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LU VN Y (et be a simple finite undirected graph. A subset S of V is called an equivalence set if every compo-

nent of the induced sub graph is complete. The concept of equivalence set, sub chromatic number,
generalized coloring and equivalence covering number were studied in [1][2][4][6][7][10][15] A partition is called
an equivalence color class domination partition if each Vi is an equivalence set of G and for each Vi there exist ui in
V(G) such that ui dominates Vi, . An equivalence dominator coloring is a partition of V(G) into equivalence classes of
G such that each vertex of G dominates some equivalence classes in that partition. Since equivalence classes is a gen-
eralization of independence, equivalence dominator coloring generalizes dominator coloring [9] in the sense that every
dominator color partition is an equivalence dominator partition. In this paper, the properties of equivalence dominator
coloring are derived

Introduction.

Gera etal [9] introduced dominator coloring in graphs . A dominator coloring of a graph G
is a proper coloring in which each vertex of the graph dominates every vertex of some color
class. The dominator chromatic number is the minimum number of color classes in a
dominator coloring of a graph G. A partition II= {},,V,,...V, }is called an equivalence color

class domination partition if each Vi is an equivalence set of G and for each Vi there exist ui
in V(G) such that ui dominates Vi, 1<i=<k. A partition I'T={V,.V,,...}),} is called an

equivalence dominator coloring of G if each Vi is an equivalence set of G and for any
u € V(G), there exist some Vi, 1 <7<k such that u dominates Vi. Equivalence dominator

coloring is a generalization of dominator coloring. That is every dominator color partition is
an equivalence dominator color partition. The minimum cardinality of an equivalence color
class domination (equivalence dominator coloring partition) is denoted by x_..,(x.,)- In this

paper, the properties of equivalence dominator coloring is introduced and several results
are derived.

2. Equivalence Dominator Coloring of a graph

Definition 2.1. Let G be a simple finite undirected graph. A partition Il ={},V,...V,}is

called an equivalence color class domination partition if each Vi is an equivalence set of G

and for each Vi there exist ui in V(G) such that ui dominates Vi, 1<i< k.

Definition 2.2. A partition I'l = {}|,V, ...V, } is called an equivalence dominator coloring if
each Vi is an equivalence set of G and for any u« € V' (G), there exist some Vi, 1 <7 <k such

that u dominates Vi.

Remark 2.3. Equivalence dominator coloring is a generalization of dominator coloring. That

is every dominator color partition is an equivalence dominator color partition.

An equivalence color class domination partition is a generalization of color class domination

partition.

Remark 2.4. Let V ={u ,u,,...u,}. Let TT = {{u,},{et,},...{u,, } }. Then IT is an equivalence

color class domination partition as well as equivalence dominator coloring partition ({ui} is

assumed to be dominated by ui).
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Definition 2.5. The minimum cardinality if an equivalence color class domination

(equivalence dominator coloring partition) is denoted by y,.,(x.,)-
Remark 2.6. v, , <y, and y,, <7,

X..q for standard graphs.

l. 7. (K,)=2.

[\}

/,{ecd (Kl,n) = 2 :

W

. xecd(K_n)Zl'

gif n = 0(mod 4)

4, 7..(P)= HTHifnsl,3(mod4)

n+2

if n = 2(mod 4)

gif n = 0(mod 4)

2 (C) = HT“ifnsl,3(mod4)

()]

n+2

if n = 2(mod 4)

3ifn>5

6. 7 O7,) =
Fes 1) {2ifn:4

|

: Zecd (Km,n) = 2

Proposition 2.7. Let G be a graph. Then max{ y,(G),7(G)} < x,,(G) < (G) + y(G).The

bounds are sharp.

Proof. Since dominator coloring is an equivalence dominator coloring , y,(G) < y.,(G).
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Let [1={,V,.... Vi bea y, partition of G. Let D = {x,,x,,...,x, } where x, €V, 1<i<k.

Let veV/D. Then v dominates Vi for some i, 1<i<k.

Since x; €V,, v and xi are adjacent. Therefore xi dominates v. Therefore D is a dominating

set of G.

Y(G)<|D|=k = y,(G).

Therefore max{ y,(G),7(G)} < 7., (G).

Let ¢ be a proper coloring of G with y(G) colors.

