
$g_{s, f}\left(x_{j}\right)=f\left(x_{j}\right)-f\left(x_{j-1}\right)$ where, $j=2,3,4, \ldots, n$.

Example:3.14

Let $S=\left\{x_{1}, x_{2}, \ldots . . x_{n}\right\}$ be an
incomparable set and let $S=\left\{x_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right.$
,$\left.\ldots . . \mathrm{X}_{\mathrm{n}}\right\}$. Then,
$g_{s, f}\left(x_{0}\right)=f\left(x_{0}\right)$,
$g_{s, f}\left(x_{1}\right)=f\left(x_{1}\right)-f\left(x_{0}\right)$
and $g_{s, f}\left(x_{2}\right)=f\left(x_{2}\right)-f\left(x_{0}\right)$.
In general $g_{s, f}\left(x_{j}\right)=f\left(x_{j}\right)-f\left(x_{0}\right)$ for $\mathrm{j}=1,2,3, \ldots, \mathrm{n}$

Theorem :3.15

Let $\mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{X}_{2} \ldots \mathrm{x}_{\mathrm{n}}\right\}$ and $\mathrm{T}=\left\{\mathrm{y}_{1}\right.$,
$\mathrm{y} 2 \ldots \mathrm{ym}\}$ be any two subsets of P .
Define the incidence matrix whose i, j entry is 1 if $y_{j} \leq x_{i}$ and zero otherwise namely that is, $\mathrm{E}(\mathrm{S}, \mathrm{T})$
$=\left(e_{i j}\right)_{n \times m}$ where
$\left(e_{i j}\right)=\left\{\begin{array}{ccc}1 & \text {,if } & y_{j} \leq x_{i} \\ 0 & \text {,if } & \text { otherwise }\end{array}\right\}$
Theorem: 3.16
If S is a S-Prime join-
closed.Then $\operatorname{det}[S]_{f}=\prod_{i=1}^{n} g_{s, f}\left(x_{i}\right)$.

Proof:

The theorem is proved and verified with a suitable example.
Consider the set $\mathrm{S}=\{1,2,3\}$
Then $[S]_{f}=\left[\begin{array}{lll}f(5) & f(9) & f(13) \\ f(9) & f(9) & f 25) \\ f(13) & f(25) & f(13)\end{array}\right]$
Let $\operatorname{det}[S]_{f}=$
$f(5)\left[f(9) f(13)-f(25)^{2}\right]-f(9)[f(9) f(13)$
$-f(13) f(25)]+f(13)[f(9) f(25)-f(13) f(9)]$

$$
\begin{aligned}
= & f(5) f(9) f(13)-f(5) f(25)^{2} \\
- & {\left[f(9)^{2} f(13)\right]+[f(9) f(13) f(25)] } \\
& +\left[f(9) f(13) f(25)-f(13)^{2} f(9)\right] \ldots(1)
\end{aligned}
$$

By using example,

$$
g(9)=f(9)-f(5)
$$

$$
g(13)=f(13)-f(9)
$$

$$
g(25)=f(25)-f(13)
$$

$$
\prod_{i=5,9,13}^{n}\left(g\left(x_{i}\right)\right)=g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right)
$$

$$
=[f(9)-f(5)][f(13)-f(9)][f(25)-f(13)]
$$

$$
\begin{aligned}
& =f(5) f(9) f(13)-f(5) f(25)^{2}-\left[f(9)^{2} f(13)\right] \\
& +[f(9) f(13) f(25)]+[f(9) f(13) f(25) \\
& \left.\quad-f(13)^{2} f(9)\right] \ldots(2)
\end{aligned}
$$

From equation (1) and (2), we get;

$$
\operatorname{det}[S]_{f}=\prod_{i=1}^{n} g_{s, f}\left(x_{i}\right)
$$

Hence the theorem is proved.

Corollary : 3.17

If $S=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ is a chain with $\mathrm{x}_{1}<\mathrm{x}_{2}<\mathrm{x}_{3} \ldots<\mathrm{x}_{\mathrm{n}}$. Then
$\operatorname{det}[\mathrm{S}]_{\mathrm{f}}=f\left(x_{1}\right) \prod_{i=1}^{n}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right]$

Proof:

By using theorem,
If S is a S-prime Join -closed then
$\operatorname{det}[\mathrm{S}]_{\mathrm{f}}=\prod_{i=1}^{n}\left(g_{s, f}\left(x_{i}\right)\right)$ and the result,
$=\mathrm{f}(5) \mathrm{f}(9) \mathrm{f}(13)+\mathrm{f}(5)^{3--}$
$f(5)^{2} f(13)-$

$$
\mathrm{f}(5)^{2} \mathrm{f}(9)
$$

We have,
$\operatorname{det}[\mathrm{S}]_{\mathrm{f}}=\mathrm{f}(5)[\mathrm{f}(9)-\mathrm{f}(5)][\mathrm{f}(13)-\mathrm{f}(5)]$
$\operatorname{det}[\mathrm{S}]_{f}=\mathrm{g}(1) \mathrm{g}(2) \mathrm{g}(3)$
Then, det
$[\mathrm{S}] \mathrm{f}=f\left(x_{1}\right) \prod_{i=1}^{n}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right]$

Hence Proved.

