

Prime Join Matrices and The Reciprocal S-Prime Join Matrices on Posets

KEYWORDS	Lattice, S- prime Join, arithmetical functions and Mobius function	
Dr.N.Elumalai		R.Anuradha
Associate Professor of Mathematics, A.V.C.College (Autonomous),Mannampandal - 609 305, Mayiladuthurai.India		Assistant Professor of Mathematics, A.V.C. College (Autonomous),Mannampandal-609, 305,Mayiladuthurai,India

ABSTRACT We consider S-prime Join matrices as an abstract generalization of S-prime Least common multiple matrices . We also found determinant and inverse of both S- prime and reciprocal S-prime join matrices are discussed and also discussed some of the most important properties of S-prime Join matrices are presented interms of S- prime Join matrices .

INTRODUCTION

Let S = $\{x_1, x_2, ..., x_n\}$ be a set of n positive integers with $x_1 < x_2 < \dots < x_n$ and let $f: P \to \mathbb{C}$ be a complex valued function on Z+ (i.e., arithmetic function).Let (x_i, x_i) denotes the greatest common divisor (gcd) of x_i and x_j and defines the $n \times n$ matrix $(S)_{f}$ by $((S)_f)_{ii} = f(x_i, x_j)$. We refer to $(S)_f$ as the GCD Matrix on S with respect to f. The Set S is said to be gcd-closed if $(x_i, x_j) \in S$ whenever $x_i, x_j \in S$. The set S is said to be factor-closed if it contains every positive divisor of each $x_i \in S$. Clearly, a factor-closed set is always gcd-closed but the converse does not hold.Let $[x_i, x_j]$ denotes the least common multiple (lcm) of x_i and x_j and defines the $n \times n$ matrix $[S]_f$ by $([S]_f)_{ii} = f[x_i, x_j]$. We refer to $[S]_{f}$ as the LCM Matrix on S with respect to f. The set S is said to be lcm-closed if $[x_i, x_j] \in S$ whenever $x_i, x_j \in S$. The set S is said to be multiple-closed if it is lcm-closed and $x_i \mid d \mid x_n \Longrightarrow d \in S$. Here \mid stands for the usual divisibility relation of integers.

In 1876, the concept of Classical Smith determinant with entries on $Z_{\rm +}$

was introduced by H.J.S. Smith [12] is

det[(x_i, x_j)]_{n×n} = $\phi(x_1).\phi(x_2).\phi(x_3)..\phi(x_n)$. H.J.S.Smith also calculated the determinant of the LCM Matrix on a factor – closed set.

In 1876, H.J.S. Smith results extended L.E.Dickson proved that if $\alpha_{ij} = (i, j); i, j = 1, 2, 3, ... r$ then $det((\alpha_{ij}) = \varphi(1)\varphi(2)...\varphi(r)$ where φ is the Euler φ function.

In 1991, S.Beslin [3,4,5] defined the LCM Matrix, which is an $n \times n$ matrix whose i,j – entry is the least common multiple of x_i, x_j. In 1992, K.Bourque and S.Ligh [6,7,8] proved that the LCM Matrix [S] is nonsingular if S is Factor Closed set. They also conjectured that the LCM Matrix [S] is non singular if S is GCD closed.

In 2003, A.A. Oval established various results concerning GCD Matrices and Least Common Multiple (LCM) Matrices. In 1968, Wilf has proved, let $f: P \rightarrow R$ where P a Meet semi-lattice and let M be the matrix with $M_{X,Y} = f(X \land Y)$ then $det(M) = \prod g(Z)$ where

$$g(Z) = \sum_{W \le Z}^{Z \in P} \mu(W, Z) f(W).$$

In 1960, L.Carlitz [9], gave a new form of gcd-matrices and determinant value,

 $[f(i,j)]_n = C (diag(g(1),...,g(n))) C^T$ where $C = (C_{ij})_{nxn}$;
$$\begin{split} C_{ij} &= \begin{cases} 1 & \text{if } j \mid i \\ 0 & \text{if } j \mid i \end{cases} & \text{and} \\ D &= (d_{ij}) & \text{diagonal matrix} \\ d_{ij} &= \begin{cases} g(i) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \\ \therefore & \text{det } [f(i,j)]_{nxn} &= g(1).g(2)...g(n) \\ \textbf{2.The origin of the Join Matrices on} \end{split}$$

Posets

In this section, we define preliminary concepts that are needed to understand the summaries of the articles in this section.