Let D be a minimum dominating set of G. Assign colors y(G)+1, x(G)+2,...,
7(G)+7(G) to the vertices of D. Let c1 be the new coloring. Let ve V' (G). Then v is
adjacent to some vertex of D, say x. Then v dominates {x}. Therefore ci is an equivalence

dominator coloring. Therefore y ,(G) < |cl| = 7(G)+7(G).

InCs, y,(C,)=y.,(C))=9(C,)=2.

InCs, 7,(Cy) =5 x(Cy)=2y(C)=3.

Thus the bounds are attained.

Remark 2.8. In general y(G)need not be less than y,,(G).
For example,

1). y(K,)=nand y,,(K,)=2.

ii). Let

V4 V3

Vi V2
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[T={{y v} v s}

Then []1is a chromatic partition. thatis y(G) = 3.

[T, ={{v,v;},{v,,v,}}. Then [, isa y,,-partition of G. Therefore y,,(G)=2< y(G).
Z.; for standard graphs:

L 2 (K,)=2

2. yu(Ki,)=2

3 Zu(K,)=n

4' Zed(Km,n) :2
5. ;(ed(Pn):B—leor all 2.

Proof. Let V(P.)={v,,v,,..,v,}.

LetIT={{v,},{vs}, v o AV, 1 V15 V35 V45 Vs Vg ey v, | if = 1,2(mod 3) and

[T={{, 0 0 e b Vs 1 015 V35 V45 Vs Vi sV, 50, HIE =0 (mod 3) .

Then [ is a equivalence dominator coloring with ‘H‘ = {ﬂ +1.

Therefore y,,(P,) < B—l +1.

Let [Ibe a equivalence dominator coloring of minimum cardinality of Pa. Suppose in []

there are k singleton classes, 1-doubleton classes and r classes with cardinality > 3.

case 1. n=0(mod 3).
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n n
Then | —|=—.
3] 3

k+l+r="
3

3(ktl+r)=n

The number of vertices which can dominate at least one color class in []is at most 3k +1 .
Therefore n—2/—3rvertices do not have classes in [] to dominate. n—2/—3r>1(since

n—20-3r=0 implies n=2/+3r. That is 3k +3/+3r =2/+3r, which implies 3k+/=0

= k=0,1=0. That is []consists only of color classes with cardinality >3. That is no

vertex can dominate any color class of [, a contradiction.

Therefore n—2/—3r >1. That is these vertices do not have classes in [[ to dominate, a

contradiction.

Therefore 3 classes are not sufficient for equivalence dominator coloring.

That is \H\zgﬁ.

case il. n=1or 2 (mod 3).

Therefore . n_+1 or n_-|-2 )
3 3 3

- : : : n .
A similar argument as in case (i) will show that 5—‘ classes are not sufficient for

equivalence dominator coloring. Therefore y,,(G) > [g +1.

Therefore y,,(G) = B—‘ +1.
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X (C)=21fn=34

6.
:B—lHifnZS

Proof. Let V(C,)={v,,v,,...,v,}. Let TT={{}{v}, vtV v vovyeny, (1) if

n=1,2(mod3) and [T={{v,},{vs}, Vs }ses V0 o Vs V30040V, 0, I =0 (mod 3).

Then [T is a equivalence dominator coloring .

|H|:m+1.

Therefore ,,(G) < m 1.
Suppose in [] there are k singleton color classes, I-doubleton classes and r classes with
cardinality > 3.

case 1. n=0(mod 3).

Then P—‘ = ﬁ.
31 3

k+l+r:E
3

3(ktl+r)=n

The number of vertices which can dominate at least one color class in []is 3k +/ . Therefore
n—2l-3rvertices do not have classes in [ to dominate. n—2/-3r>1(since
n—20-3r=0 implies n=2/+3r. Thatis 3k +3/+3r=2/+3r, which implies 3k+/=0

=k =0,1=0. That is []consists only of color classes with cardinality >3. That is no

vertex can dominate any color class of ], a contradiction.
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Therefore n—2[—3r>1. That is these vertices do not have classes in [[ to dominate, a

contradiction.

Therefore 3 classes are not sufficient for equivalence dominator coloring.

That is |H|z§+1.

case ii. n=1or2(mod 3).

Therefore iy n—+1 or n_+2 )
3 3 3

. : : : n :
A similar argument as in case (i) will show that E—l classes are not sufficient for

n

equivalence dominator coloring. Therefore y,,(G) 2 [3 +1.

Therefore y,,(G) = B—‘ +1.

