

Excellence With Respect To The Parameter β_e of A Graph

KEYWORDS	: Equivalence set, Equivalence graph, $eta_{ m e}$ -excellent, rigid $\ensuremath{\beta_{ m e}}$ -excellent.	
N. Saradha		V.Swaminathan
Assistant Professor, Department of Mathematics, SCSVMV University, Enathur, Kanchipuram, Tamilnadu, India		Coordinator, Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, Tamilnadu, India.

ABSTRACT

Let G = (V, E) be a simple finite undirected graph. A subset S of V is called an equivalence set if every component of the induced sub graph $\langle S \rangle$ is complete. An equivalence number $\beta_e(G)$ is the maximum cardinality of an equivalence set of G [3]. A vertex u in V(G) is said to be β_e good if u belongs to a β_e set of G. G is said to be β_e -excellent if every vertex of G is β_e -good. G is said to be rigid β_e -excellent if every vertex of G is contained in a unique β_e -set of G. An equivalence graph is a vertex disjoint union of complete graphs. The concept of equivalence set, sub chromatic number, generalized coloring and equivalence covering number were studied in [1],[2],[4],[5],[6],[8],[10]. In this paper the concept of β_e -excellence and rigid β_e -excellence are studied.

1. Introduction.

Gred.H. Fricke et al [7] called a vertex u of a graph G = (V,E) to be μ -good if u is contained in a $\mu(G)$ -set of G(where μ is a parameter). G is said to be μ -excellent if every vertex in V is μ -good. A number of results has been proved by taking μ as the domination parameter. Sridharan and Yamuna [12], [13] introduced several types of excellence, one of them being rigid excellence. A graph G is said to be rigid μ -excellent if every vertex of G belongs to a unique μ set of G. Rigid μ -excellence was studied in [14]. A similar study was made with respect to the parameter β_0 in [11]. A sub set S of V(G) is said to be an equivalence set if every component of $\langle S \rangle$ is complete. A graph G is said to be an equivalence graph if V(G) is an equivalence set. The maximum cardinality of an equivalence set is denoted by $\beta_e(G)$ [3]. In this paper, excellence with respect to $\beta_e(G)$ is introduced, rigid β_e -excellence is defined and several results are derived.

2. β_e -Excellence of a Graph .

Definition 2.1. A vertex u in V(G) is said to be β_e -good if u is contained in a β_e -set of G.

Definition 2.2. A graph G is said to be a β_e -excellent graph if every vertex of G is contained in a β_e -set of G (i.e., every vertex of G is β_e -good).

Example 2.3. K_n , \overline{K}_n C_n are some β_e -excellent graph.

Example 2.4. Consider the graph G in Figure 2.1.

A graph which is not β_{ρ} -excellent

S={1,2,5,6,3,8,4,9} is a maximum equivalence set. Therefore $\beta_e(G) = 8$.

 $\{2,5,6,7,8,9,3\}$ is a maximal equivalence set containing 7 and it is not a β_e -set. Therefore 7 is not β_e -good..

Therefore G is not a β_e -excellent graph.

Example 2.5. $K_{1,n}$, $n \ge 2$ is not β_e -excellent.

β_e values for some standard graphs

$$\beta_e(P_n) = 2k \text{ if } n = 3k,$$

1. $= 2k + 1 \text{ if } n = 3k + 1$
 $= 2k + 2 \text{ if } n = 3k + 2$

$$\beta_e(C_n) = 2k \text{ if } n = 3k, k \ge 2$$

2. = 2k if n = 3k + 1, k ≥ 1
= 2k + 1 if n = 3k + 2, k ≥ 1
= 3 if n = 3

3.
$$\beta_e(K_{1,n}) = n$$

4.
$$\beta_e(K_{m,n}) = \max(m,n)$$

$$\beta_e(W_n) = \beta_e(C_{n-1}), n \ge 6$$

5. = 3 if n = 5
= 4 if n = 4

- 6. $D_{r,s}$ is β_e -excellent iff r = s.
- 7. $\beta_e(D_{r,s}) = r + s$ and $D_{r,s}$ is not β_e -excellent
- 8. $\beta_e(P) = 5$ where P is the Petersen graph. Petersen graph P is β_e -excellent.

Remark 2.6.

- 1. $K_{1,n}$ is not an equivalence graph. But there exists a unique β_e -set.
- 2. $K_{m,n}$ is not an equivalence graph. But there exists a unique β_e -set.