Definition :2.1

Let $(P, \leq) \subseteq (Z^+, |)$ be a partially ordered set. We call P a Join-semi lattice if for any $x, y \in P$ there exists a unique $z \in P$ such that

(i)	$x \leq z$ and
	y≤z and
(ii)	If x≤w
	and y≤w
	for some
	$w \in P$ then
	z≦w

In such a case z is called the Join of x and y and it is denoted by $x \lor y$. A Join semi-lattice, which is also a Meet-Semi lattice, is called a lattice.

Definition :2.2

Let (P, \leq, \wedge) be a Meet-Semi lattice and defined the partial order \leq on P by $x \leq y \Leftrightarrow y \leq x$. Then for any $x,y \in P$ there exists a unique $z = x \lor y = x \land y$ that satisfies (i) and (ii) above for \leq . Thus (P, \leq, \lor) is a Join-semi lattice and it is said to be the dual of (P, \leq, \land) .

Definition: 2.3

Let (P, \leq, \land, \lor) be a lattice in which every principal order ideal is

finite. Let $S = \{x_1, x_2, ..., x_n\}$ be a subset of P such that $x_i \leq x_j \Rightarrow i \leq j$ and let $f: P \rightarrow \mathbb{C}$ be a function. Then the n x n matrices $[S]_f$ are defined by $[S]_f = [f(x_i \lor x_j)]$ is called the Join Matrix on S associated with f. **Definition: 2.4** In this lattices S is a finite set

In this lattices S is a finite set of positive integers, $f: P \rightarrow C$ is an arithmetical function and the S – prime Join Matrix is called LCM Matrices, which is defined as $([S]_f)_{ii} = f(lcm(x_i, x_j)).$

Definition: 2.5

If $(P, \leq) \subseteq (Z^+, |)$ then the Join Matrices respectively LCM Matrices on S.The set S is said to be upperclosed if for every $x, y \in P$ with $x \in S$ and $x \leq y$ we have $y \in S$.The set S is said to be Join – closed if for every $x, y \in S$.We have $x \lor y \in S$.

Definition:2.6

We say that f is a semimultiplicative function on P, if $f(x \wedge y)f(x \vee y) = f(x)f(y)$ for all $x, y \in P$.

Definition :2.7

Let x and y be the two elements of the poset P and μ is the mobius function of the poset(S, \prec) then

$$\mu(x,y) = \begin{cases} 0 & if \quad x \neq y \\ 1 & if \quad x = y \\ -\sum_{z:z \leq y} \mu(x,z) & otherwise \end{cases}$$

Lemma:2.8

Let g be an incidence function of P.Then $g(x, y) = \sum_{x \le z \le y} (\mu * g)(z, y)$ for all $x, y \in P$.

Lemma:2.9

Let $\uparrow S = \{w_1, w_2, w_3, ..., w_r\}$ with $w_i < w_j \implies i < j$ and let A denote the $n \times n$ matrix defined by $a_{ij} = \begin{cases} \sqrt{(\mu * f_u)(w_j, 1)} \\ 0 & otherwise \end{cases}$ if $x_i \le w_j$

Then $[S]_f = AA^T$. **Proof:** For $1 \le i \le n$, $1 \le j \le r$ we

$$(AA^{T})_{ij} = \sum_{k=1}^{r} a_{ik} a_{jk} =$$

$$\sum_{\substack{x_i \le w_k \le 1 \\ x_j \le w_k \le 1}} (\mu * f_u)(w_k, 1) = \sum_{\substack{x_i \lor x_j \le w_k \le 1 \\ x_i \lor x_j \le w_k \le 1}} (\mu * f_u)(w_k, 1)$$

By lemma (2.8), (AA^T)_{ii} =

have

)

By lemma (2.8), (AA^T)_{ij} = $f_u(x_i \lor x_j, 1)$ = $f(x_i \lor x_i)$

This completes the proof. Lemma:2.10(Join Matrix in terms of a

certain Meet Matrix) Let $D = \text{diag}(f(x_1), \dots, f(x_n))$ then $[S]_f = D(S)_{\frac{1}{f}}D$

Proof:

Since
$$\left(D(S)_{\frac{1}{f}}D\right)_{ij} = f(x_i)\left((S)_{\frac{1}{f}}\right)_{ij}f(x_j)$$

=
 $\frac{f(x_i)f(x_j)}{f(x_i \wedge x_j)} = f(x_i \vee x_j)$
we have $[S]_f = D(S)_{\frac{1}{f}}D$

3.The Structure of S – Prime Join Matrices on Posets

Definition :3.1 Let $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_n\}$ be two subsets of P and the nxn S-Prime Join Matrix on X and Y with respect to f is defined as $M = [X,Y]_f$ = [f_{ij}] where $f_{ij} = \frac{(4x_i + 1)(4y_j + 1)}{4(x_i \wedge y_j) + 1}$.

