Equivalence Dominator Coloring of A Graph

KEYWORDS

Equivalence set, Dominator Coloring, Equivalence Dominator Coloring

N. Saradha

Assistant Professor, Department of Mathematics, SCSVMV University, Enathur, Kanchipuram, Tamilnadu, India

V.Swaminathanb

Coordinator, Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, Tamilnadu, India.

ABSTRACT Let be a simple finite undirected graph. A subset S of V is called an equivalence set if every component of the induced sub graph is complete. The concept of equivalence set, sub chromatic number, generalized coloring and equivalence covering number were studied in [1],[2],[4],[6],[7],[10],[15] A partition is called an equivalence color class domination partition if each $V i$ is an equivalence set of G and for each Vi there exist ui in $V(G)$ such that ui dominates $V i$. . An equivalence dominator coloring is a partition of $V(G)$ into equivalence classes of G such that each vertex of G dominates some equivalence classes in that partition. Since equivalence classes is a generalization of independence, equivalence dominator coloring generalizes dominator coloring [9] in the sense that every dominator color partition is an equivalence dominator partition. In this paper, the properties of equivalence dominator coloring are derived

Introduction.

Gera etal [9] introduced dominator coloring in graphs. A dominator coloring of a graph G is a proper coloring in which each vertex of the graph dominates every vertex of some color class. The dominator chromatic number is the minimum number of color classes in a dominator coloring of a graph G. A partition $\Pi=\left\{V_{1}, V_{2}, \ldots V_{k}\right\}$ is called an equivalence color class domination partition if each V_{i} is an equivalence set of G and for each V_{i} there exist u_{i} in $V(G)$ such that u_{i} dominates $V_{i}, 1 \leq i \leq k$. A partition $\Pi=\left\{V_{1}, V_{2}, \ldots V_{k}\right\}$ is called an equivalence dominator coloring of G if each V_{i} is an equivalence set of G and for any $u \in V(G)$, there exist some $V_{i}, 1 \leq i \leq k$ such that u dominates V_{i}. Equivalence dominator coloring is a generalization of dominator coloring. That is every dominator color partition is an equivalence dominator color partition. The minimum cardinality of an equivalence color class domination (equivalence dominator coloring partition) is denoted by $\chi_{e c d}\left(\chi_{e d}\right)$. In this paper, the properties of equivalence dominator coloring is introduced and several results are derived.

2. Equivalence Dominator Coloring of a graph

Definition 2.1. Let G be a simple finite undirected graph. A partition $\Pi=\left\{V_{1}, V_{2}, \ldots V_{k}\right\}$ is called an equivalence color class domination partition if each V_{i} is an equivalence set of G and for each V_{i} there exist u_{i} in $V(G)$ such that u_{i} dominates $V_{i}, 1 \leq i \leq k$.

Definition 2.2. A partition $\Pi=\left\{V_{1}, V_{2}, \ldots V_{k}\right\}$ is called an equivalence dominator coloring if each V_{i} is an equivalence set of G and for any $u \in V(G)$, there exist some $V_{i}, 1 \leq i \leq k$ such that u dominates V_{i}.

Remark 2.3. Equivalence dominator coloring is a generalization of dominator coloring. That is every dominator color partition is an equivalence dominator color partition.

An equivalence color class domination partition is a generalization of color class domination partition.

Remark 2.4. Let $V=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$. Let $\Pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots\left\{u_{n}\right\}\right\}$. Then Π is an equivalence color class domination partition as well as equivalence dominator coloring partition ($\left\{u_{i}\right\}$ is assumed to be dominated by u_{i}).

Definition 2.5. The minimum cardinality if an equivalence color class domination (equivalence dominator coloring partition) is denoted by $\chi_{e c d}\left(\chi_{e d}\right)$.

Remark 2.6. $\chi_{\text {ecd }} \leq \chi_{d}$ and $\chi_{\text {ecd }} \leq \chi_{c d}$.

$\chi_{\text {ecd }}$ for standard graphs.