β_e - Excellence for standard graphs

- **1.** K_n is β_e excellent.
- 2. \overline{K}_n is β_e excellent.
- **3.** C_n is β_e excellent.
- 4. $K_{m,n}$ is β_e excellent iff m = n
- 5. P_n is β_e excellent iff $n \equiv 0,1 \pmod{3}$
- 6. W_n is not β_e excellent, since W_n has a full degree vertex and W_n is not complete.

3. Rigid β_e -Excellence of a Graph .

Definition 3.1. A graph G is rigid β_e -excellent if every vertex of G belongs to a unique β_e - set of G.

Clearly a rigid β_e -excellent graph is β_e -excellent.

Example 3.2.

- 1. K_n is rigid β_e -excellent.
- 2. C_6 is β_e -excellent but not rigid β_e -excellent.

For: Let $V(C_6) = \{u_1, u_2, ..., u_6\}$. $S_1 = \{u_1, u_2, u_4, u_5\}$ and $S_2 = \{u_2, u_3, u_5, u_6\}$ are β_e -sets and u_2 belong to S_1 and S_2 .

Rigid β_e -excellence of standard graphs:

- 1. K_n is rigid β_e -excellent.
- 2. $K_{1,n}$ is not β_e -excellent and hence not rigid β_e -excellent.
- 3. P_n is not rigid β_e -excellent for all $n \ge 3$.

Proof.

Case i: $n \equiv 0 \pmod{3}$

Let $V(P_n) = \{v_1, v_2, ..., v_{3k}\}$ where n = 3k.

Let $S_1 = \{v_1, v_2, v_4, v_5, ..., v_{3k-2}, v_{3k-1}\}$, $S_2 = \{v_1, v_3, v_4, v_6, v_7, ..., v_{3k-3}, v_{3k-2}, v_{3k}\}$. Both S₁ and S₂ are β_e sets of cardinality 2k and v₁ is the common element for S₁ and S₂. Therefore P_{3k} is not rigid β_e -excellent.

Case ii: $n \equiv 1 \pmod{3}$

Let n = 3k+1. Let where n = 3k+1. $\beta_e(P_{3k+1}) = 2k+1$.

Let $S_1 = \{v_1, v_2, v_4, v_5, ..., v_{3k-2}, v_{3k-1}, v_{3k+1}\}$ and $S_2 = \{v_1, v_3, v_4, v_6, v_7, ..., v_{3k}, v_{3k+1}\}$ are β_e -excellent sets of P_{3k+1} containing u_1 therefore P_{3k+1} is not rigid β_e -excellent.

Case iii: $n \equiv 2 \pmod{3} V(P_n) = \{v_1, v_2, ..., v_{3k+1}\}$

 $\beta_e(P_{3k+2}) = 2k+2$.

Let $S = \{v_1, v_2, v_4, v_5, ..., v_{3k+1}, v_{3k+2}\}$. Then S₁ is a β_e -set of P_{3k+2} of cardinality 2k+2.

Consider v₃. There are two equivalent sets of maximum cardinality 2k+1 containing v₃ and they are $\{v_1, v_3, v_4, v_6, v_7, ..., v_{3k}, v_{3k+1}\}$; $\{v_2, v_3, v_5, v_6, ..., v_{3k-1}, v_{3k}, v_{3k+2}\}$. Therefore v₃ is not contained in any β_e -set of G. Therefore P_{3k+2} is not β_e -excellent and hence not rigid β_e -excellent. Therefore P_n is not rigid β_e -excellent for any $n \ge 3$. (P₂ is rigid β_e -excellent).

4. C_n is not rigid β_e -excellent for all $n \ge 4$ and C_3 is rigid β_e -excellent.

Proof. Let $n = 3k, k \ge 2$.

 $\beta_e(C_{3k}) = 2k.$

Let $V(C_{3k}) = \{v_1, v_2, ..., v_{3k}\}$. $S_1 = \{v_1, v_2, v_4, v_5, ..., v_{3k-2}, v_{3k-1}\}$ and $S_2 = \{v_{3k}v_1, v_3, v_4, ..., v_{3k-3}, v_{3k-2}\}$ are β_e -sets of C_{3k} ($k \ge 2$) containing v_1 . Therefore C_{3k} is not β_e -excellent when $k \ge 2$.

Let n = 3k+1. $\beta_e(C_{3k+1}) = 2k(k \ge 1)$.