Definition :3.2

Let (P, \prec) be a lattice in which every principal order is finite and let f be a complex valued function on P.Let $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_n\}$ be two subsets of P.Let the elements of X and Y be arranged so that $x_1 < x_2 < ... < x_n$ and $y_1 < y_2 < \dots < y_n$. Let D = $\{d_1, d_2, ..., d_m\}$ be any subsets of P containing the elements $x_i \lor y_i$; i,j = 1,2,...,n.Let the elements of D be arranged so that $d_1 < d_2 < \dots < d_m$. **Definition:3.3** We define $g_{D,\frac{1}{c}}$ on D inductively as $g_{D,\frac{1}{f}}(d_k) = f(d_k) - \sum_{d < d_k} g_{D,\frac{1}{f}}(d_v)$ or $f(d_k) = \sum_{d \le d_k} g_{D, \frac{1}{\epsilon}}(d_v)$ then

 $g_{D,\frac{1}{f}}(d_k) = \sum_{d_v \le d_k} \frac{\mu_D(d_v, d_k)}{f(d_v)}$ where

 μ_D is the mobius function on the poset (D, \prec) .

Definition:3.4

Let $E(X) = (e_{ij}(X))$ and E(Y)= $(e_{ij}(Y))$ denotes the $n \times m$ matrices defined by

We also denote

$$\Lambda_{D,\frac{1}{f}} = \operatorname{diag}\left(g_{D,\frac{1}{f}}(d_1), \dots, g_{D,\frac{1}{f}}(d_m)\right).$$

Theorem:3.5 If D, E(X), E(Y) and $\Lambda_{D,\frac{1}{f}}$ as defined above then $[X,Y]_f$ = E(X) $\Lambda_{D,\frac{1}{f}} E(Y)^T$.

Proof:

The i,jth entry in

$$\begin{pmatrix} E(X)\Lambda_{D,\frac{1}{f}} E(Y)^{T} \\ = \sum_{\substack{x_{i} \leq d_{k} \\ x_{j} \leq d_{k}}} g(d_{k}) = \sum_{\substack{x_{i} < x_{j} \mid \leq d_{k}}} g(d_{k}) = [X,Y]_{f} \\ \text{Hence} [X,Y]_{f} = E(X) \\ \Lambda_{D,\frac{1}{f}} E(Y)^{T}. \end{cases}$$

Theorem:3.6

Х

(i) If $n \ge m$, then det[X,Y]_f = det[M] = 0 and (ii) If $n \le m$, then

$$\det(M) = \prod_{i=1}^{n} f(x_i) f(y_i)$$

$$\times \sum_{1 \le k_1 < k_2 < \dots < k_n \le m} \det E(X)_{(k1, k2, \dots, kn)} \det E(Y)_{(k1, k2, \dots, kn)}$$

$$g_{D,\frac{1}{f}}(d_{k_1})g_{D,\frac{1}{f}}(d_{k_2})\dots g_{D,\frac{1}{f}}(d_{k_n}).$$

Proof:

$$\begin{split} & [X,Y]_f = & D_{x,f} (X,Y)_{1/f} \quad D_{y,f} = & D_{x,f} E(X) \\ & \wedge_{D,f} E(Y)^T D_{y,f} \end{split}$$

Also
$$M = D_{x,f} \widetilde{M} D_{y,f} \Rightarrow$$

det $M = det(D_{x,f}) det(\widetilde{M}) det(D_{y,f})$
 $= det(\widetilde{M})$

$$\prod_{i=1}^{n} [4(x_i+1)] [4(y_j+1)]$$

Theorem:3.7 In the case of semimultiplicative function $M = [X,Y]_f$ $= D_X \tilde{M} D_Y$, where $D_X = \text{diag}(4x_1+1, 4x_2+1, ..., 4x_n+1)$, $D_Y = \text{diag}$ $(4y_1+1, 4y_2+1, ..., 4y_n+1)$ and \tilde{M} has the entry $\tilde{f}_{ij} = \frac{1}{4(x_i \wedge y_j) + 1}$.