1. $\chi_{\text {ecd }}\left(K_{n}\right)=2$.
$2 \chi_{\text {ecd }}\left(K_{1, n}\right)=2$.
2. $\chi_{e c d}\left(\overline{K_{n}}\right)=1$.
3. $\chi_{\text {ecd }}\left(P_{n}\right)=\left\{\begin{array}{l}\frac{n}{2} \text { if } \mathrm{n} \equiv 0(\bmod 4) \\ \frac{\mathrm{n}+1}{2} \text { if } \mathrm{n} \equiv 1,3(\bmod 4) \\ \frac{\mathrm{n}+2}{2} \text { if } \mathrm{n} \equiv 2(\bmod 4)\end{array}\right.$
4. $\chi_{\text {ecd }}\left(C_{n}\right)=\left\{\begin{array}{l}\frac{n}{2} \text { if } \mathrm{n} \equiv 0(\bmod 4) \\ \frac{\mathrm{n}+1}{2} \text { if } \mathrm{n} \equiv 1,3(\bmod 4) \\ \frac{\mathrm{n}+2}{2} \text { if } \mathrm{n} \equiv 2(\bmod 4)\end{array}\right.$
5. $\chi_{\text {ecd }}\left(W_{n}\right)=\left\{\begin{array}{l}3 \text { if } \mathrm{n} \geq 5 \\ 2 \text { if } \mathrm{n}=4\end{array}\right.$
6. $\chi_{\text {ecd }}\left(K_{m, n}\right)=2$

Proposition 2.7. Let G be a graph. Then $\max \left\{\chi_{d}(G), \gamma(G)\right\} \leq \chi_{e d}(G) \leq \chi(G)+\gamma(G)$.The bounds are sharp.

Proof. Since dominator coloring is an equivalence dominator coloring, $\chi_{d}(G) \leq \chi_{e d}(G)$.

Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{K}\right\}$ be a χ_{d} partition of G. Let $D=\left\{x_{1}, x_{2}, \ldots, x_{K}\right\}$ where $x_{i} \in V_{i,} 1 \leq i \leq k$. Let $v \in V / D$. Then v dominates V_{i} for some $\mathrm{i}, 1 \leq i \leq k$.

Since $x_{i} \in V_{i}, \mathrm{v}$ and x_{i} are adjacent. Therefore x_{i} dominates v . Therefore D is a dominating set of G.
$\gamma(G) \leq|D|=k=\chi_{e d}(G)$.

Therefore $\max \left\{\chi_{d}(G), \gamma(G)\right\} \leq \chi_{e d}(G)$.

Let c be a proper coloring of G with $\chi(G)$ colors.

Let D be a minimum dominating set of G . Assign colors $\chi(G)+1, \quad \chi(G)+2, \ldots$, $\chi(G)+\gamma(G)$ to the vertices of D . Let c 1 be the new coloring. Let $v \in V(G)$. Then v is adjacent to some vertex of D, say x. Then v dominates $\{x\}$. Therefore c_{1} is an equivalence dominator coloring. Therefore $\chi_{e d}(G) \leq\left|c_{1}\right|=\chi(G)+\gamma(G)$.

In C4, $\chi_{d}\left(C_{4}\right)=\chi_{e d}\left(C_{4}\right)=\gamma\left(C_{4}\right)=2$.

In C8, $\chi_{e d}\left(C_{8}\right)=5 ; \chi\left(C_{8}\right)=2 ; \gamma\left(C_{8}\right)=3$.

Thus the bounds are attained.

Remark 2.8. In general $\chi(G)$ need not be less than $\chi_{e d}(G)$.

For example,
i). $\chi\left(K_{n}\right)=n$ and $\chi_{e d}\left(K_{n}\right)=2$.
ii). Let

$\Pi=\left\{\left\{v_{2}, v_{4}\right\},\left\{v_{1}\right\},\left\{v_{3}\right\}\right\}$.

Then Π is a chromatic partition. that is $\chi(G)=3$.
$\Pi_{1}=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$. Then Π_{1} is a $\chi_{e d}$-partition of G. Therefore $\chi_{e d}(G)=2 \prec \chi(G)$.
$\chi_{e d}$ for standard graphs:

1. $\chi_{e d}\left(K_{n}\right)=2$
2. $\chi_{e d}\left(K_{1, n}\right)=2$
3. $\chi_{e d}\left(\overline{K_{n}}\right)=n$
4. $\chi_{e d}\left(K_{m, n}\right)=2$
5. $\chi_{e d}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil+1$ for all $n \geq 2$.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Let $\Pi=\left\{\left\{v_{2}\right\},\left\{v_{5}\right\},\left\{v_{8}\right\}, \ldots\left\{v_{n}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{7}, \ldots, v_{n-1}\right\}\right\}$ if $n \equiv 1,2(\bmod 3)$ and
$\Pi=\left\{\left\{v_{2}\right\},\left\{v_{5}\right\},\left\{v_{8}\right\}, \ldots\left\{v_{n-1}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{7}, \ldots, v_{n-2}, v_{n}\right\}\right\}$ if $n \equiv 0(\bmod 3)$.

