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ABSTRACT The present article presents mathematical modeling for ordering items with shortages. In this model in-
ventory is divided into four layers(suppliers, manufacturers, distributors and retailers).Every stage hold in-

ventory in some of the form.. The demand is defined by Ramp type function in which in the first phase the demand 
increase with time and after that it becomes steady and towards the end in the final phase it decreases and becomes 
asymptotic.
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Introduction 

          The demand pattern for fashionable products which initially increases 

exponentially with time for a period of time after that it becomes steady rather than 

increasing exponentially. But for fashionable products as well as for the seasonal 

products the steady demand after its exponential increment with time never be 

continued indefinitely. Rather it would be followed by exponential decrement with 

respect to time after a period of time and becomes asymptotic in nature. Thus the 

demand would be illustrated by three successive time period classified time 

dependent ramp type function, in which in the first phase the demand increase with 

time and after that it becomes steady and towards the end in the final phase it 

decreases and becomes asymptotic.  

         Goyal and Nebebe (2000) considered a problem of determining economic 

production from a vendor to a buyer. Wee (2003) developed an integrated inventory 

model with constant rate of deterioration and multiple deliveries. Lee and Wu 

(2006) developed a study on inventory replenishment policies in a two-echelon 

supply chain system. Ahmed et. al (2007) have recently coordinated a two level 

supply chain in which they considered production interruptions for restoring of the 

quality of the production process. Singh (2008) assumed optimal ordering policy for 

decaying items under inflation. 

          Wu (2001) considered an EOQ model with ramp – type demand, weibull 

distribution deterioration and partial backlogging. The characteristic of ramp – type 

demand can be found in Mandal and Pal (1998) has been taken order level 

inventory system with ramp–type demand rate for deterioration items. Wu et al 

(1999) developed an EOQ model with ramp type demand rate for items with 

Weibull deterioration. Wu and Ouyang (2000) considered a replenishment policy 

for deteriorating items with ramp type demand rate, Manna and Chaudhari (2006) 

assumed an EOQ model with ramp type demand rate, time dependent deterioration 

rate, unit production cost and shortages and Deng et al. (2007) considered a note on 

the inventory models for deteriorating items with ramp type demand rate. 
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2. Assumptions and Notations 

The following assumptions and notations are used in developing the model 

 (i) Shortages in the inventory are allowed and partially backlogged. 

(ii) The supply is instantaneous and the lead time is zero. 

(iii) A deteriorated unit is not repaired or replaced during a given cycle. 

(iv)  Single vendor and single buyer model is considered. 

3. Model formulation: 

In this model we will study only the order cycle in the interval  ,i i   and ends in 

the time interval 2,i T . The deterministic demand rate R(t) is ramp-type time 

dependent i.e.,          i i i ib t t μ H t μ t γ H t γD t Ae ,i 1,2            , where A>0 is the 

initial demand rate and b >0 is the rate with which the demand rate increase. 

 iH t μ  and  iH t γ  are well known Heviside functions respectively defined 

as 

 

    i i
i i

i i

1 if t μ 1 if t γ
H t μ , H t γ

0 if t μ 0 if t γ
  

      
 

 

The order cycle starts in the interval  ,i i   and ends in the time interval 2,i T  

and follows the differential equations 
1,

1 1 1 1 1 1( ) ( ) ( 1) , 0b
v vI t I t K Ae t                                                                                

….(1) 

1 1 1( ),
1 1 1 1 1 1( ) ( ) ( 1) ,0b t

v vI t I t K Ae t T                                                                            

….(2) 
2,

2 2 2 2 2 2( ) ( ) , 0b
v vI t I t Ae t                                                                                     

….(3) 

2 2 2( ),
2 2 2 2 2 2 2( ) ( ) ,b t

v vI t I t Ae t T                                                                                

….(4) 
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2( ) ( ) , 0b
b bI t I t Ae t                                                                                            

….(5) 
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2 2( ),
2( ) ( ) ,b t

b bI t I t Ae t T                                                                                        

….(6) 

2, 2( ) ,
1 ( )

b
b

TAI t e T t
T t n




   

 
                                                                                     

….(7) 

with the initial conditions 0)(,0)0( 221  TII vv and ( ) 0bI T  , the solution of the 

above differential equations are. 