Proof:

Since $[X,Y]_f = M = [f[x_i \lor y_j]]$

$$= \left[f(x_i) \frac{1}{f(x_i \wedge y_j)} f(y_j) \right] = D_X \widetilde{M} D_Y$$

Theorem:3.8

If D is Meet closed and f and g are arithmetical functions then

(i)
$$f(d_k) = \sum_{z \le d_k} g_{D,f}(d_k)$$

(ii) implies and implied by

$$g_{D,f}(d_k) = \sum_{\substack{z \le d_k \ w \le z \\ z \le d_l \\ t < k}} f(w) \mu_P(w, z)$$

Proof:

Assume (i) and prove (ii) Consider $\sum_{z \le d_k} \mu(z) = \sum_{z'z=d_k} f(z')\mu(z)$

$$= \sum_{z'z=d_k} \mu(z) \sum_{e \le z'} g(e) = \sum_{eh'z=d_k} \mu(z) g(e)$$
$$= \sum_{eh'z=d_k} g(e) \sum_{z \le h'} \mu(z)$$

Since the sum $\sum_{z \le h'} \mu(z)$ has the value 0 if h'>1 and the value 1 if h' = 1. Hence $\sum \mu(z) f\left(\frac{d_k}{z}\right) = g(d_k)$

To prove the converse: we consider

$$\sum_{z \le d_k} g(z) = \sum_{z \le d_k} \sum_{z' \le d_k} \mu(z') f\left(\frac{z}{z'}\right)$$

 $= \sum_{eh'=d_k} \mu(z') f(e) = \sum_{eh'=d_k} f(e) \sum_{z' \le h'} \mu(z')$ As before, the sum of $\sum_{z' \le h'} \mu(z')$ has the value 0 if h'>1 and the value 1 if h'=1.

Hence
$$\sum_{z \le d_k} g(d_k) = f(d_k)$$
.

Theorem:3.9

If D is Join-closed set then

$$g_{D,\frac{1}{f}}(d_k) = \sum_{z \le d_k} \sum_{k=1}^{k} \frac{\mu(w,z)}{f(w)}$$
 where μ is

the mobius function of P. **Proof:**

It is similar to the proof of the theorem(3.8).

Theorem:3.10 $(X,Y)_f = D_X [X,Y]_{1/f}$ D_Y.

Proof:

Now we consider the example $S = \{1,2\} \text{ and } T = \{2,3\}$ Dx = diag(5,9) and Dy = diag(9,13) $(S)_{f} = (X,Y)_{f} = (4(1 \land 2) + 1 \land 4(1 \land 3) + 1) \land 4(2 \land 2) + 1 \land 4(2 \land 3) + 1) \land 4(2 \land 2) + 1 \land 4(2 \land 3) + 1) \land 4(1 \land 3) + 1 \land 4(2 \land$

$$= \begin{pmatrix} \frac{1}{9} & \frac{1}{13} \\ \frac{1}{9} & \frac{5}{117} \end{pmatrix}$$

Dx [X,Y]_{1/f} Dy =
$$\begin{pmatrix} 5 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} \frac{1}{9} & \frac{1}{13} \\ \frac{1}{9} & \frac{5}{117} \end{pmatrix} \begin{pmatrix} 9 & 0 \\ 0 & 13 \end{pmatrix}$$
$$= \begin{pmatrix} 5 & 5 \\ 9 & 5 \end{pmatrix}$$

Hence Proved.

Theorem:3.11

Let $S=\{x_1, x_2, x_3,..., x_n\}$ be S-prime Join - closed . Without loss of generality we may

Volume : 6 | Issue : 5 | May 2016 | ISSN - 2249-555X | IF : 3.919 | IC Value : 74.50

assume that ix_i < x_j, then

$$g_{s,f}(x_j) = \sum_{\substack{z \le x_j \\ z \le x_i \\ t < j}} \sum_{\substack{w \le z \\ x < x_i \\ t < j}} f(w) \mu(w, z)$$
 where μ is

the mobius function of P.

Proof:

By using the definition (3.3)

$$f(x_j) = \sum_{x_{j \le x_j}} g_{s,f}(x_i) = \sum_{\substack{x_i \le x_j \ge x_j \\ z \le x_i \\ t < j}} \sum_{w \le z} f(w) \mu(w, z)$$

We write,

$$f(x) = \sum_{z \le x} g(z) \text{ or } g(x) = \sum_{z \le x} f(z)\mu(z,x)$$

for all $x \in P$

It has to be prove that,

$$\sum \alpha(z) = \sum \sum \alpha(z)$$

$$\sum_{z_{\leq}x_{j}} g(z) = \sum_{\substack{x_{i} \leq x_{j} \\ z \leq x_{i} \\ t < i}} \sum_{\substack{z \leq x_{i} \\ z \leq x_{i} \\ t < i}} g(z)$$

Now consider the sum of R.H.S of equation (1)

Let $x_i \le x_j$ and $z \le x_i \Longrightarrow z \le x_j$.