7;(ed(Wn):3ifn25 '

=2 ifn=4
Proof. When n = 4, W,=K,and hence YaW,)=2. Let n=5. Let
Viw,)={u,v,v,,..,v, } where u is the centre of W Let
=}, (v, ViV, 5} V0 VisenV, if n is odd, let
[T={{u},{v,,vsresv,  }5{Vs,V,5esv, o} Fif 11 i even, Then [] is an equivalence dominator
coloring of Wh . |H| =3. Therefore y,,(W,)<3. Let []be an equivalence dominator color

partition of Wn . Suppose |H| <2. Clearly |H > 1|. Also when n =4 W4 is K4 and hence

Zed(W4) = 2
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Let n>5. If u does not appear as singleton, then the class in [] containing u is not an
equivalence set.(since n>5). Therefore {u} appears as a class in []. If ‘H‘ = 2then the

remaining vertices (a

Therefore y,, (W )=3

Definition 2.9[15] The multi star graph K (a,,a,,...,a,)is formed by joining
a,21(1<i<m) end vertices to each vertex xi of a complete graph Km, with

V(Km) = {xlaxz""’xm} .

8. y.(K, (a,a,,..,a,))=n+l.

nl»

Let V(Kn(al,az,...,an)):{xl,xz,....,xn,x“,...,xlal,le,xzz,...,xzaz,...,x xnz,...,xn%} where

X1, X2,...,Xn are the vertices of Kn and xil, Xi,...,Xiai are the pendant vertices attached with xi,

T<i<m Let TT={{x 3, {0 b 00, {0 e Xig 5 X015 X seees X s X5 Xy 5o X,y - Clely
[Tis an equivalence dominator color partition. Therefore y (K, (a,,a,,...,a,)) < ‘H‘ =n+l.

Suppose [lis an equivalence dominator color partition of G. Suppose a color class
containing xi and xj(i # j ) (1<1, j<n) . Then the pendance of xi as well as that of xj can not

dominate any color class. Therefore all the xi's have to appear in separate classes . If xi and

X, appear in a color class then the pendance at xi do not have a color class to dominate. If xi

and x,, appear in a color class then the pendance at xi do not have a color class to dominate.
Therefore every xi appears as a singleton in ] . Therefore ‘H‘ >n+1.

Therefore (K, (a,,a,,...,a,))2n+1.
Therefore y ,(K,(a,,a,,...,a,))=n+1.

5 Zed(Kal,az,...,aA )=kifa, 2k-1Vi

=max(a,,a,,..,a,)+1if a, <k-2V1
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Proof. Let V1,V2,..,Vk be the k partite sets. Let [[={/,V,,...,V,}. Then 1[I is an

equivalence dominator coloring partition of K Therefore y (K <k.
q g p a;,a, ch

endly ° ay,ay .. 4, )

Suppose max(a;) > k—1. Then XKoo 0) 2k Therefore
YK, o ) =kif max(a,) > k1. formed by the ith elements of V2,..,Vi. . [, is an

yeen

equivalence dominator coloring partition of K . Therefore K =[+1<k.
q g p a,ay ... 4 Zed ay,qy ... 41,

Ilustration 2.10.

Let G=K _where a, =4, a,=3,a,=2,a, =3,a, =3,a, =4.

Then y,,(G)=5.
10. Let G = aK, where a and r are positive integers a >2,r>1. Then y ,(G)=a+1.

Proof. Let D={v,,v,,..,v,} where vi is a vertex in the ith copy of Ki, 1<i<a Let
[T={{v},{v,},{v,},U} where U is obtained from G by deleting vi,v2,...,va. Then []is

equivalence color dominating partition of G (note that U is an equivalence set of G).
X (G <[ =a+1.

Let [I,be a y,, partition of G. Suppose there are t singleton's one each from a copy of Kr

and let ¢ < a. Then the a-t classes in [, contain more than one element in each class. If a

class in the a-t classes contain two elements from the same copy then these two elements can
not dominate. Likewise if a class in the a-t classes contain two elements from different
classes contain two elements from different copies then also these two elements can not

dominate a color class. Therefore ¢ = a . Therefore y,,(G)=a+1.

Proposition 2.11.

1.2< 7., (G <nifn>2, y,(G)=1iff G=K,.

Za(G)=niff G=K orK , UK, ormK, U(n-2m)K,
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2. y,,(G)=2iff G=H, + H,where Hi and Hz are equivalence sub graphs of G.