Let $S_1 = \{v_1, v_3, v_4, v_5, ..., v_{3k-1}, v_{3k}\}, S_2 = \{v_2, v_4, v_5, v_7, v_8, ..., v_{3k-1}, v_{3k}\}$. Then S_1 and S_2 are β_e -excellent sets of C_{3k+1} containing v_4 . Therefore C_{3k+1} is not rigid β_e -excellent.

Case iii: Let n = 3k+2.

 $\beta_e(C_{3k+2}) = 2k+1.$

Let $S_1 = \{v_1, v_2, v_4, v_5, ..., v_{3k-2}, v_{3k-1}, v_{3k+1}\}, S_2 = \{v_{3k+2}, v_1, v_3, v_4, v_6, v_7, ..., v_{3k-3}, v_{3k-2}, v_{3k}\}$. Then S_1 and S_2 are β_e sets of C_{3k+2} containing v_4 . Therefore C_{3k+2} is not rigid β_e -excellent for $k \ge 1$.

5. $K_{m,n}$ is rigid β_e -excellent iff m = n.

6. D_{rs} is not rigid β_e -excellent.

Proof. $D_{r,s}$ is not even β_e -excellent.

- 7. W_n is not rigid β_e -excellent when $n \ge 5$.
- 8. The Petersen graph P is not rigid β_e -excellent.

Theorem 3.3. A graph G is rigid β_e - excellent iff

i). $\beta_e(G)$ divides n.

ii). G has exactly $\frac{n}{\beta_e(G)}$ distinct $\beta_e(G)$ sets.

iii). The maximum cardinality of a partition V(G) into equivalence sets is $n/\beta_e(G)$.

Proof. Let G be rigid β_e -excellent. Let S₁,S₂,...,S_k be the collection of disjoint β_e -sets of G. Since G is rigid β_e - excellent, these sets are pair wise disjoint and their union is V(G). Therefore (i),(ii) and (iii) hold. Conversely, let G be a graph satisfying conditions (i), (ii) and (iii).

Let $n = m\beta_{e(G)}$. By condition (iii), there exists β_e -set $V_1, V_2, ..., V_m$ such that they are pair wise disjoint and $V_1 \cup V_2 \cup ... \cup V_m = V$. Therefore $n = \sum_{i=1}^m |V_i| \le m\beta_e(G)$. Since $m = \beta_e(G)$, each V_i is a maximum equivalence set of G. Therefore V is a pair wise disjoint union of β_e -sets. Therefore G is β_e -excellent. Since G has exactly $n/\beta_e(G)(=m)$ distinct β_e -sets, $V_1, V_2, ..., V_m$ are the only β_e -sets of G. Therefore G is rigid β_e -excellent.

Property 3.4. If $G \neq K_1$ is rigid β_e - excellent then for any u in V(G) $\langle V - N[u] \rangle$ does not contain two β_e -sets.

Proof.

Case i: N[u] is non complete.

Since G is rigid β_e - excellent, given u in V(G), there exists a unique β_e -set of G containing u. Suppose V-N[u] contains two maximum β_e - sets. Since $G \neq K_1, \beta_e(G) \ge 2$.Let S be the unique β_e -set of G containing u. Then S-{u} is an equivalence set of G of cardinality $\beta_e - 1$. Since N[u] is not complete, S-

 $\beta_e \langle V - N[u] \rangle = \beta_e(G)$ then any β_e set of $\langle V - N[u] \rangle$ together with u is an equivalence set of G of cardinality $\beta_e(G) + 1$, a contradiction. Therefore $\beta_e \langle V - N[u] \rangle = \beta_e(G) - 1$.

Let T_1, T_2 be two maximum equivalence sets of V-N[u]. Then $T_1 \cup \{u\}$ and $T_2 \cup \{u\}$ are sets of G. Therefore $T_1 \cup \{u\}$ and $T_2 \cup \{u\}$ are equivalence sets of cardinality $\beta_e(G)$ and these sets containing u, a contradiction. Therefore $\langle V - N[u] \rangle$ does not two maximum equivalence sets.

Case ii: N[u] is complete.