Thus every z occurring on the right side of equation (1) ccurs on the left side of equation (1). Conversely, Consider the sum on the left side of equation (1).

Suppose that $z \le x_j$ we have $z \le x_i$ by minimality

of i, we have r = i or $x_r = x_i$, therefore $x_r \le x_j$ means $x_r \le x_i$ thus every z occurring on the

side

of equation (1).

This completes the proof.

Theorem:3.12

If S is lower closed subset of P

then
$$g_{s,f}(x_j) = \sum_{x_i \le x_j} f(x_i) \mu(x_i, x_j)$$

Proof:

Already we know that the result,

$$g_{s,f}(x_j) = \sum_{\substack{z \le x_j \\ w \le z \\ t < j}} \sum_{w \le z} f(w) \mu(w, z)$$

It reduces we get the proof of theorem. Then S is lower closed. Example :3.13 Let $S = \{x_1, x_2, \dots, x_n\}$ be a chain with $x_1 < x_2 < \dots < x_n$. Then $g_{s,f}(x_1) = f(x_1)$, $g_{s,f}(x_2) = f(x_2) - f(x_1)$ In general $g_{s,f}(x_j) = f(x_j) - f(x_{j-1})$ where, $j=2, 3, 4, \dots, n$. **Example: 3.14** Let $S = \{x_1, x_2, \dots, x_n\}$ be an incomparable set and let $S = \{x_0, x_1, x_2, \dots, x_n\}$. Then, $g_{s,f}(x_0) = f(x_0)$, $g_{s,f}(x_1) = f(x_1) - f(x_0)$

and $g_{s,f}(x_2) = f(x_2) - f(x_0)$.

In general
$$g_{s,f}(x_j) = f(x_j) - f(x_0)$$
 for
j=1, 2, 3, ...,n
Theorem :3.15
Let S= {x₁, x₂... x_n } and T= {y₁,
y₂...y_m} be any two subsets of P.
Define the incidence matrix whose i, j-
entry is 1 if y_j \leq x_i and zero otherwise
namely that is, E(S, T)

 $= (e_{ij})_{n \times m} \text{ where}$ $(e_{ij}) = \begin{cases} 1 & \text{, if } y_j \le x_i \\ 0 & \text{, if } otherwise \end{cases}$

Theorem: 3.16

If S is a S-Prime join-

closed. Then det
$$[S]_f = \prod_{i=1}^n g_{s,f}(x_i)$$

Proof:

The theorem is proved and verified with a suitable example.

Consider the set
$$S = \{1,2,3\}$$

Then $[S]_f = \begin{bmatrix} f(5) & f(9) & f(13) \\ f(9) & f(9) & f25 \\ f(13) & f(25) & f(13) \end{bmatrix}$
Let $det[S]_f =$
 $f(5)[f(9)f(13) - f(25)^2] - f(9)[f(9)f(13) - f(13)f(25)] + f(13)[f(9)f(25) - f(13)f(9)]$

=

$$f(5)f(9)f(13) - f(5)f(25)^{2}$$

$$[f(9)^{2}f(13)] + [f(9)f(13)f(25)]$$

$$+ [f(9)f(13)f(25) - f(13)^{2}f(9)]...(1)$$
By using example,

$$g(9) = f(9) - f(5);$$

$$g(13) = f(13) - f(9);$$

$$g(25) = f(25) - f(13);$$

$$\prod_{i=5,9,13}^{n} (g(x_{i})) = g(x_{1})g(x_{2})g(x_{3})$$

= [f(9) - f(5)][f(13) - f(9)][f(25) - f(13)]

$$= f(5)f(9)f(13) - f(5)f(25)^{2} - [f(9)^{2}f(13)] + [f(9)f(13)f(25)] + [f(9)f(13)f(25) - f(13)^{2}f(9)]...(2) From equation (1) and (2), we get;$$

$$\det[S]_f = \prod_{i=1}^n g_{s,f}(x_i).$$

Hence the theorem is proved. Corollary : 3.17 If $S = \{x_1, x_2, x_3, \dots, x_n\}$ is a chain with $x_1 < x_2 < x_3 ... < x_n$. Then $\det[\mathbf{S}]_{\mathbf{f}} = f(x_1) \prod_{i=1}^{n} [f(x_i) - f(x_{i-1})]$ **Proof:** By using theorem, If S is a S-prime Join -closed then det[S] $_{f} = \prod_{i=1}^{n} (g_{s,f}(x_i))$ and the result, $= f(5) f(9) f(13) + f(5)^{3-1}$ $f(5)^2 f(13)$ $f(5)^2 f(9)$ We have, det $[S]_f = f(5) [f(9)-f(5)][f(13)-f(5)]$ det [S] f = g(1) g(2) g(3)Then, det $[S]_{f} = f(x_{1}) \prod_{i=1}^{n} [f(x_{i}) - f(x_{i-1})]$

Hence Proved.

