

An Observational Study of Pregabalin 150 MG 300 MG for Post- Operative Analgesia in Lower Limb Orthopaedic Surgeries Under Spinal Anaesthesia

# **KEYWORDS**

# DR. ISHAAN BATRA

(PRESENTING AUTHOR), UNDER GUIDANCE OF S.B.K.S M.I & R.C SUMANDEEP VIDYAPEETH UNIVERSITY, WAGHODIA , PIPARIYA

# DR . MALINI MEHTA

PROFFESSOR DEPARTMENT OF ANAESTHESIA, S.B.K.S M.I & R.C SUMANDEEP VIDYAPEETH UNIVERSITY, WAGHODIA , PIPARIYA

**ABSTRACT** INTRODUCTION : Pregabalin is a synthetic molecule , a structural derivative of the inhibitory neurotransmitter gamma- amino butyric acid (GABA) . It is an -2- ligand having analgesic , anti- convulsant, anxiolytic properties, binding to -2- subunits of the calcium channels resulting in a decrease in neurotransmitters including glutamate, serotonin . Pregabalin is associated with few dose dependent side effects , sedation being the most common one.

**METHODS:** Sixty patients undergoing lower limb orthopaedic surgeries were randomized to receive tablet pregabalin 150 mg and pregabalin 300 mg ( 30 each) one hour before surgery. Intra-operative haemodynamics, post-operative analgesia and adverse effects were compared.

**RESULTS:** Both groups were comparable in terms of Intra-operative haemodynamics, post- operative analgesia and adverse effects .

**CONCLUSION:** Group receiving pregabalin 300 mg had better post- operative analgesia , required fewer doses of rescue analgesia with mild sedation which is clinically non- significant.

# INTRODUCTION :

Postoperative pain is a major problem after orthopedic surgeries. Appropriate management of postoperative pain is known to reduce the length of the hospital stay and to make patients more comfortable by reducing pain- associated complications <sup>(1)</sup> Pregabalin acts as a synthetic analog of the neurotransmitter gamma-aminobutyric acid (GABA) with analgesic, anticonvulsant, and anxiolytic effects . Oral bioavailability is 90%. After oral administration , maximum plasma concentration can be achieved within one **hour** <sup>(2,3)</sup>

### AIMS AND OBJECTIVES:

The aim is to evaluate post operative analgesic benefit in patients receiving pregabalin 150 mg and pregabalin 300 mg.

# To compare,

- (a) The efficacy
- (b) Duration of analgesia.
- (c) intra- operative haemodynamics.
- (d) Intra-operative and post-operative complications .

(e) Post- operative diclofenac consumption within 24 hours. (f) side effects.

# METHODOLOGY:

60 patients undergoing lower limb orthopaedic surgeries were randomized to receive tablet pregabalin 300 mg (Group 1) and pregabalin 150 mg (group 2) ( 30 in each) one hour before surgery. Routine monitoring in the form of NIBP, Pulse Oximetry and ECG was attached. Spinal anesthesia was instituted with 3.5ml of 0.5% H bupivacaine in L3- L4 inter-vertebral space in sitting position . Intraoperative haemodynamics, post- operative analgesia and adverse effects were compared. Patients monitored intraoperatively for pulse rate, blood pressure,  $SpO_2$ , ECG and complications. Pain assessed by Visual analogue scale at 1, 4, 8, 12, 18, 24 hrs post-operatively.

# FIGURE 1: VISUAL ANALOGUE SCALE



# INCLUSION CRITERIA:

(a) Number of patients : 60

(b)ASA : I or II

(c) Age group : 20 - 50 YEARS

# **EXCLUSION CRITERIA:**

(a) Patient refusal.

(b)Patients on anti - epileptics, analgesics, anti- platelets, or on anticoagulants.

(c) Known allergy to the trial drugs.

(d)ASA III or more.

(e)Contraindication to spinal anesthesia

Any patient with the visual analogue scale more than 3 were given Inj diclofenec 1.5 mg/kg im. Number of doses of diclofenac injection given at each interval were calculated and the results tabulated .

P<0.05 was considered statistically significant.

# **OBSERVATION AND RESULTS :**

Statistically no significant differences between the groups in terms of their demographic data and ASA was noted ( p>0.05).