Then Π is a equivalence dominator coloring with $|\Pi|=\left\lceil\frac{n}{3}\right\rceil+1$.

Therefore $\chi_{e d}\left(P_{n}\right) \leq\left\lceil\frac{n}{3}\right\rceil+1$.

Let Π be a equivalence dominator coloring of minimum cardinality of P_{n}. Suppose in Π there are k singleton classes, 1 -doubleton classes and r classes with cardinality ≥ 3.
case i. $n \equiv 0(\bmod 3)$.

Then $\left\lceil\frac{n}{3}\right\rceil=\frac{n}{3}$.
$k+l+r=\frac{n}{3}$
$3(k+1+r)=n$

The number of vertices which can dominate at least one color class in \prod is at most $3 k+l$. Therefore $n-2 l-3 r$ vertices do not have classes in Π to dominate. $n-2 l-3 r \geq 1$ (since $n-2 l-3 r=0$ implies $n=2 l+3 r$. That is $3 k+3 l+3 r=2 l+3 r$, which implies $3 k+l=0$ $\Rightarrow k=0,1=0$. That is Π consists only of color classes with cardinality ≥ 3. That is no vertex can dominate any color class of Π, a contradiction.

Therefore $n-2 l-3 r \geq 1$. That is these vertices do not have classes in Π to dominate, a contradiction.

Therefore $\frac{n}{3}$ classes are not sufficient for equivalence dominator coloring.

That is $|\Pi| \geq \frac{n}{3}+1$.
case ii. $n \equiv 1$ or $2(\bmod 3)$.

Therefore $\left\lceil\frac{n}{3}\right\rceil=\frac{n+1}{3}$ or $\frac{\mathrm{n}+2}{3}$.

A similar argument as in case (i) will show that $\left\lceil\frac{n}{3}\right\rceil$ classes are not sufficient for equivalence dominator coloring. Therefore $\chi_{e d}(G) \geq\left\lceil\frac{n}{3}\right\rceil+1$.

Therefore $\chi_{e d}(G)=\left\lceil\frac{n}{3}\right\rceil+1$.

$$
\chi_{e d}\left(C_{n}\right)=2 \text { if } \mathrm{n}=3,4
$$

6.

$$
=\left\lceil\frac{\mathrm{n}}{3}\right\rceil+1 \text { if } \mathrm{n} \geq 5
$$

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $\Pi=\left\{\left\{v_{2}\right\},\left\{v_{5}\right\},\left\{v_{8}\right\}, \ldots,\left\{v_{n}\right\},\left\{v_{1}, v_{3}, v_{4} . ., v_{n-1}\right\}\right\}$ if $n \equiv 1,2(\bmod 3)$ and $\Pi=\left\{\left\{v_{2}\right\},\left\{v_{5}\right\},\left\{v_{8}\right\}, \ldots,\left\{v_{n-1}\right\},\left\{v_{1}, v_{3}, . v_{4} \ldots, v_{n-2}, v_{n}\right\}\right\}$ if $n \equiv 0(\bmod 3)$.

Then Π is a equivalence dominator coloring .
$|\Pi|=\left\lceil\frac{n}{3}\right\rceil+1$.

Therefore $\chi_{e d}(G) \leq\left\lceil\frac{n}{3}\right\rceil+1$.

Suppose in Π there are k singleton color classes, 1 -doubleton classes and r classes with cardinality ≥ 3.
case i. $n \equiv 0(\bmod 3)$.

Then $\left\lceil\frac{n}{3}\right\rceil=\frac{n}{3}$.
$k+l+r=\frac{n}{3}$
$3(\mathrm{k}+1+\mathrm{r})=\mathrm{n}$

The number of vertices which can dominate at least one color class in Π is $3 k+l$. Therefore $n-2 l-3 r$ vertices do not have classes in Π to dominate. $n-2 l-3 r \geq 1$ (since $n-2 l-3 r=0$ implies $n=2 l+3 r$. That is $3 k+3 l+3 r=2 l+3 r$, which implies $3 k+l=0$ $\Rightarrow k=0,1=0$. That is Π consists only of color classes with cardinality ≥ 3. That is no vertex can dominate any color class of Π, a contradiction.