 1
1 1 1 1

( 1)( ) 1 ,0tb
v

A KI t e e t 


                                                            ….(8) 

1 1 1 1 1( ( )) ( )
1 1 1 1

( 1) ( 1)( ) ] ,b t b t
v
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b b

     
 

    
    

 
               

….(9)           

 2 2 2 2( )
2 2 2 2 2 2( ) ( ) ,0b b t

v v
A AI t e I e e t    
 

     

2 2 2 2 2( ) ( )
2 2 2,b b T t btA e e e t T

b
    


        

                                                           

….(10) 

and 

2 2 2( )
2 2( ) ( ) ,0b b t

b b
A AI t e I e e t    
 

                                                                  

….(11) 

2 2( ) ( )
2( ) ,b b T t bt

b
AI t e e e t T

b
    


        

                                                                

….(12) 

2 2 2 2( ) ln 1 ( ) ln 1 ( ) ,b
b

T T TAI t e T t T t
n n n

  


                     
                          

….(13) 

From (10), we have 

2 2 2
2 2( )b b

mv v
A AI e I e e  
 

                                                                                        

….(14) 

when )0(2vvm II   
We know from previous model that 
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2 2 2
2( )b b

mb b
A AI e I e e  
 

                                                                                         

….(16) 

when )0(bbm II   

By the boundary condition, ),0()( 211 vv ITI  one can got the relation between T1 and 

T2 .                                                           

The yearly holding cost for buyer and vendor is 
1

0
( )

t

b b b bH C p F I t d t   

   
2

2

20
( ) ( )

T
n

b b b bp F I t d t I t d t




 
  

 
                                                                                  

….(17) 

and  

1 2

1 2 2 20 0 0
( ) ( ) ( )

T T T

v v v v v bH C p F I t d t I t d t I t d t         

2
1 1 2 2 2

1 2 2
1 1 1 1 1 1 2 2 2 2 2 20 0 0
( ) ( ) ( ) ( ) ( ) ( )

TT T
n

v v v v v v b bp F I t d t I t d t I t d t I t d t I t d t I t d t
  

  

       
     

                                                  

                                                                                                                                                

….(18) 

The annual deteriorated costs for buyer and vendor is  

2

0
( )

T
n

b b mbDC p I D t d t
 

  
 

                                                                                                          

           
2

2

20
( ) ( )

T
n

b mbp I D t d t D t d t




  
    

   
                                                                        

….(19) 

and                                                                                        

)( 1 bmvv ITPpCD                                                                                                               

….(20) 

respectively 

The setup cost per year for buyer and vendor is  

bsb CCS                                                                                                                                

….(21) 
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and  

vsv CCS                                                                                                                                

….(22) 

 respectively 

The shortage cost for buyer 
2

( )
T
n

b bT
OC S I t d t                                                                                                               

….(23) 

The opportunity cost for buyer 
2

21 ( )
T
n

b T

TLC A B t d t
n

                                                                                                    

….(24) 

Therefore, the buyer’s cost is the sum of (17), (19), (21), (23) and (24) as 

b b b b bBC H C DC S C OC LC                                                                                       

….(25)                                                                

The vendor’s cost is the sum of (18), (20) & (22) as  

vvv CSCDCHCV                                                                                                         

….(26) 

The integrated total cost of the vendor and buyer, is the sum of (95) and (96) 

CVCBCT                                                                                                                       

….(27) 

5. Conclusion: 

          In this paper we have attempted to develop a decaying inventory model with a 

very realistic and practical demand rate. The procedure presented here may be 

applied to very practical situations.. To make a better combination of increasing-

steady-decreasing demand patterns for perishable seasonal products and finite length 

of the season this model can be used. The customer neither has the patience nor the 

requirement to wait. This often results in lost sales. As we compare both models we 

have seen that total cost without shortages is very high in comparison of with 

shortages.  

An optimal solution of the system is obtained under the assumed conditions. 

Moreover, we characterize the effects of various parameters of the system on the 

optimal solution. 
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