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ABSTRACT Let   be a simple finite undirected graph. A subset S of V is called an equivalence set if every compo-
nent of the induced sub graph   is complete. The concept of equivalence set, sub chromatic number, 

generalized coloring and equivalence covering number were studied in [1],[2],[4],[6],[7],[10],[15] A partition   is called 
an equivalence color class domination partition if each Vi is an equivalence set of G and for each Vi there exist ui in 
V(G) such that ui dominates Vi,  . An equivalence dominator coloring is a partition of V(G) into equivalence classes of 
G such that each vertex of G dominates some equivalence classes in that partition. Since equivalence classes is a gen-
eralization of independence, equivalence dominator coloring generalizes dominator coloring [9] in the sense that every 
dominator color partition is an equivalence dominator partition. In this paper, the properties of equivalence dominator 
coloring are derived
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 Introduction. 

Gera etal  [9] introduced  dominator coloring in graphs .  A dominator coloring  of a graph G 
is a proper coloring in which each vertex of the graph dominates every vertex of some color 
class. The dominator chromatic number  is the minimum number of color classes in a 
dominator coloring of a graph G. A partition  },...,{ 21 kVVV is called an equivalence color 
class domination partition if each Vi is an equivalence set of G and for each Vi there exist ui 
in V(G) such that ui dominates Vi, ki 1 . A partition },...,{ 21 kVVV  is called an 
equivalence dominator coloring of G if each Vi is an equivalence set of G and for any 

)(GVu , there exist some Vi , ki 1  such that u dominates Vi. Equivalence dominator 
coloring is a generalization of dominator coloring. That is every dominator color partition is 
an equivalence dominator color partition. The minimum cardinality of an equivalence color 
class domination (equivalence dominator coloring partition) is denoted by )( edecd  . In this 
paper, the properties of equivalence dominator coloring   is introduced  and several results 
are derived.  

2. Equivalence Dominator Coloring of a graph 

Definition 2.1. Let G be a simple finite undirected graph. A partition  },...,{ 21 kVVV is 

called an equivalence color class domination partition if each Vi is an equivalence set of G 

and for each Vi there exist ui in V(G) such that ui dominates Vi, ki 1 . 

Definition 2.2.  A partition },...,{ 21 kVVV  is called an equivalence dominator coloring if 

each Vi is an equivalence set of G and for any )(GVu , there exist some Vi , ki 1  such 

that u dominates Vi. 

Remark 2.3. Equivalence dominator coloring is a generalization of dominator coloring. That 

is every dominator color partition is an equivalence dominator color partition. 

An equivalence color class domination partition is a generalization of color class domination 

partition. 

Remark 2.4. Let },...,{ 21 nuuuV  . Let }}},...{{},{{ 21 nuuu . Then   is an equivalence 

color class domination partition as well as equivalence dominator coloring partition ({ui} is 

assumed to be dominated  by ui).  
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Definition 2.5. The minimum cardinality if an equivalence color class domination 

(equivalence dominator coloring partition) is denoted by )( edecd  . 

Remark 2.6. decd    and dcecd   . 

ecd  for standard graphs. 

1. 2)( necd K . 

2  2)( ,1 necd K . 

3. 1)( necd K . 
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7. 2)( , nmecd K  

Proposition 2.7.  Let G be a graph. Then  )()()()}(),(max{ GGGGG edd   .The 

bounds are sharp. 

Proof. Since dominator coloring is an equivalence dominator coloring , )()( GG edd   . 
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Let },...,,{ 21 KVVV be a d  partition of G. Let },...,,{ 21 KxxxD  where kiVx ii  1 , . 

Let DVv / . Then v dominates Vi for some i, ki 1 . 

Since ii Vx  , v and xi are adjacent. Therefore xi dominates v. Therefore D is a dominating 

set of G. 

)()( GkDG ed  . 

Therefore )()}(),(max{ GGG edd   . 

Let c be a proper coloring of G with )(G colors. 

Let D be a minimum dominating set of G. Assign colors 1)( G , 2)( G ,..., 

)()( GG    to the vertices of D. Let c1 be the  new coloring. Let )(GVv . Then v  is 

adjacent to some vertex of D, say x. Then  v dominates {x}. Therefore c1  is an equivalence 

dominator coloring. Therefore )()()( 1 GGcGed   . 