Therefore $n-2 l-3 r \geq 1$. That is these vertices do not have classes in Π to dominate, a contradiction.

Therefore $\frac{n}{3}$ classes are not sufficient for equivalence dominator coloring.

That is $|\Pi| \geq \frac{n}{3}+1$.
case ii. $n \equiv 1$ or $2(\bmod 3)$.

Therefore $\left\lceil\frac{n}{3}\right\rceil=\frac{n+1}{3}$ or $\frac{\mathrm{n}+2}{3}$.

A similar argument as in case (i) will show that $\left\lceil\frac{n}{3}\right\rceil$ classes are not sufficient for equivalence dominator coloring. Therefore $\chi_{e d}(G) \geq\left\lceil\frac{n}{3}\right\rceil+1$.

Therefore $\chi_{e d}(G)=\left\lceil\frac{n}{3}\right\rceil+1$.
${ }_{7} \chi_{\text {ed }}\left(W_{n}\right)=3$ if $\mathrm{n} \geq 5$.

$$
=2 \text { if } n=4
$$

Proof. When $\mathrm{n}=4, W_{4}=K_{4}$ and hence $\chi_{e d}\left(W_{4}\right)=2$. Let $n \geq 5$. Let $V\left(W_{n}\right)=\left\{u, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ where u is the centre of W_{n}. Let $\Pi=\left\{\{u\},\left\{v_{1}, v_{3}, \ldots, v_{n-2}\right\},\left\{v_{2}, v_{4}, \ldots, v_{n-1}\right\}\right\} \quad$ if n is odd, let $\Pi=\left\{\{u\},\left\{v_{1}, v_{3}, \ldots, v_{n-1}\right\},\left\{v_{2}, v_{4}, \ldots, v_{n-2}\right\}\right\}$ if n is even, Then Π is an equivalence dominator coloring of $\mathrm{W}_{\mathrm{n}} .|\Pi|=3$. Therefore $\chi_{e d}\left(W_{n}\right) \leq 3$. Let Π be an equivalence dominator color partition of W_{n}. Suppose $|\Pi| \leq 2$. Clearly $\mid \Pi \succ 1$. Also when $n=4 W_{4}$ is K_{4} and hence $\chi_{e d}\left(W_{4}\right)=2$.

Let $n \geq 5$. If u does not appear as singleton, then the class in Π containing u is not an equivalence set.(since $n \geq 5$). Therefore $\{u\}$ appears as a class in Π. If $|\Pi|=2$ then the remaining vertices (a

Therefore $\chi_{e d}\left(W_{n}\right)=3$

Definition 2.9[15] The multi star graph $K_{m}\left(a_{1}, a_{2}, \ldots ., a_{m}\right)$ is formed by joining $a_{i} \geq 1(1 \leq i \leq m)$ end vertices to each vertex x_{i} of a complete graph K_{m}, with $V\left(K_{m}\right)=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$.
8. $\chi_{e d}\left(K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=n+1$.

Let $V\left(K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{11}, \ldots, x_{1 a_{1}}, x_{21}, x_{22}, \ldots, x_{2 a_{2}}, \ldots, x_{n 1}, x_{n 2}, \ldots, x_{n a_{n 1}}\right\}$ where $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ are the vertices of K_{n} and $\mathrm{x}_{\mathrm{il}}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{X}_{\mathrm{iai}}$ are the pendant vertices attached with x_{i}, $1 \leq i \leq n$. Let $\Pi=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots,\left\{x_{n}\right\},\left\{x_{11}, \ldots, x_{1 a_{1}}, x_{21}, x_{22}, \ldots, x_{2 a_{2}}, \ldots, x_{n 1}, x_{n 2}, \ldots, x_{n a_{n}}\right\}\right\}$. Clearly Π is an equivalence dominator color partition. Therefore $\chi_{e d}\left(K_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right) \leq|\Pi|=n+1$. Suppose Π is an equivalence dominator color partition of G. Suppose a color class containing x_{i} and $\mathrm{x}_{\mathrm{j}}(i \neq j)(1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n})$. Then the pendance of x_{i} as well as that of x_{j} can not dominate any color class. Therefore all the xi's have to appear in separate classes. If x_{i} and $x_{j a_{k}}$ appear in a color class then the pendance at x_{i} do not have a color class to dominate. If x_{i} and $x_{i a_{k}}$ appear in a color class then the pendance at x_{i} do not have a color class to dominate. Therefore every x_{i} appears as a singleton in Π. Therefore $|\Pi| \geq n+1$. Therefore $\quad \chi_{e d}\left(K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \geq n+1$.