# FIGURE 3 : DISTRIBUTION OF MEAN PULSE RATE OVER VARIOUS TIME INTERVALS FOR BOTH GROUPS

Haemodynamically, There was no statistically significant difference between the groups in terms of pulse rate at all-time intervals for both the groups(P>0.05)



FIGURE 4: DISTRIBUTION OF MEAN SBP OVER VARI-OUS TIME INTERVALS FOR BOTH GROUPS



### FIGURE 5: DISTRIBUTION OF MEAN DBP OVER VARI-OUS TIME INTERVALS FOR BOTH GROUPS

There was no statistically significant difference between the two groups regarding SBP and DBP (P>0.05)



FIGURE 6: DISTRIBUTION OF MEAN POST OPERATIVE PAIN SCORE OVER VARIOUS TIME INTERVALS FOR

# BOTH GROUPS.

There was a highly significant difference in the mean post operative pain score in the first hour with a mean pain score of group 1 being 3.40 and that of group 2 being 5.67 with a p value of <0.001, the mean pain scores at 4 hours was 2.97 for group 1 and 3.37 for group 2 which is statistically significant with a p-value<0.05. mean pain score at 8 hours post-operatively was 2.47 for group 1 and 2.77 for group 2 which is statistically significant with a p-value<0.05, mean pain difference exists between the 2 groups in the first 8 hours post-operatively.

# TABLE 1 : MEAN PAIN SCORES AT VARIOUS TIME IN-TERVALS FOR BOTH GROUPS

| TIME  | GROUP 1 |      | GROUP 2 |       | P-VALUE |
|-------|---------|------|---------|-------|---------|
|       | MEAN    | S.D  | MEAN    | S.D   |         |
| 1 HR  | 3.40    | .621 | 5.67    | 1.295 | < 0.001 |
| 4 HR  | 2.97    | .320 | 3.37    | 1.033 | 0.047   |
| 8 HR  | 2.47    | .507 | 2.77    | .626  | 0.046   |
| 12 HR | 2.33    | .479 | 2.47    | .681  | 0.384   |
| 18 HR | 1.80    | .551 | 1.73    | .740  | 0.694   |
| 24 HR | 1.13    | .346 | 1.33    | .479  | 0.069   |



# FIGURE 7: NUMBER OVER DICLOFENAC INJECTIONS GIVEN OVER VARIOUS TIME INTERVALS FOR BOTH GROUPS



FIGURE 8: SIDE EFFECTS IN BOTH GROUPS

# DISCUSSION:

Optimal pain treatment with minimal side-effects is essential to allow early mobility, optimal functional recovery, and to reduce postoperative morbidity and mortality. Opioid-related side-effects such as nausea and sedation are undesirable <sup>(4)</sup>

Pregabalin acts on the  $_2$ - subunit of presynaptic, voltage dependent calcium channels that are distributed throughout the peripheral and central nervous system.

Pregabalin appears to produce an inhibitory modulation of neuronal excitability , particularly in areas of the central nervous system dense in synaptic connections such as the neocortex, amygdala, and hippocampus<sup>(5,6)</sup>

### CONCLUSION:

Group receiving pregabalin 300 mg had better post- operative analgesia , required fewer doses of rescue analgesia with mild sedation which is clinically non- significant .

### **REFERENCES:**

 P. F. White, "The changing role of non-opioid analgesic techniques in the management of postoperative pain," Anesthesia and Analgesia,2005,

#### Volume : 6 | Issue : 11 | November 2016 | ISSN - 2249-555X | IF : 3.919 | IC Value : 74.50

101,(5), S5–S22.

- N. M. Gajraj, "Pregabalin: its pharmacology and use in pain management," Anesthesia and Analgesia,2007, 105, ( 6), 1805–1815.
- B. A. Chizh, M. Gohring, A. Troster, G. K. Quartey, M. Schmelz, and W. Koppert, "Effects of oral pregabalin and aprepitant on pain and central sensitization in the electrical hyperalgesia model in human volunteers," British Journal of Anaesthesia, 2007, 98, (2), 246–254.
- Agarwal A, Gautam s,. Evaluation of a single preoperative dose of pregabalin for attenuation of postoperative pain after laparoscopic cholecystectomy. Br J Anaesth 2008;101:700-4.
- Buvanendran, Asokumar MD\*; Kroin, Jeffrey S. PhD\*; Della Valle, Craig J. MD†; Kari, Maruti MD\*; Moric, Mario MS\*; Tuman, Kenneth J. MD\* Periopoerative oral pregabalin reduces chronic pain after total knee arthroplasty.anaesthesia and analgesia 2010; 110;1: 199-207.
- Monica Kohli, T Murali, Rajni gupta, Parveez Khan and Jaishri Bogra. Optimization of subarachnoid block by oral pregabalin for hysterectomy. J Anaesthesiol Clin Pharmacol. 2011 Jan-Mar; 27(1): 101-105.