In C4, 2)()()( 444  CCC edd  . 

In C8, 3)( ;2)(  ;5)( 888  CCCed  . 

Thus the bounds  are attained. 

Remark 2.8. In general )(G need not be  less than  )(Ged .  

For example, 

i). nKn )(  and 2)( ned K . 

ii). Let  
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}}{},{},,{{ 3142 vvvv . 

Then  is a chromatic partition. that is 3)( G . 

}},{},,{{ 42311 vvvv . Then 1  is a ed -partition of G. Therefore )(2)( GGed   . 

ed  for standard graphs: 

1. 2)( ned K  

2. 2)( ,1 ned K  

3. nKned )(  

4. 2)( , nmed K  

5. 1
3

)( 




nPned for all 2n . 

Proof. Let    },...,,{ 21 nn vvvPV  .  

Let }},...,,,,,{},},...{{},{},{{ 176431852  nn vvvvvvvvvv if 3) (mod2,1n and 

}},,...,,,,,{},},...{{},{},{{ 2764311852 nnn vvvvvvvvvvv  if 3) (mod 0n . 

Then  is a equivalence dominator coloring with 1
3






n . 

Therefore 1
3

)( 




nPned .  

Let  be a equivalence dominator coloring of minimum cardinality of Pn. Suppose in   

there are k singleton classes, l-doubleton classes and r classes with cardinality 3 . 

 case i. 3) (mod 0n . 
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Then 
33
nn





 . 

 
3
nrlk   

3(k+l+r)=n 

The number of vertices which can dominate at least one color class in  is at most lk 3  . 

Therefore  rln 32  vertices do not have classes in   to dominate. 132  rln (since 

032  rln  implies  rln 32  . That is rlrlk 32333  , which implies 03  lk  

0 l ,0  k . That  is  consists only of color classes with cardinality 3 . That is no 

vertex can dominate any color class of  , a contradiction. 

Therefore 132  rln . That is these vertices do not have classes in   to dominate, a 

contradiction. 

Therefore 
3
n  classes are not sufficient for equivalence dominator coloring.  

That is 1
3


n .  

case ii. 3) (mod 2or  1n .  

Therefore 
3

2nor  
3

1
3






 nn . 

A similar argument as in case (i)  will show that 





3
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equivalence dominator coloring. Therefore 1
3

)( 




nGed . 

Therefore 1
3

)( 




nGed . 
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6. 
5n if 1
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3,4n if 2)(
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Proof. Let },...,,{)( 21 nn vvvCV  . Let }}..,,.,{},{},...,{},{},{{ 1431852  nn vvvvvvvv  if 

3) (mod 2,1n  and }},..,,.,{},{},...,{},{},{{ ,24311852 nnn vvvvvvvvv  if 3) (mod 0 n . 

Then   is a equivalence dominator coloring . 

1
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n . 

Therefore 1
3
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nGed . 

Suppose in   there are k singleton color classes, l-doubleton classes and r classes with 

cardinality 3 . 

case i. 3) (mod 0n . 

Then 
33
nn





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3
nrlk   

3(k+l+r)=n 

The number of vertices which can dominate at least one color class in  is lk 3  . Therefore  

rln 32  vertices do not have classes in   to dominate. 132  rln (since 

032  rln  implies  rln 32  . That is rlrlk 32333  , which implies 03  lk  

0 l ,0  k . That  is  consists only of color classes with cardinality 3 . That is no 

vertex can dominate any color class of  , a contradiction. 
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Therefore 132  rln . That is these vertices do not have classes in   to dominate, a 

contradiction. 

Therefore 
3
n  classes are not sufficient for equivalence dominator coloring.  

That is 1
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7
4 n  if  2
5n if 3)(

ned W . 