Theorem:3.18 Let $T = \{ y_1, y_2, y_3, ..., y_m \}$ be a S-prime Join-closed subset of P containing S={ $x_1, x_2, x_3, \dots, x_n$ }. Then, $det [S]_f =$ $\sum \det[E(k_1, k_2, ..., k_n)^2 g_{T,f}(y)_{k1}, g_{T,f}(y)_{k2}, ..., g_{T,f}(y)_{kn}] \text{ then }$ $1 \le k_1 \le \dots \le k_n \le m$ Where, E=E(S,T)**Proof:** $[S]_f = E \Lambda E^T$, also det(E) = det(E^T), by using known theorem. Now we consider the example, $S = \{2,3\}$ and $T = \{1,2,3\}$. Then, $[S]_{f} = [f(4(x_{i} \lor x_{j}) + 1)] = \begin{bmatrix} f(4(2 \lor 2) + 1) & f(4(2 \lor 3) + 1) \\ f(4(3 \lor 2) + 1) & f(4(3 \lor 3) + 1) \end{bmatrix}$ $[S]_{f} = \begin{bmatrix} f(9) & f(25) \\ f(25) & f(13) \end{bmatrix}$ The incident matrix of S&T is, $\mathbf{E} = \mathbf{E}(\mathbf{S}, \mathbf{T}) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ $E \Lambda E^{T} =$ $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} f(5) & 0 & 0 \\ 0 & f(9) - f(5) & 0 \\ 0 & 0 & f(13) - f(5) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} f(9) & f(5) \\ f(5) & f(13) \end{bmatrix}$ $\therefore [S]_f = E \wedge E^T$ Also, det (E) $\Rightarrow E = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = 0$ $\det (\mathbf{E}^{\mathrm{T}}) \Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = 0$ $det(E) = det(E^{T})$

Volume : 6 | Issue : 5 | May 2016 | ISSN - 2249-555X | IF : 3.919 | IC Value : 74.50

$$\det [S]_{f} = \sum_{1 \le k_1 \le \ldots \le k_n \le m} \det [E(k_1, k_2, ..., k_n)^2 g_{T,f}(y)_{k_1}, g_{T,f}(y)_{k_2}, ..., g_{T,f}(y)_{k_n}]$$

Hence proved.

Theorem:3.19

If X and Y are Meet Closed and Lower Closed sets

det(M) =
$$\prod_{i=1}^{n} f(x_i) f(y_i) g(d_i)$$

where $g(d_i) = \sum_{d_j \leq d_i} \frac{\mu(d_j, d_i)}{f(d_j)}$.
Proof:
To get the proof, by using the theorem
(3.6) and (3.7).
Theorem:3.20
Let $X_i = X \setminus \{x_i\}$ and $Y_i =$
 $Y \setminus \{y_i\}$ for
 $i = 1, 2, 3, ..., n. \text{ If } M \text{ is invertible}$
then
the inverse of M is the $n \times n$
matrix
 $B = (b_{ij})$ where $b_{ij} =$
 $\frac{\alpha_{ji}}{\det(M)}$,
where α_{ji} is the co-factor of
 j_i .
entry of M.
Proof:
It is a general method used
to prove.
Theorem:3.21
Let $X_i = X \setminus \{x_i\}$ and $Y_i =$
 $Y \setminus \{y_i\}$ for
 $i = 1, 2, 3, ..., n. \text{ If } M \text{ is invertible}$
then the
inverse of M is the $n \times n$
matrix $B =$
 (b_{ij}) , where
 $b_{ij} = \frac{(-1)^{i+j}}{f(x_j)f(y_i) \det(M)} \prod_{y=1}^{n} f(x_y)f(y_y)$

$$\times \sum_{1 \le k_1 < k_2 < \ldots < k_n \le m} \det E(\mathbf{X}_j)_{(k1, k2, \ldots, kn-1)} \det E(\mathbf{Y}_i)_{(k1, k2, \ldots, kn-1)}$$

×
$$g_{D,\frac{1}{f}}(\mathbf{d}_{k_{1}})g_{D,\frac{1}{f}}(\mathbf{d}_{k_{2}})...g_{D,\frac{1}{f}}(\mathbf{d}_{k_{n-1}})$$