Suppose V-N[u] contains two maximum equivalence sets say T₁, T₂. Then $T_1 \cup N[u]$ and w are equivalence sets of G. Since G is rigid β_e excellent, there exists a unique β_e set S of G containing u. Since N[u] is complete, N[u] is a component of S. Therefore S-N[u] is an equivalence set of V-N[u]. Suppose S-N[u] is not a maximum equivalence set of V-N[u]. Therefore

$$|S - N[u]| \prec \beta_e(\langle V - N[u] \rangle)$$

$$\left|T_{1}\right| = \beta_{e}(\left\langle V - N[u]\right\rangle)$$

Therefore $|T_1 \cup N[u]| = \beta_e(\langle V - N[u] \rangle) + |N[u] \succ |S - N[u]|| + |N[u]| = |S|$.

 $|T_1 \cup N[u]| \succ \beta_e(G)$, a contradiction.

Therefore S-N[u] is a maximum equivalence set of V-N[u]. Therefore $|S - N[u]| = |T_1| = |T_2|$. Therefore $|S| = |T_1 \cup N[u]| = |T_2 \cup N[u]| = \beta_e$.

Therefore $T_1 \cup N[u]$ and $T_2 \cup N[u]$ are maximum equivalence sets of G containing u, a contradiction. Therefore V-N[u] doses not contain two maximum equivalence sets.

Proposition 3.5. Let G be rigid β_e excellent. Then there exists a unique partition of V(G) into β_e sets of G.

Proof.

By Property (i) G has exactly $\frac{n}{\beta_e(G)}$ distinct β_e sets. Therefore there exists a partition V(G) into β_e sets

of G. Suppose G has two partition of V(G) into β_e sets of G. Let them be $\prod_1 = \{V_1, V_2, ..., V_k\}$, $\prod_2 = \{W_1, W_2, ..., W_k\}$. Then there exists a u in V(G) such that u belongs to V_i and W_j for some i and j, $V_i \neq W_j$. Therefore there exists two β_e sets containing u, a contradiction. Therefore there exists a unique partition of V(G) into β_e sets of G.

Property 3.6. Let G be a rigid β_e -excellent graph. Then $|V(G)| = \beta_e(G) \cdot \chi_{eq}(G)$.

Proof.

Since G is rigid β_e -excellent, $n = \beta_e(G) \cdot d$ where d is the number of β_e -sets.

Also
$$\frac{n}{\beta_e(G)} \le \chi_{eq}(G)$$
. That is $d \le \chi_{eq}(G)$. But $\chi_{eq}(G) \le d$. Therefore $d = \chi_{eq}(G)$. Therefore $|V(G)| = \beta_e(G) \cdot \chi_{eq}(G)$.

Remark 3.7. There are graphs which are not rigid β_e -excellent in which $|V(G)| = \beta_e(G) \cdot \chi_{eq}(G)$.

For example,

 $\beta_e(C_4) = 2; \chi_{eq}(C_4) = 2$ and hence $|V(C_4)| = \beta_e(C_4) \cdot \chi_{eq}(C_4)$.

But C₄ is not rigid β_e -excellent.

Proposition 3.8. Let G be a rigid β_e -excellent. Then $\delta(G) \ge \frac{n}{\beta_e(G)} - 1$

Proof. Let $\prod = \{V_1, V_2, ..., V_m\}$ be the unique β_e -partition of V(G).

Let $u \in V_i, 1 \le i \le m$.

384 👁 INDIAN JOURNAL OF APPLIED RESEARCH

If u is not adjacent with any vertex of V_j , $j \neq i$ then $V_j \cup \{u\}$ is an equivalence set, a contradiction, since V_i is a maximum equivalence set of G. Therefore u is adjacent with every V_j , $j \neq i$. Therefore $deg(u) \ge m - 1 = \frac{n}{\beta_i(G)} - 1$.

Property 3.9. $\frac{n}{\beta_e(G)} = 1$ iff G is an equivalence graph.

Proposition 3.10. Let G be rigid β_e -excellent. Suppose G has two or more disjoint β_e sets. Then G has no isolates.

Proof. Suppose G has two or more disjoint β_e sets. Let $S_1, S_2, ..., S_t$ be the disjoint β_e sets of G. Then $t \ge 2$. Let u be an isolate of G. Then u belongs to a β_e set say S_1 . Then $S_2 \cup \{u\}$ is an equivalence set of cardinality $\beta_e(G) + 1$, a contradiction. Therefore G has no isolates.