Proof. When n = 4, 44 KW  and hence  .2)( 4 Wed  Let 5n . Let 

},...,,,{)( 121  nn vvvuWV where  u is the centre of Wn. Let 

}},...,,{},,...,,{},{{ 142231  nn vvvvvvu  if n is odd, let 

}},...,,{},,...,,{},{{ 242131  nn vvvvvvu if n is even, Then   is an equivalence dominator 

coloring of Wn . 3 . Therefore 3)( ned W . Let  be an equivalence dominator color 

partition of Wn . Suppose 2 . Clearly 1 . Also when n =4 W4 is K4 and hence 

.2)( 4 Wed  
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Let 5n . If u does not appear as singleton, then the class in   containing u is not an  

equivalence set.(since 5n ). Therefore {u} appears as a class in  . If 2 then the 

remaining vertices (a 

Therefore 3)( ned W  

Definition 2.9[15] The multi star graph ),...,,( 21 mm aaaK is formed by joining 

)1( 1 miai   end vertices to each vertex xi of a complete graph Km, with 

},...,,{)( 21 mm xxxKV  . 

8. 1)),...,,(( 21  naaaK nned . 

Let  },...,,,...,,...,,,,...,,,....,,{)),...,,((
}21 21222211112121 nnannaannn xxxxxxxxxxxaaaKV   where 

x1, x2,...,xn are the vertices of Kn and xi1, xi2,...,xiai are the pendant vertices attached with xi, 

ni 1 . Let }},...,,,...,,...,,,,....,{},{},...,{},{{ 212222111121 21 nnannaan xxxxxxxxxxx . Clearly 

 is an equivalence dominator color partition. Therefore 1)),...,,(( 21  naaaK mned . 

Suppose  is an equivalence dominator color partition of G. Suppose a color class 

containing xi  and xj  n)j i,(1 ) (  ji . Then the pendance of xi as well as that of xj can not 

dominate any color class. Therefore all the xi's have to appear in separate classes . If xi and 

kjax appear in a color class then the pendance at xi do not have a color class to dominate. If xi 

and 
kiax appear in a color class then the pendance at xi do not have a color class to dominate. 

Therefore every xi appears as a singleton in  . Therefore 1 n . 

Therefore 1)),...,,(( 21  naaaK nned . 

Therefore 1)),...,,(( 21  naaaK nned . 

9. 
i  2a if 1),...,,max(

1a if )(

i21

i,...,, 21





kaaa

ikkK

k

aaaed k

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Proof. Let V1,V2,...,Vk be the k partite sets. Let },...,,{ 21 kVVV . Then    is an 

equivalence dominator coloring partition of 
kaaaK ,...,, 21

. Therefore kK
kaaaed )( ,...,, 21

 .  

Suppose 1)max(  kai . Then kK
kaaaed )( ,...,, 21

 . Therefore 

1)max(a if )( i,...,, 21
 kkK

kaaaed . formed by the ith elements of V2,...,Vk. . 1  is an 

equivalence dominator coloring partition of 
kaaaK ,...,, 21

. Therefore klK
kaaaed 1)( ,...,, 21

 . 

Illustration 2.10. 

Let 
654321 ,,,, aaaaaaKG  where 433234 654321  ,a,a,a, a, aa . 

Then 5)( Ged . 

10. Let raKG  where a and r are positive integers 1r ,2 a . Then 1)(  aGed . 

Proof. Let },...,,{ 21 avvvD   where vi is a vertex in the ith copy  of Kr, ai 1  .Let 

}},{},...,{},{{ 21 Uvvv a where U is obtained from G by deleting  v1,v2,...,va.. Then  is 

equivalence color dominating   partition  of G (note that U is an equivalence set of G). 

1)(  aGed .  

Let 1 be a ed partition of G. Suppose there are t singleton's one each  from a copy of Kr 

and let at  . Then the a-t classes in 1 contain more than one element in each class. If a 

class in the a-t classes contain two elements from the same copy then these  two elements can 

not dominate. Likewise if  a class in the a-t classes contain two elements from different 

classes contain two elements from different copies then also these two elements can not 

dominate a color class. Therefore at  . Therefore   1)(  aGed . 

Proposition 2.11. 

1. 2n if  )(2  nGed , 1K G  iff 1)( Ged . 

1222-n )2(mKor  Kor  G  iff )( KmnKKnG ned   
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2. 2)( Ged iff 21 HHG  where H1 and H2 are equivalence sub graphs of G. 

3. Let 1)(  nGed . Then any ed partition consists of n-1 color classes. Of these only one 

of them is a doubleton and the remaining n-2 classes are singleton. Let },...,,{ 121  nVVV be 

a ed partition of G such that 12 ,1V ,2 i1  niV . Let },{ 211 vvV  , 

}{ 32 vV  ,..., }{ 11   nn vV .Case i: v1 and v2 are independent.  