Therefore $\chi_{e d}\left(K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=n+1$.

$$
\text { 9. } \begin{aligned}
\chi_{e d}\left(K_{a_{1}, a_{2}, \ldots, a_{k}}\right. & =k \text { if } \mathrm{a}_{\mathrm{i}} \geq k-1 \forall i \\
& =\max \left(a_{1}, a_{2}, \ldots, a_{k}\right)+1 \text { if } \mathrm{a}_{\mathrm{i}} \leq k-2 \forall \mathrm{i}
\end{aligned}
$$

Proof. Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$ be the k partite sets. Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$. Then Π is an equivalence dominator coloring partition of $K_{a_{1}, a_{2}, \ldots a_{k}}$. Therefore $\chi_{e d}\left(K_{a_{1}, a_{2}, \ldots, a_{k}}\right) \leq k$. Suppose $\quad \max \left(a_{i}\right) \geq k-1$ Then $\quad \chi_{e d}\left(K_{a_{1}, a_{2}, \ldots a_{k}}\right) \geq k$. Therefore $\chi_{e d}\left(K_{a_{1}, a_{2}, \ldots a_{k}}\right)=k$ if $\max \left(\mathrm{a}_{\mathrm{i}}\right) \geq k-1$. formed by the ith elements of $\mathrm{V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}} . \Pi_{1}$ is an equivalence dominator coloring partition of $K_{a_{1}, a_{2}, \ldots a_{k}}$. Therefore $\chi_{e d}\left(K_{a_{1}, a_{2}, \ldots, a_{k}}\right)=l+1 \prec k$.

Illustration 2.10.

Let $G=K_{a_{1}, a_{2} a_{3}, a_{4}, a_{5}, a_{6}}$ where $a_{1}=4, a_{2}=3, a_{3}=2, a_{4}=3, a_{5}=3, a_{6}=4$.

Then $\chi_{e d}(G)=5$.
10. Let $G=a K_{r}$, where a and r are positive integers $a \geq 2, \mathrm{r} \geq 1$. Then $\chi_{e d}(G)=a+1$.

Proof. Let $D=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ where v_{i} is a vertex in the ith copy of $\mathrm{K}_{\mathrm{r}}, 1 \leq i \leq a$. Let $\Pi=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{a}\right\}, U\right\}$ where U is obtained from G by deleting $\mathrm{v} 1, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{a}}$. . Then Π is equivalence color dominating partition of G (note that U is an equivalence set of G).
$\chi_{e d}(G) \leq|\Pi|=a+1$.

Let Π_{1} be a $\chi_{e d}$ partition of G. Suppose there are t singleton's one each from a copy of K_{r} and let $t \prec a$. Then the a-t classes in Π_{1} contain more than one element in each class. If a class in the a-t classes contain two elements from the same copy then these two elements can not dominate. Likewise if a class in the a-t classes contain two elements from different classes contain two elements from different copies then also these two elements can not dominate a color class. Therefore $t=a$. Therefore $\quad \chi_{e d}(G)=a+1$.

Proposition 2.11.

$1.2 \leq \chi_{e d}(G) \leq n$ if $\mathrm{n} \geq 2, \chi_{e d}(G)=1$ iff $\mathrm{G}=\mathrm{K}_{1}$.
$\chi_{e d}(G)=n$ iff $\mathrm{G}=\overline{K_{n}}$ or $\overline{\mathrm{K}_{\mathrm{n}-2}} \cup K_{2}$ or $\mathrm{mK}_{2} \cup(n-2 m) K_{1}$
2. $\chi_{e d}(G)=2$ iff $G=H_{1}+H_{2}$ where H_{1} and H_{2} are equivalence sub graphs of G .
3. Let $\chi_{e d}(G)=n-1$. Then any $\chi_{e d}$ partition consists of $n-1$ color classes. Of these only one of them is a doubleton and the remaining n-2 classes are singleton. Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{n-1}\right\}$ be a $\chi_{e d}$ partition of G such that $\left|V_{1}\right|=2,\left|\mathrm{~V}_{\mathrm{i}}\right|=1,2 \leq i \leq n-1$. Let $V_{1}=\left\{v_{1}, v_{2}\right\}$, $V_{2}=\left\{v_{3}\right\}, \ldots, V_{n-1}=\left\{v_{n-1}\right\}$. Case $\mathrm{i}: \mathrm{v}_{1}$ and v_{2} are independent.