Theorem:3.18

Let $\mathrm{T}=\{\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \ldots, \mathrm{ym}\}$ be a S-prime
Join-closed subset of P containing $S=\{$ $\left.\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$. Then, $\operatorname{det}[\mathrm{S}]_{\mathrm{f}}=$
$\operatorname{det}[\mathrm{S}]_{\mathrm{f}}=$
$\sum_{1 \leq k_{1} \leq . . \leq k_{n} \leq m} \operatorname{det}\left[E\left(k_{1}, k_{2}, \ldots, k_{n}\right)^{2} g_{T, f}(y)_{k 1},, g_{T, f}(y)_{k 2}, \ldots . . g_{T, f}(y)_{k n}\right]$
Hence proved.
Theorem:3.19
If X and Y are Meet Closed and Lower
Closed sets
$\sum_{1 \leq k_{1} \leq . . \leq k_{n} \leq m} \operatorname{det}\left[E\left(k_{1}, k_{2}, \ldots, k_{n}\right)^{2} g_{T, f}(y)_{k 1}, g_{T, f}(y)_{k 2}, \ldots . . g_{T, f}(y)_{k n}\right]$ then
Where, $\mathrm{E}=\mathrm{E}(\mathrm{S}, \mathrm{T})$

Proof:

$$
[\mathrm{S}]_{\mathrm{f}}=\mathrm{E} \Lambda \mathrm{E}^{\mathrm{T}}, \operatorname{also} \operatorname{det}(\mathrm{E})=
$$

$\operatorname{det}\left(\mathrm{E}^{\mathrm{T}}\right)$, by using known theorem.
Now we consider the example,
$S=\{2,3\}$ and $T=\{1,2,3\}$. Then,
$[S]_{f}=\left[f\left(4\left(x_{i} \vee x_{j}\right)+1\right)\right]=\left[\begin{array}{ll}f(4(2 \vee 2)+1) & f(4(2 \vee 3)+1) \\ f(4(3 \vee 2)+1) & f(4(3 \vee 3)+1)\end{array}\right]$

$$
[S]_{f}=\left[\begin{array}{ll}
f(9) & f(25) \\
f(25) & f(13)
\end{array}\right]
$$

The incident matrix of $S \& T$ is,

$$
\mathrm{E}=\mathrm{E}(\mathrm{~S}, \mathrm{~T})=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

$\mathrm{E} \Lambda \mathrm{E}^{\mathrm{T}}=$

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
f(5) & 0 & 0 \\
0 & f(9)-f(5) & 0 \\
0 & 0 & f(13)-f(5)
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 1
\end{array}\right]} \\
\quad=\left[\begin{array}{ll}
f(9) & f(5) \\
f(5) & f(13)
\end{array}\right] \\
\therefore\left[\begin{array}{ll}
S
\end{array}\right]_{f}=\mathrm{E} \wedge \mathrm{E}^{\mathrm{T}} \\
\text { Also, det }(\mathrm{E}) \\
\Rightarrow E=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 1 \\
1
\end{array}\right]=0 \\
\operatorname{det}\left(\mathrm{E}^{\mathrm{T}}\right) \Rightarrow\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 1
\end{array}\right]=0
\end{gathered}
$$

$\operatorname{det}(E)=\operatorname{det}\left(E^{T}\right)$
$\operatorname{det}(\mathrm{M})=\prod_{i=1}^{n} f\left(x_{i}\right) f\left(y_{i}\right) g\left(d_{i}\right)$
where $g\left(d_{i}\right)=\sum_{d_{j} \leq d_{i}} \frac{\mu\left(d_{j}, d_{i}\right)}{f\left(d_{j}\right)}$.

Proof:

To get the proof, by using the theorem
(3.6) and (3.7).