Proof:

Since $b_{ij} = \frac{\alpha_{ji}}{\det(M)}$, where α_{ji} is the co-factor of ji-entry of M. It is easy to see that

$$\alpha_{ji} = (-1)^{i+j} \det [X_j, Y_i]_f.$$

By theorem (3.6) we see that $det[X_j, Y_i]_f =$

 $\sum_{1 \leq_{k \leq k \leq - < kn-1} \leq -m} \det E(X_j)_{(k1,k2,\dots,kn-1)} \det E(Y_i)_{(k1,k2,\dots,kn-1)}$

×
$$g_{D,\frac{1}{f}}(dk_1)g_{D,\frac{1}{f}}(dk_2)...g_{D,\frac{1}{f}}(dk_{n-1})$$

combining the above equations we obtain the theorem.

Example:

Construct the 2 x 2 S-Prime Join Matrix on the LCM closed sets X={1,2} and

 $Y = \{2,5\}$. Then by using the definition (2.7),

M =[f_{ij}] where
$$f_{ij} = \frac{(4x_i + 1)(4y_j + 1)}{4(x_i \wedge y_j) + 1}$$

By using the definition of f and $\mu(x, y)$ we obtain; $f_{11} = 9$, $f_{12} = 21$, $f_{21} = 9$, $f_{22} = 189/5$ $\therefore M = \begin{pmatrix} 9 & 21 \\ 9 & \frac{189}{5} \end{pmatrix}$ Since det(M) =

$$\prod_{i=1}^{n} f(x_i) f(y_i) g(d_i) \text{ where } g(d_i) = \sum_{\substack{d \ j \le d \ i_i}} \frac{\mu(d_j, d_i)}{f(d_j)}$$

here D = {1,2} each $d_i \in x_i \land y_i$ for i,j = 1.2. $f(x_1) = f(1) = 5$, $f(x_2) = f(2) = 9$. $f(y_1) = f(2) = 9$, $f(y_2) = f(5) = 21$ $g(d_1) = g(1) = \sum_{d_i < 1} \frac{\mu(d_j, 1)}{f(d_j)} = \frac{\mu(1, 1)}{f(1)}$ $=\frac{1}{5}$ $g(d_2) = g(2) =$ $\sum_{j < \infty} \frac{\mu(d_j, 2)}{f(d_j)} = \frac{\mu(1, 2)}{f(1)} + \frac{\mu(2, 2)}{f(2)} =$ $\frac{-4}{45}$ Thus det(M) = f(1)f(2)f(2)f(5)g(1)g(2) $=-\frac{756}{5}$ Find M^{-1} , by using the theorem, B =(b_{ij}) where $b_{ij} = \frac{(-1)^{i+j}}{\det(M)} M_{ji}$ $b_{11} = \frac{(-1)^{1+1}}{d_{at}(M)} M_{11} = -\frac{1}{4}$ $b_{12} = \frac{(-1)^{1+2}}{\det(M)} M_{21} = \frac{5}{36}$ similarly, $b_{21} = 5/84$, $b_{22} = -5/84$ $M^{-1} = \begin{pmatrix} -1 & \frac{5}{36} \\ \frac{5}{94} & \frac{-5}{94} \end{pmatrix}$ 4.Inverse of the Reciprocal S-Prime Join Matrices **Definition :4.1**

Let $X = \{x_1, x_2, ..., x_n\}$ and

Y = {y₁,y₂,...,y_n} be two subsets of P and the nxn Reciprocal S - Prime Join Matrix on X and Y with respect to R is defined as R = [X,Y]_r = [r_{ij}] where $r_{ij} = \frac{4(x_i \land y_j) + 1}{(4x_i + 1)(4y_j + 1)}$.

Definition:4.2

Let X and Y be two Lower Closed subsets of P then

$$\det(R) = \prod_{i=1}^{n} r(\boldsymbol{\chi}_{i}) r(\boldsymbol{y}_{i}) h(\boldsymbol{d}_{i})$$

where $h(\boldsymbol{d}_{i}) = \sum_{\boldsymbol{d}_{j} \leq \boldsymbol{d}_{i}} \frac{\mu(\boldsymbol{d}_{i}, \boldsymbol{d}_{j})}{r(\boldsymbol{d}_{j})}.$