3.Let y,,(G)=n—-1. Then any y,, partition consists of n-1 color classes. Of these only one
of them is a doubleton and the remaining n-2 classes are singleton. Let [[ = {/,,V,,...,V, ,} be

a yypartition of G such that |V1|=2,

Vi|=L2<i<n-1. Let V,={,v},

V, ={v;},..V , =1{v,,} .Case i: vi and v2 are independent.

Sub case 1: vi is adjacent with one vertex say vi and vz is adjacent with either vi or vj. In this

case y,,(G)=n-1.

Sub case ii: vi is adjacent with two vertices vi ,vj and v is adjacent with vi and vj. Then

Xea(G)=n=2.

Sub case iii: vi is adjacent with two vertices vi and vj and v2 is adjacent with exactly one

vertex. Then y,,(G)=n-1.

Sub case iv: vi 1s adjacent with three vertices and v2 is adjacent with exactly one vertex. If

the three vertices adjacent to vi form a P3 then y_,(G)=n—-1. Otherwise y,,(G)<n—-1.
Sub case v: If v1 is adjacent with four or more vertices then y,,(G)<n-1.

Case 1i: vi and v2 are adjacent
The sub cases discussed in case (i) can be repeated and the results are the same.

Therefore y,,(G)=n—1iff the doubleton class ina y,, partition is such that one element is

adjacent with at most three elements and the other element is adjacent with exactly one

element and the three element is from a Ps.

Proposition 2.12. Given a positive integer a there exists a graph G  such that

1G)=x,(G)=a.
Proof.

Casei:a=l.
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When G=K,, y(G)=y,,(G) =1
Caseiiza=2

Let G=K,.Then y(G)=y,(G)=2.

Case iii: a>3.

Let G=(a-1)K,. Then y(G)=y,,(G)=a.

Proposition 2.13. Given a positive integer a, there exists a connected graph G such that

y(G)=1and x(G)=x,(G)=a.

Proof.

Casei:a=1.

Let G=K,. Then y(G)=1, y(G) = ,,(G) =1.

Case ii: a =2.

Let G=K,.Then y(G)=1 and y(G)=y,(G)=2.
Case iii: Let a > 3.

Let G =(a—-1)K,, .Join one vertex of Ka-1 to a vertex of the next copy of Ka-1 and a vertex of

last copy of Ka-1 to a vertex of first copy of Ka-1 . Add a new vertex u such that u is adjacent
with every vertex of every copy of Ka1. Let H be the graph obtained from G by adding a

new vertex and making it adjacent with every vertex of G. Also then

y(H) =1, y(H)=a,,(H)=(a-D)+1=a.

Proposition 2.14. Given a positive integer a, there exists a connected graph G such that
7(G)=1, y(G)=aand y(G)=a+1.
Proof.
Casei:a=l.Let G=K,. Then y(G) =1, y(G)= y,(G)=1=a.
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Caseii:a=2.Let G=K,.Then y(G)=1 y(G)= y,(G)=2=a.

Case iii: a=>3. Let G=aK__,. Join one vertex of Ka-1 to a vertex of the next copy of Ka-1
and a vertex of the last copy of Ka.1 to a vertex of first copy of Ka-1. Add a new vertex u such
that u is adjacent with every vertex of every copy of Ka-1. Let H be the resulting graph. Then
yH)=1,yH)=a,y ,(H)=a+1.

Remark 2.15. It has been stated in Theorem 3.5 of [10] that there is no connected graph
with  »(G)=1,y(G)=band y,(G)=b+1. But in the case of equivalence dominator
coloring, there exists a connected graph with y(G) =1, (G)=band y,,(G)=b+1.
Proposition 2.16. Given positive integers a,b,c, c<a-+b,c>a,b,a,b>2, there exists a
graph G such that y(G) =a, y(G)=band y,(G) =c.

Proof. Let b > k.
Let G=K

a ,ay,... Ay
y(G)=2+r=a
2(G) =max{k,b} =b
2u(@) =k+r=c

urk,.

r=a-2
Therefore r>1.
Suppose a =2

Let G=K, . . -Let b>k.Choose a vertex u in the partite set with a1 vertices. Construct

Ko with one of the vertices as u. Let H be the resulting graph.
y(H) =2, x(H)=b, x,(H)=k+1
Choose k=c—-122. Then H is a connected graph in  which

y(H)=2=a,y(H)=band y,(H)=c.
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