Theorem:3.20

Let $X_{i}=X \backslash\left\{\mathrm{x}_{\mathrm{i}}\right\}$ and $\mathrm{Y}_{\mathrm{i}}=$ $\mathrm{Y} \backslash\left\{\mathrm{y}_{\mathrm{i}}\right\}$ for
$\mathrm{i}=1,2,3, \ldots, \mathrm{n}$.If M is invertible then
the inverse of M is the $n \times n$ matrix
$\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right) \quad$ where $\mathrm{b}_{\mathrm{ij}}=$

$$
\frac{\alpha_{j i}}{\operatorname{det}(M)}
$$

where $\alpha_{j i}$ is the co-factor of ji-
entry of M .
Proof:
It is a general method used to prove.

Theorem:3.21

Let $X_{i}=X \backslash\left\{x_{i}\right\}$ and $Y_{i}=$
$Y \backslash\left\{y_{i}\right\}$ for $\mathrm{i}=1,2,3, \ldots$, n.If M is invertible
then the
inverse of M is the $n \times n$
matrix $\mathrm{B}=$
$\left(\mathrm{b}_{\mathrm{ij}}\right)$, where
$b_{i j}=\frac{(-1)^{i+j}}{f\left(x_{j}\right) f\left(y_{i}\right) \operatorname{det}(M)} \prod_{v=1}^{n} f\left(x_{v}\right) f\left(y_{v}\right)$

$$
\begin{aligned}
& \quad \times \sum_{1 \leq k_{1}<k_{2}<\ldots<k_{n} \leq \mathrm{m}} \operatorname{det} \mathrm{E}\left(\mathrm{X}_{\mathrm{j}}\right)_{(\mathrm{k} 1, \mathrm{k} 2, \ldots, \mathrm{kn}-1)} \operatorname{det} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}}\right)_{(\mathrm{k} 1, \mathrm{k} 2, \ldots \mathrm{kn}-1)} \\
& \times g_{D, \frac{1}{f}}\left(\mathrm{~d}_{\mathrm{k}_{1}}\right) g_{D, \frac{1}{f}}\left(\mathrm{~d}_{\mathrm{k}_{2}}\right) \ldots g_{D, \frac{1}{f}}\left(\mathrm{~d}_{\mathrm{k}_{n-1}}\right. \\
&) \\
& \text { Proof: }
\end{aligned}
$$

Since $\mathrm{b}_{\mathrm{ij}}=\frac{\alpha_{j i}}{\operatorname{det}(M)}$, where $\alpha_{j i}$ is
the co-factor of ji-entry of M.
It is easy to see that

$$
\alpha_{j i}=(-1)^{i+j} \operatorname{det}\left[X_{j}, Y_{i}\right]_{f} .
$$

By theorem (3.6) we see that $\operatorname{det}\left[\mathrm{X}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{i}}\right]_{\mathrm{f}}=$

$$
\sum_{1 \leq 1 \leq k<k 2<-k n-1 \leq-m} \operatorname{det} E\left(X_{j}\right)_{(k 1, k 2, \ldots k n-1)} \operatorname{det} E\left(Y_{i}\right)_{(k 1, k 2, \ldots k n-1)}
$$

$$
x
$$

$$
g_{D, \frac{1}{f}}\left(\mathrm{~d}_{\mathrm{k}_{1}}\right) g_{D, \frac{1}{f}}\left(\mathrm{~d}_{2}\right) \ldots g_{D, \frac{1}{f}}\left(\mathrm{~d}_{\mathrm{k}_{n-1}}\right)
$$

combining the above equations we obtain the theorem.

Example:

Construct the 2×2 S-Prime Join
Matrix on the LCM closed sets $\mathrm{X}=$ $\{1,2\}$ and
$\mathrm{Y}=\{2,5\}$.Then by using the definition (2.7),
$\mathrm{M}=\left[\mathrm{f}_{\mathrm{ij}}\right] \quad$ where $\mathrm{f}_{\mathrm{ij}}=\frac{\left(4 \mathrm{x}_{\mathrm{i}}+1\right)\left(4 \mathrm{y}_{\mathrm{j}}+1\right)}{4\left(\mathrm{x}_{\mathrm{i}} \wedge y_{j}\right)+1}$
By using the definition of f and $\mu(x, y)$ we obtain; $\mathrm{f}_{11}=9, \mathrm{f}_{12}=21$,
$\mathrm{f}_{21}=9, \mathrm{f}_{22}=189 / 5$
$\therefore M=\left(\begin{array}{cc}9 & 21 \\ 9 & \frac{189}{5}\end{array}\right)$
Since $\operatorname{det}(\mathrm{M})=$
$\prod_{i=1}^{n} f\left(x_{i}\right) f\left(y_{i}\right) g\left(d_{i}\right)$ where $\quad \mathrm{g}\left(\mathrm{d}_{\mathrm{i}}\right)=$
$\sum_{d j \leq d_{i}} \frac{\mu\left(d_{j}, d_{i}\right)}{f\left(d_{j}\right)}$
here $\mathrm{D}=\{1,2\}$ each $\mathrm{d}_{\mathrm{i}} \in x_{i} \wedge y_{j}$ for i, j $=1,2$.
$f\left(x_{1}\right)=f(1)=5, f\left(x_{2}\right)=f(2)=9$,
$\mathrm{f}\left(\mathrm{y}_{1}\right)=\mathrm{f}(2)=9, \mathrm{f}\left(\mathrm{y}_{2}\right)=\mathrm{f}(5)=21$
$\mathrm{g}\left(\mathrm{d}_{1}\right)=\mathrm{g}(1)=\sum_{d_{j} \leq 1} \frac{\mu\left(d_{j}, 1\right)}{f\left(d_{j}\right)}=\frac{\mu(1,1)}{f(1)}$
$=\frac{1}{5}$
$\mathrm{g}\left(\mathrm{d}_{2}\right)=\mathrm{g}(2)=$ $\sum_{d_{j} \leq 2} \frac{\mu\left(d_{j}, 2\right)}{f\left(d_{j}\right)}=\frac{\mu(1,2)}{f(1)}+\frac{\mu(2,2)}{f(2)}=$
$\frac{-4}{45}$
Thus $\operatorname{det}(M)=\mathrm{f}(1) \mathrm{f}(2) \mathrm{f}(2) \mathrm{f}(5) \mathrm{g}(1) \mathrm{g}(2)$

$$
=-\frac{756}{5}
$$

Find M^{-1}, by using the theorem, $\mathrm{B}=$ $\left(\mathrm{b}_{\mathrm{ij}}\right)$ where $b_{i j}=\frac{(-1)^{i+j}}{\operatorname{det}(M)} M_{j i}$
$\mathrm{b}_{11}=\frac{(-1)^{1+1}}{\operatorname{det}(M)} M_{11}=-\frac{1}{4}$
$\mathrm{b}_{12}=\frac{(-1)^{1+2}}{\operatorname{det}(M)} M_{21}=\frac{5}{36}$
similarly, $\mathrm{b}_{21}=5 / 84, \mathrm{~b}_{22}=-5 / 84$

$$
M^{-1}=\left(\begin{array}{cc}
\frac{-1}{4} & \frac{5}{36} \\
\frac{5}{84} & \frac{-5}{84}
\end{array}\right)
$$

4.Inverse of the Reciprocal S-Prime Join Matrices
 Definition :4.1

Let $\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and
$\mathrm{Y}=\left\{\mathrm{y}_{1}, \mathrm{y} 2, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$ be two subsets of P and the nxn Reciprocal S-Prime Join Matrix on X and Y with respect to R is defined as $\mathrm{R}=[\mathrm{X}, \mathrm{Y}]_{\mathrm{r}}=\left[\mathrm{r}_{\mathrm{ij}}\right]$ where $r_{i j}=\frac{4\left(x_{i} \wedge y_{j}\right)+1}{\left(4 x_{i}+1\right)\left(4 y_{j}+1\right)}$.
Definition:4.2

Let X and Y be two Lower Closed subsets of P then
$\operatorname{det}(R)=\prod_{i=1}^{n} r\left(x_{i}\right) r\left(y_{i}\right) h\left(d_{i}\right)$
where $h\left(d_{i}\right)=\sum_{d_{j} \leq d_{i}} \frac{\mu\left(d_{i}, d_{j}\right)}{r\left(d_{j}\right)}$.

Definition:4.3

If R is invertible then the inverse of R is
nXn matrix $\mathrm{H}=\left(\mathrm{h}_{\mathrm{ij}}\right) \quad$ where $\mathrm{h}_{\mathrm{ij}}=\frac{r_{j i}}{\operatorname{det}(R)}$ and r_{ji} is the cofactor of the ji - entry of
R.Therefore, $\mathrm{h}_{\mathrm{ij}}=\frac{(-1)^{i+j}}{\operatorname{det}(R)} r_{j i}$

Example:

Construct the 2X2 reciprocal S-Prime join matrix on the LCM closed sets
$X=\{1,2\}$ and
$\mathrm{Y}=\{2,5\}$.
By using the definition of (2.8),
$\mathrm{rij}_{\mathrm{ij}}=\frac{4\left(x_{i} \wedge y_{j}\right)+1}{\left(4 x_{i}+1\right)\left(4 y_{j}+1\right)}$
$\mathrm{r}_{11}=1 / 9, \mathrm{r}_{12}=1 / 21, \mathrm{r}_{21}=1 / 9, \mathrm{r}_{22}=5 / 189$
$\therefore R=\left(\begin{array}{cc}\frac{1}{9} & \frac{1}{21} \\ \frac{1}{9} & \frac{5}{189}\end{array}\right)$

Find $\operatorname{det}(\mathrm{R})$, by using the definition (4.2),
$\operatorname{det}(R)=\prod_{i=1}^{n} r\left(x_{i}\right) r\left(y_{i}\right) h\left(d_{i}\right)$
where $h\left(d_{i}\right)=\sum_{d_{j} \leq d_{i}} \frac{\mu\left(d_{i}, d_{j}\right)}{r\left(d_{j}\right)}$
and $\quad D=\{1,2\}$
$r\left(x_{1}\right)=r(1)=1 / 5, r\left(x_{2}\right)=r(2)=1 / 9$,
$r\left(y_{1}\right)=r(2)=1 / 9, r\left(y_{2}\right)=r(5)=1 / 21$.
$h(1)=\sum_{d_{j} \leq 1} \frac{\mu\left(d_{j}, 1\right)}{r\left(d_{j}\right)}=\frac{\mu(1,1)}{r(1)}=5$

$$
h(2)=\sum_{d_{j} \leq 2} \frac{\mu\left(d_{j}, 2\right)}{r\left(d_{j}\right)}=\frac{\mu(1,2)}{r(1)}+\frac{\mu(2,2)}{r(2)}=-5+9=4
$$

$\therefore \operatorname{det}(R)=\frac{1}{5} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{21} \cdot 5 \cdot 4=\frac{4}{1701}$
Find R^{-1} by using the
definition(4.3), we get;
$\mathrm{h}_{11}=\frac{(-1)^{1+1}}{\operatorname{det}(R)} r_{11}=\frac{5 / 189}{4 / 9.921}=\frac{45}{4}$
$\mathrm{h}_{12}=\frac{(-1)^{1+2}}{\operatorname{det}(R)} r_{21}=\frac{-81}{4}$
Similarly, $h_{21}=-189 / 4, h_{22}=189 / 4$
$\therefore R^{-1}=\left(\begin{array}{cc}\frac{45}{4} & -\frac{81}{4} \\ -\frac{189}{4} & \frac{189}{4}\end{array}\right)=\frac{1}{4}\left(\begin{array}{cc}45 & -81 \\ -189 & 189\end{array}\right)$

REFERENCES:

[1] Altinisik, E., Tuglu, N. and Haukkanen, P. (April 2007), Determinant and Inverse of Meet and Join Matrices; International Journal of Mathematics and Mathematical Sciences E1-11
[2] Altinisik, E. (2009), On Inverses of GCD matrices Associated with multiplicative functions and a proof of the Hon Loewy Connection; Linear Algebra and its Applications 430:1313-1327
[3] Beslin, S. and Ligh, S. (1989), Another generalization of Smith determinant;Bull. Austral. Math. Soc. 40(3):413-415
[4] Beslin, S. and Ligh, S. (1989), Greatest Common Divisor Matrices; Linear Algebra Appl. 118:69-76.
[5] Beslin, S. (1991), Reciprocal GCD Matrices and LCM Matrices; Fibonacci Quarterly Journal 29:271-274.
[6] Bourque, K. and Ligh, S. (1992),On GCD and LCM Matrices; Linear Algebra and Its Applications 174:65-74.
[7] Bourque, K. and Ligh, S. (1993), Matrices Associated with Arithmetical functions; Linear and Multi- linear Algebra 34:261-267.
[8] Bourque, K. and Ligh, S. (1993),Matrices Associated with classes of Arithmetical functions; Journal of Number Theory 45:367-376.
[9] Carlitz, L. (1960),Some Matrices Related to The Greatest Integer Function; J. Elisha Mitchell Sci. Soc. 76: 5-7.
[10] Haukkanen, P. and Korkee, I. (2005), Notes on The Divisibility of GCD and LCM Matrices; International Journal of Mathematics and Mathematical Sciences 6:925-938.
[11] Korkee, I. and Haukkanen, P. (2003),On Meet and Join Matrices Associated with incidence functions; Linear Algebra and its Applications 372:127153.
[12] Smith, H.J.S. $(1875 / 1876)$,On the Value of Certain Arithmetical Determinant; Proceeding on The London Mathematical Society 7: 208-212