Sub case i: v1 is adjacent with one vertex say vi and v2 is adjacent with either vi or vj. In this 

case 1)(  nGed . 

Sub case ii: v1 is adjacent with two vertices vi ,vj  and v2 is adjacent with vi and vj.  Then  

2)(  nGed . 

Sub case iii: v1 is adjacent with two vertices vi and vj and v2 is adjacent with exactly one 

vertex. Then 1)(  nGed . 

Sub case iv: v1 is adjacent with three vertices and  v2 is adjacent with exactly one vertex. If 

the  three vertices  adjacent to v1 form a P3 then 1)(  nGed . Otherwise 1)( nGed  . 

Sub case v: If v1 is adjacent with four or more vertices then 1)( nGed  . 

Case ii: v1 and v2 are adjacent 

The sub cases discussed in case (i) can be repeated and the results are the same. 

Therefore 1)(  nGed iff the doubleton class in a ed  partition is such that one element is 

adjacent with at most three elements and the other element is adjacent with exactly one 

element and the three element is from a P3. 

Proposition 2.12. Given a positive integer a there exists a graph G  such that 

aGG ed  )()(  . 

Proof.  

Case i: a =1. 
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When 1)((G) ,1  GKG ed  

Case ii: a = 2 

Let 2KG  . Then 2)((G)  Ged . 

Case iii: 3a . 

Let aKaG )1(  . Then aGed  )((G)  . 

Proposition 2.13. Given a positive integer a, there exists a  connected graph  G such that 

1)( G  and aGG ed  )()(  . 

Proof.  

Case i: a = 1.  

Let 1KG  . Then 1)( G , 1)()(  GG ed . 

Case ii: a = 2. 

 Let 2KG  . Then 1)( G  and 2)()(  GG ed . 

Case iii: Let 3a .  

Let 1)1(  aKaG .Join one vertex of Ka-1 to a vertex of the next copy of Ka-1 and a vertex of 

last copy  of Ka-1 to a vertex of first copy of Ka-1 . Add a new vertex u  such that u is adjacent 

with every vertex of every copy of Ka-1. Let H be the graph  obtained from G by adding a 

new vertex and making it adjacent with every vertex of G. Also then 

aaHaHH ed  1)1()( ,)( ,1)(  . 

 

Proposition 2.14. Given a positive integer a, there exists a connected graph G such that 

1)( and a(G) ,1)( ed  aGG  .  

Proof.  

Case i: a =1. Let 1KG  . Then aGG  1)((G) ,1)( ed . 
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Case ii: a =2. Let 2KG  . Then aGG  2)((G) ,1)( ed . 

Case iii: 3a . Let 1 aaKG . Join one vertex of Ka-1 to a vertex of the next copy of Ka-1 

and a vertex of the last copy  of Ka-1 to a vertex of first copy of Ka-1. Add a new vertex u such 

that u is adjacent with every vertex of every  copy of Ka-1. Let H be the resulting graph. Then 

1)(a,(H),1)( ed  aHH   . 

Remark 2.15. It has been stated in Theorem 3.5 of [10]  that there is no connected graph 

with  1)( and (G),1)( ed  bGbG  . But in the case of equivalence dominator 

coloring, there exists a connected graph with  1)( and (G),1)( ed  bGbG  . 

Proposition 2.16. Given positive integers a,b,c, 2ba, b,a,c ,  bac , there exists a 

graph G such that cGaG  )( and b(G) ,)( ed . 

Proof. Let kb  .  

Let baaa rKKG
k
 ,...,, 2,1

. 

2
)(

},max{)(
2)(







ar
crkG

bbkG
arG

ed



 

Therefore 1r . 

Suppose a = 2 

Let 
kaaaKG ,...,, 2,1

 . Let kb  . Choose a vertex u in the partite set with a1 vertices. Construct 

Kb with one of the vertices as u. Let H be the resulting graph. 

1)(,)(,2)(  kHbHH ed  

Choose 21 ck . Then H is a connected graph in which  

cHbHaH  )( and )(,2)( ed . 
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