Definition:4.3

If R is invertible then the inverse of R is

nXn matrix $H = (h_{ij})$ where $h_{ij} = \frac{r_{ji}}{\det(R)}$ and

 r_{ji} is the cofactor of the ji – entry of

R.Therefore, $h_{ij} = \frac{(-1)^{i+j}}{\det(R)} r_{ji}$

Example:

Construct the 2X2 reciprocal S-Prime join matrix on the LCM closed sets X={1,2} and Y = {2,5}. By using the definition of (2.8), $r_{ij} = \frac{4(x_i \land y_j) + 1}{(4x_i + 1)(4y_j + 1)}$ $r_{11} = 1/9$, $r_{12} = 1/21$, $r_{21} = 1/9$, $r_{22} = 5/189$

$$\therefore R = \begin{pmatrix} \frac{1}{9} & \frac{1}{21} \\ \frac{1}{9} & \frac{5}{189} \end{pmatrix}$$

Find det(R), by using the definition (4.2),

$$det(R) = \prod_{i=1}^{n} r(x_i) r(y_i) h(d_i)$$

where $h(d_i) = \sum_{\substack{d_j \le d_i}} \frac{\mu(d_i, d_j)}{r(d_j)}$

and
$$D = \{1,2\}$$

 $r(x_1) = r(1) = 1/5, r(x_2) = r(2) = 1/9,$
 $r(y_1) = r(2) = 1/9, r(y_2) = r(5) = 1/21.$
 $h(1) = \sum_{d_j \le 1} \frac{\mu(d_j, 1)}{r(d_j)} = \frac{\mu(1, 1)}{r(1)} = 5$

$$h(2) = \sum_{d_j \le 2} \frac{\mu(d_j, 2)}{r(d_j)} = \frac{\mu(1, 2)}{r(1)} + \frac{\mu(2, 2)}{r(2)} = -5 + 9 = 4$$

$$\therefore \det(R) = \frac{1}{5} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{21} \cdot 5.4 = \frac{4}{1701}$$
Find R⁻¹ by using the definition(4.3), we get;

$$h_{11} = \frac{(-1)^{1+1}}{\det(R)} r_{11} = \frac{\frac{5}{189}}{\frac{4}{9.9.21}} = \frac{45}{4}$$

$$h_{12} = \frac{(-1)^{1+2}}{\det(R)} r_{21} = -\frac{81}{4}$$
Similarly, $h_{21} = -189/4$, $h_{22} = 189/4$

$$\therefore R^{-1} = \left(\frac{\frac{45}{4}}{-\frac{189}{4}} + \frac{81}{4}\right) = \frac{1}{4} \begin{pmatrix} 45 & -\frac{1}{489} & \frac{189}{4} \\ -189 & 1 \end{pmatrix}$$

REFERENCES:

- Altinisik, E., Tuglu, N. and Haukkanen, P. (April 2007), Determinant and Inverse of Meet and Join Matrices; International Journal of Mathematics and Mathematical Sciences E1-11
- [2] Altinisik, E. (2009), On Inverses of GCD matrices Associated with multiplicative functions and a proof of the Hon Loewy Connection; Linear Algebra and its Applications 430:1313-1327.
- [3] Beslin, S. and Ligh, S. (1989), Another generalization of Smith determinant;Bull. Austral. Math. Soc. 40(3):413-415.
- Beslin, S. and Ligh, S. (1989), Greatest Common Divisor Matrices; Linear Algebra Appl. 118:69-76.
- [5] Beslin, S. (1991), Reciprocal GCD Matrices and LCM Matrices; Fibonacci Quarterly Journal 29:271-274.
- [6] Bourque, K. and Ligh, S. (1992),On GCD and LCM Matrices; Linear Algebra and Its Applications 174:65-74.
- [7] Bourque, K. and Ligh, S. (1993), Matrices Associated with Arithmetical functions; Linear and Multi- linear Algebra 34:261-267.
- [8] Bourque, K. and Ligh, S. (1993),Matrices Associated with classes of Arithmetical functions; Journal of Number Theory 45:367- 376.
- Carlitz, L. (1960), Some Matrices Related to The Greatest Integer Function; J. Elisha Mitchell Sci. Soc. 76: 5-7.
- [10] Haukkanen, P. and Korkee, I. (2005), Notes on The Divisibility of GCD and LCM Matrices; International Journal of Mathematics and Mathematical Sciences 6:925-938.
- [11] Korkee, I. and Haukkanen, P. (2003),On Meet and Join Matrices Associated with incidence functions; Linear Algebra and its Applications 372:127-153.
- [12] Smith, H.J.S. (1875/1876),On the Value of Certain Arithmetical Determinant; Proceeding on The London Mathematical Society 7: 208-212