Proposition 3.11. Let G be a rigid β_e -excellent graph. Let G be not an equivalence graph. Then $\delta(G) \ge 2$

Proof. Suppose $u \in V(G)$. Since G is rigid β_e -excellent, G has no isolates. Therefore $\deg(u) \ge 1$. Let v be the support of u. Let S be the unique β_e set of G containing v. Suppose $u \in S$. Then uv is an component of S. If w is an neighbour of v in G then $\langle u, v, w \rangle$ is a connected subset of V which is not complete. Therefore v has no other neighbour in G. Therefore G has K_2 as a component. Therefore G is an equivalence graph, a contradiction.

Suppose $u \notin S$. Since $G \neq K_1$, $|S| \ge 2$. Therefore there exist $w \in S$, $w \neq v$. Then $(S - \{v\}) \cup \{u\}$ is an equivalence set of cardinality $\beta_e(G)$. Therefore w is contained in S as well as $(S - \{v\}) \cup \{u\}$ which are β_e sets, a contradiction, since G is rigid β_e -excellent.

Therefore $deg(u) \ge 2$

Therefore $\delta(G) \ge 2$.

Remark 3.12. The above result, need not hold in equivalence graphs For example, $G = K_2 \cup K_n$, $n \ge 2$ is an equivalence graph in which $\delta(G) = 1$.

Proposition 3.13. Let G be a rigid β_e -excellent graph. Suppose G contains K₂ as a component. Then any component of G is complete(i.e., G is an equivalence graph).

Proof. Let G be a rigid β_e -excellent graph. Suppose G contains K₂ as a component. Let G₁ be a component of G other than K₂. Since G is rigid β_e -excellent, G is β_e -excellent. Let u and v be the vertices of the component K₂. Since G is rigid β_e -excellent, there exists a unique β_e set S containing u. Clearly $v \in S$. Therefore $S - \{u, v\}$ is a unique β_e set of G₁. But $S - \{u, v\} = V(G_1)$. Therefore G₁ is an equivalence graph. Therefore G is an equivalence graph.

Remark 3.14.

1. The above proposition is not true if G is β_e -excellent but not rigid β_e -excellent.

For example,

Let $G = K_2 \cup C_4$. Then G is β_e -excellent, G contains K_2 as a component but G is not an equivalence graph.

2. Let $G = K_2 \cup K_{1,n}; n \ge 2$.

Then G is not β_e -excellent, G contains a unique β_e set and G is not an equivalence graph.

3. G is an equivalence graph iff G has a unique equivalence set of cardinality n.

4. Any tree G is not a rigid β_e -excellent graph for if G is a tree then G is connected and G is not an equivalence graph. Also $\delta(G) = 1$. Therefore G is not rigid β_e -excellent.

Proposition 3.15. Let G be a disconnected graph. Let $G = G_1 \cup G_2 \cup ... \cup G_k$ where each G_i is connected. G is rigid β_e -excellent iff each G_i $(1 \le i \le k)$ is rigid β_e -excellent and each G_i has a unique β_e set.

Proof. Suppose $G = G_1 \cup G_2 \cup ... \cup G_k$, where each G_i is connected. Let G be rigid β_e -excellent. Let $u \in G_i (1 \le i \le k)$. Then $u \in V(G)$ and hence there exists a unique β_e set S of G containing u. Let 386 \approx INDIAN JOURNAL OF APPLIED RESEARCH

 $S_i = S \cap V(G_i), (1 \le i \le k)$. Let T be a component of S_i. Then T is a component of S_i. Then T is a component of S. Since S is a β_e set, T is complete. Therefore S_i is an equivalence set of G_i $(1 \le i \le k)$. Suppose $|S_i| \prec \beta_e(G_i)$. Let T_i be a β_e set of G_i. Let $S_1 = (S - S_i) \cup T_i$. Clearly S₁ is a equivalence set of G and $|S_1| \succ |S|$, a contradiction, since S is a β_e set of G. Therefore S_i is a β_e set of G_i. Therefore $u \in G_i$ is an element of S_i which is a β_e set of G_i. Suppose u belongs to β_e sets T₁, T₂ of G_i. Then $(S - S_i) \cup T_1, (S - S_i) \cup T_2$ are β_e sets of G containing u, a contradiction. Therefore S_i is a unique β_e set of G_i containing u. Therefore G_i is a rigid β_e -excellent.

Suppose G_i has two β_e sets T₃, T₄. Then $T_3 \cap T_{4=} = \phi$. Let S be a β_e set of G. Let $S_i = S \cap V(G_i)$. Then $(S - S_i) \cup T_1$, $(S - S_i) \cup T_2$ are β_e sets of G containing $(S - S_i)$, a contradiction, since G is rigid β_e excellent. Therefore each G_i has a unique β_e set.