Sub case i : v_{1} is adjacent with one vertex say v_{i} and v_{2} is adjacent with either v_{i} or v_{j}. In this case $\chi_{e d}(G)=n-1$.

Sub case ii: v_{1} is adjacent with two vertices $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$ and v_{2} is adjacent with v_{i} and v_{j}. Then $\chi_{e d}(G)=n-2$.

Sub case iii: v_{1} is adjacent with two vertices v_{i} and v_{j} and v_{2} is adjacent with exactly one vertex. Then $\chi_{e d}(G)=n-1$.

Sub case iv: v_{1} is adjacent with three vertices and v_{2} is adjacent with exactly one vertex. If the three vertices adjacent to v_{1} form a P_{3} then $\chi_{e d}(G)=n-1$. Otherwise $\chi_{e d}(G) \prec n-1$.

Sub case v: If v 1 is adjacent with four or more vertices then $\chi_{e d}(G) \prec n-1$.

Case ii: v_{1} and v_{2} are adjacent
The sub cases discussed in case (i) can be repeated and the results are the same.

Therefore $\chi_{e d}(G)=n-1$ iff the doubleton class in a $\chi_{e d}$ partition is such that one element is adjacent with at most three elements and the other element is adjacent with exactly one element and the three element is from a P_{3}.

Proposition 2.12. Given a positive integer a there exists a graph G such that $\chi(G)=\chi_{e d}(G)=a$.

Proof.

Case i: $\mathrm{a}=1$.

When $G=K_{1}, \chi(\mathrm{G})=\chi_{e d}(G)=1$

Case ii: $\mathrm{a}=2$

Let $G=K_{2}$. Then $\chi(\mathrm{G})=\chi_{e d}(G)=2$.

Case iii: $a \geq 3$.

Let $G=(a-1) K_{a}$. Then $\chi(\mathrm{G})=\chi_{e d}(G)=a$.

Proposition 2.13. Given a positive integer a, there exists a connected graph G such that $\gamma(G)=1$ and $\chi(G)=\chi_{e d}(G)=a$.

Proof.

Case $\mathrm{i}: \mathrm{a}=1$.

Let $G=K_{1}$. Then $\gamma(G)=1, \chi(G)=\chi_{e d}(G)=1$.

Case ii: $\mathrm{a}=2$.

Let $G=K_{2}$. Then $\gamma(G)=1$ and $\chi(G)=\chi_{e d}(G)=2$.

Case iii: Let $a \geq 3$.

Let $G=(a-1) K_{a-1}$.Join one vertex of $\mathrm{K}_{\mathrm{a}-1}$ to a vertex of the next copy of $\mathrm{K}_{\mathrm{a}-1}$ and a vertex of last copy of $\mathrm{K}_{\mathrm{a}-1}$ to a vertex of first copy of $\mathrm{K}_{\mathrm{a}-1}$. Add a new vertex u such that u is adjacent with every vertex of every copy of $\mathrm{K}_{\mathrm{a}-1}$. Let H be the graph obtained from G by adding a new vertex and making it adjacent with every vertex of G. Also then $\gamma(H)=1, \chi(H)=a, \chi_{e d}(H)=(a-1)+1=a$.

Proposition 2.14. Given a positive integer a, there exists a connected graph G such that $\gamma(G)=1, \chi(\mathrm{G})=\mathrm{a}$ and $\chi_{\mathrm{ed}}(G)=a+1$.

Proof.
Case i: $\mathrm{a}=1$. Let $G=K_{1}$. Then $\gamma(G)=1, \chi(\mathrm{G})=\chi_{\mathrm{ed}}(G)=1=a$.