Conversely, Suppose each G_i is rigid β_e -excellent and each G_i has a unique β_e set. Let T_i be the unique β_e set of G_i . Then $\cup T_i$ is a β_e set of G containing every element of V(G). Therefore G is rigid β_e -excellent.

Proposition 3.16. Let G be a connected graph which is rigid β_e -excellent and which has a unique β_e set. Then G is complete.

Proof. By hypothesis, V(G) is a β_e set. Since V(G) is connected, $\langle V(G) \rangle$ is complete. Therefore G is complete.

Remark 3.17. Let $G = G_1 \cup G_2 \cup ... \cup G_k$ where each G_i is connected. Then G is rigid β_e -excellent iff each G_i is complete. That is iff G is an equivalence graph.

Problem 3.18. Find a connected rigid β_e -excellent graph which is neither K_n nor a complete multi partite graph.

Proposition 3.19. Let G be a rigid β_e -excellent graph. Let $u \in V(G)$. Let S be the unique β_e set of G containing u. Then $\langle pn[u,S] \rangle$ is complete and $|pn[u,S]| \le 2$.

Proof. Let $x, y \in pn(u, S)$. Then $x, y \in V - S$ and x, y are adjacent with only u in S. Then $(S - \{u\}) \cup \{x, y\}$ is an equivalence set of cardinality $\beta_e(G) + 1$, a contradiction. Therefore $|pn(u,S)| \le 1$. Therefore pn[u,S] is complete and $|pn[u,S]| \le 2$.

Problem 3.20. Find an example of a rigid β_e excellent graph G such that for some vertex u in V(G), pn(u, S) = 1 where S is the unique β_e set of G containing u.

Proposition 3.21. Let G be a rigid β_e excellent and let G be not an equivalence graph except K_n. Then

G is connected.

Proof. Let G be a rigid β_e -excellent. Suppose G is disconnected. Then by the Proposition 3.16, every component of G is complete. That is G is an equivalence graph. By hypothesis, G is not an equivalence graph. Therefore G is connected.

References

- [1] M.O. Albertson, R.E. Jamison, S.T. Hedetniemi and S.C.Locke, The subchromatic number of a graph, Discrete Math., 74(1989),33-49.
- N. Alon, Covering graphs by the minimum number of equivalence rela-[2] tions, Combinatorica 6 (3)(1986), 201-206.
- S. Arumugam, M. Sundarakannan, Equivalence Dominating Sets in Graphs, Utilitas Mathematica 91(2013) 231-242.
- [4] A. Blokhuis and T. Kloks, On the equivalence covering number of split graphs, Information Processing Letters, 54(1995), 301-304.
- P.Duchet, Representations, noyaux en theorie des graaphes et hyper [5] graphes, These de Doctoral d'Etatl, Universite Paris VI, 1979.
- R.D. Dutton and R.C. Brigham, Domination in Claw-Free Graphs, Congr. [6] Numer., 132(1998), 69-75.
- [7] G.H. Fricke, Teresa, W.Haynes, S.T. Hedetniemi, S.M. Hedetniemi and R.C. Laskar, Excellent trees.preprint.
- J.Gimbel and C. Hartman, Subcolorings and the subchromatic number of [8] a graph, Discrete Math., 272(2003), 139-154.
- Harary, Graph Theory, Addison-Wesley/Narosa, 1988. [9]
- [10] C.Mynhardt and I. Broere, Generalized colorings of graphs, In Y.Alavi, G.Chartrand, L.Lesniak, D.R. Lick and C.E. Wall, editors, Graph Theory with Applications to Algorithms and Computer Science, Wiley, (1985).583-594
- [11] A.P. Pushpalatha, Study of graphs with respect to the independence parameter and forcing domination, Ph.D. Thesis, Madurai Kamaraj University, 2010.
- [12] Sridharan and M.Yamuna, Excellent -Just Excellent-Very Excellent Graphs, Journal of Math.Phy.Sci. Vol.14, No.5, 1980,471-475.
- [13] N.Sridharan and M.Yamuna, A note of Excellent graphs, Ars Combinatoria 78 (2006), pp.267-276.
- [14] M.Yamuna, Excellent-Just Excellent-Very Excellent Graphs, Ph.D. Thesis, Alagappa University, Karaikudi, 2003.