Case ii: $\mathrm{a}=2$. Let $G=K_{2}$. Then $\gamma(G)=1, \chi(\mathrm{G})=\chi_{\mathrm{ed}}(G)=2=a$.
Case iii: $a \geq 3$. Let $G=a K_{a-1}$. Join one vertex of K_{a-1} to a vertex of the next copy of $\mathrm{K}_{\mathrm{a}-1}$ and a vertex of the last copy of $\mathrm{K}_{\mathrm{a}-1}$ to a vertex of first copy of $\mathrm{K}_{\mathrm{a}-1}$. Add a new vertex u such that u is adjacent with every vertex of every copy of $\mathrm{K}_{\mathrm{a}-1}$. Let H be the resulting graph. Then $\gamma(H)=1, \chi(\mathrm{H})=\mathrm{a}, \chi_{\text {ed }}(H)=a+1$.

Remark 2.15. It has been stated in Theorem 3.5 of [10] that there is no connected graph with $\gamma(G)=1, \chi(\mathrm{G})=b$ and $\chi_{\mathrm{ed}}(G)=b+1$. But in the case of equivalence dominator coloring, there exists a connected graph with $\gamma(G)=1, \chi(\mathrm{G})=b$ and $\chi_{\mathrm{ed}}(G)=b+1$.

Proposition 2.16. Given positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}, c \leq a+b, \mathrm{c} \succ \mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{b} \geq 2$, there exists a graph G such that $\gamma(G)=a, \chi(\mathrm{G})=\mathrm{b}$ and $\chi_{\mathrm{ed}}(G)=c$.

Proof. Let $b \succ k$.
Let $G=K_{a_{1}, a_{2}, \ldots, a_{k}} \cup r K_{b}$.
$\gamma(G)=2+r=a$
$\chi(G)=\max \{k, b\}=b$
$\chi_{e d}(G)=k+r=c$
$r=a-2$
Therefore $r \geq 1$.
Suppose $\mathrm{a}=2$
Let $G=K_{a_{1}, a_{2}, \ldots, a_{k}}$. Let $b \succ k$. Choose a vertex u in the partite set with a_{1} vertices. Construct K_{b} with one of the vertices as u . Let H be the resulting graph. $\gamma(H)=2, \chi(H)=b, \chi_{e d}(H)=k+1$

Choose $k=c-1 \geq 2$. Then H is a connected graph in which $\gamma(H)=2=a, \chi(H)=b$ and $\chi_{\text {ed }}(H)=c$.

References

[1] M.O. Albertson, R.E. Jamison, S.T. Hedetniemi and S.C.Locke, The subchromatic number of a graph, Discrete Math., 74(1989),33-49
[2] N. Alon, Covering graphs by the minimum number of equivalence relations, Combinatorica 6 (3)(1986), 201-206.
[3] S. Arumugam,M.Sundarakannan, Equivalence Dominating Sets in Graphs, Utilitas Mathematica 91(2013) 231-242.
[4] A. Blokhuis and T. Kloks, On the equivalence covering number of split graphs, Information Processing Letters, 54(1995), 301-304.
[5] E.Cockayne, S. Hedetniemi and S.Hedetniemi, Dominatinting partitions of graphs,tech. rep., 1979. Unpublished manuscirpt.
[6] P.Duchet, Representations, noyaux en theorie des graaphes et hyper graphes, These de Doctoral d'EtatI,,Universite Paris VI, 1979.
[7] R.D. Dutton and R.C. Brigham, Domination in Claw-Free Graphs, Congr. Numer., 132(1998), 69-75.
[8] R.Gera, S.Horton, C.Rasmussen, Dominator Colorings and Safe Clique Partitions, Congressus Numerantium (2006).
[9] Gera, Ralucca, On dominator colorings in graphs, Graph Theory Notes N.Y./Volume 52,25-30
[10] J.Gimbel and C. Hartman, Subcolorings and the subchromatic number of
[11] Harary, Graph Theory,Addison-Wesley/Narosa,1988.
[12] T.W. Haynes, S.T. Hedetniemi and Peter J.Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[13] T.W. Haynes, S.T. Hedetniemi, and P.J.Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[14] C.Mynhardt and I. Broere, Generalized colorings of graphs, In Y.Alavi, G.Chartrand, L.Lesniak,D.R. Lick and C.E. Wall, editors, Graph Theory with Applications to Algorithms and Computer Science, Wiley, (1985),583-594.

